646 research outputs found

    Deep Learning Approaches in Pavement Distress Identification: A Review

    Full text link
    This paper presents a comprehensive review of recent advancements in image processing and deep learning techniques for pavement distress detection and classification, a critical aspect in modern pavement management systems. The conventional manual inspection process conducted by human experts is gradually being superseded by automated solutions, leveraging machine learning and deep learning algorithms to enhance efficiency and accuracy. The ability of these algorithms to discern patterns and make predictions based on extensive datasets has revolutionized the domain of pavement distress identification. The paper investigates the integration of unmanned aerial vehicles (UAVs) for data collection, offering unique advantages such as aerial perspectives and efficient coverage of large areas. By capturing high-resolution images, UAVs provide valuable data that can be processed using deep learning algorithms to detect and classify various pavement distresses effectively. While the primary focus is on 2D image processing, the paper also acknowledges the challenges associated with 3D images, such as sensor limitations and computational requirements. Understanding these challenges is crucial for further advancements in the field. The findings of this review significantly contribute to the evolution of pavement distress detection, fostering the development of efficient pavement management systems. As automated approaches continue to mature, the implementation of deep learning techniques holds great promise in ensuring safer and more durable road infrastructure for the benefit of society

    Reconhecimento de padrões em expressões faciais : algoritmos e aplicações

    Get PDF
    Orientador: Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O reconhecimento de emoções tem-se tornado um tópico relevante de pesquisa pela comunidade científica, uma vez que desempenha um papel essencial na melhoria contínua dos sistemas de interação humano-computador. Ele pode ser aplicado em diversas áreas, tais como medicina, entretenimento, vigilância, biometria, educação, redes sociais e computação afetiva. Há alguns desafios em aberto relacionados ao desenvolvimento de sistemas emocionais baseados em expressões faciais, como dados que refletem emoções mais espontâneas e cenários reais. Nesta tese de doutorado, apresentamos diferentes metodologias para o desenvolvimento de sistemas de reconhecimento de emoções baseado em expressões faciais, bem como sua aplicabilidade na resolução de outros problemas semelhantes. A primeira metodologia é apresentada para o reconhecimento de emoções em expressões faciais ocluídas baseada no Histograma da Transformada Census (CENTRIST). Expressões faciais ocluídas são reconstruídas usando a Análise Robusta de Componentes Principais (RPCA). A extração de características das expressões faciais é realizada pelo CENTRIST, bem como pelos Padrões Binários Locais (LBP), pela Codificação Local do Gradiente (LGC) e por uma extensão do LGC. O espaço de características gerado é reduzido aplicando-se a Análise de Componentes Principais (PCA) e a Análise Discriminante Linear (LDA). Os algoritmos K-Vizinhos mais Próximos (KNN) e Máquinas de Vetores de Suporte (SVM) são usados para classificação. O método alcançou taxas de acerto competitivas para expressões faciais ocluídas e não ocluídas. A segunda é proposta para o reconhecimento dinâmico de expressões faciais baseado em Ritmos Visuais (VR) e Imagens da História do Movimento (MHI), de modo que uma fusão de ambos descritores codifique informações de aparência, forma e movimento dos vídeos. Para extração das características, o Descritor Local de Weber (WLD), o CENTRIST, o Histograma de Gradientes Orientados (HOG) e a Matriz de Coocorrência em Nível de Cinza (GLCM) são empregados. A abordagem apresenta uma nova proposta para o reconhecimento dinâmico de expressões faciais e uma análise da relevância das partes faciais. A terceira é um método eficaz apresentado para o reconhecimento de emoções audiovisuais com base na fala e nas expressões faciais. A metodologia envolve uma rede neural híbrida para extrair características visuais e de áudio dos vídeos. Para extração de áudio, uma Rede Neural Convolucional (CNN) baseada no log-espectrograma de Mel é usada, enquanto uma CNN construída sobre a Transformada de Census é empregada para a extração das características visuais. Os atributos audiovisuais são reduzidos por PCA e LDA, então classificados por KNN, SVM, Regressão Logística (LR) e Gaussian Naïve Bayes (GNB). A abordagem obteve taxas de reconhecimento competitivas, especialmente em dados espontâneos. A penúltima investiga o problema de detectar a síndrome de Down a partir de fotografias. Um descritor geométrico é proposto para extrair características faciais. Experimentos realizados em uma base de dados pública mostram a eficácia da metodologia desenvolvida. A última metodologia trata do reconhecimento de síndromes genéticas em fotografias. O método visa extrair atributos faciais usando características de uma rede neural profunda e medidas antropométricas. Experimentos são realizados em uma base de dados pública, alcançando taxas de reconhecimento competitivasAbstract: Emotion recognition has become a relevant research topic by the scientific community, since it plays an essential role in the continuous improvement of human-computer interaction systems. It can be applied in various areas, for instance, medicine, entertainment, surveillance, biometrics, education, social networks, and affective computing. There are some open challenges related to the development of emotion systems based on facial expressions, such as data that reflect more spontaneous emotions and real scenarios. In this doctoral dissertation, we propose different methodologies to the development of emotion recognition systems based on facial expressions, as well as their applicability in the development of other similar problems. The first is an emotion recognition methodology for occluded facial expressions based on the Census Transform Histogram (CENTRIST). Occluded facial expressions are reconstructed using an algorithm based on Robust Principal Component Analysis (RPCA). Extraction of facial expression features is then performed by CENTRIST, as well as Local Binary Patterns (LBP), Local Gradient Coding (LGC), and an LGC extension. The generated feature space is reduced by applying Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms are used for classification. This method reached competitive accuracy rates for occluded and non-occluded facial expressions. The second proposes a dynamic facial expression recognition based on Visual Rhythms (VR) and Motion History Images (MHI), such that a fusion of both encodes appearance, shape, and motion information of the video sequences. For feature extraction, Weber Local Descriptor (WLD), CENTRIST, Histogram of Oriented Gradients (HOG), and Gray-Level Co-occurrence Matrix (GLCM) are employed. This approach shows a new direction for performing dynamic facial expression recognition, and an analysis of the relevance of facial parts. The third is an effective method for audio-visual emotion recognition based on speech and facial expressions. The methodology involves a hybrid neural network to extract audio and visual features from videos. For audio extraction, a Convolutional Neural Network (CNN) based on log Mel-spectrogram is used, whereas a CNN built on Census Transform is employed for visual extraction. The audio and visual features are reduced by PCA and LDA, and classified through KNN, SVM, Logistic Regression (LR), and Gaussian Naïve Bayes (GNB). This approach achieves competitive recognition rates, especially in a spontaneous data set. The second last investigates the problem of detecting Down syndrome from photographs. A geometric descriptor is proposed to extract facial features. Experiments performed on a public data set show the effectiveness of the developed methodology. The last methodology is about recognizing genetic disorders in photos. This method focuses on extracting facial features using deep features and anthropometric measurements. Experiments are conducted on a public data set, achieving competitive recognition ratesDoutoradoCiência da ComputaçãoDoutora em Ciência da Computação140532/2019-6CNPQCAPE

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Performance Analysis of Hybrid Algorithms For Lossless Compression of Climate Data

    Full text link
    Climate data is very important and at the same time, voluminous. Every minute a new entry is recorded for different climate parameters in climate databases around the world. Given the explosive growth of data that needs to be transmitted and stored, there is a necessity to focus on developing better transmission and storage technologies. Data compression is known to be a viable and effective solution to reduce bandwidth and storage requirements of bulk data. So, the goal is to develop the best compression methods for climate data. The methodology used is based on predictive analysis. The focus is to implement a hybrid algorithm which utilizes the functionality of Artificial Neural Networks (ANN) for prediction of climate data. ANN is a very efficient tool to generate models for predicting climate data with great accuracy. Two types of ANN’s such as Multilayer Perceptron (MLP) and Cascade Feedforward Neural Network (CFNN) are used. It is beneficial to take advantage of ANN and combine its output with lossless compression algorithms such as differential encoding and Huffman coding to generate high compression ratios. The performance of the two techniques based on MLP and CFNN types are compared using metrics including compression ratio, Mean Square Error (MSE) and Root Mean Square Error (RMSE). The two methods are also compared with a conventional method of differential encoding followed by Huffman Coding. The results indicate that MLP outperforms CFNN. Also compression ratios of both the proposed methods are higher than those obtained by the standard method. Compression ratios as high as 10.3, 9.8, and 9.54 are obtained for precipitation, photosynthetically active radiation, and solar radiation datasets respectively

    A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems

    Get PDF
    The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms

    Sonar image interpretation for sub-sea operations

    Get PDF
    Mine Counter-Measure (MCM) missions are conducted to neutralise underwater explosives. Automatic Target Recognition (ATR) assists operators by increasing the speed and accuracy of data review. ATR embedded on vehicles enables adaptive missions which increase the speed of data acquisition. This thesis addresses three challenges; the speed of data processing, robustness of ATR to environmental conditions and the large quantities of data required to train an algorithm. The main contribution of this thesis is a novel ATR algorithm. The algorithm uses features derived from the projection of 3D boxes to produce a set of 2D templates. The template responses are independent of grazing angle, range and target orientation. Integer skewed integral images, are derived to accelerate the calculation of the template responses. The algorithm is compared to the Haar cascade algorithm. For a single model of sonar and cylindrical targets the algorithm reduces the Probability of False Alarm (PFA) by 80% at a Probability of Detection (PD) of 85%. The algorithm is trained on target data from another model of sonar. The PD is only 6% lower even though no representative target data was used for training. The second major contribution is an adaptive ATR algorithm that uses local sea-floor characteristics to address the problem of ATR robustness with respect to the local environment. A dual-tree wavelet decomposition of the sea-floor and an Markov Random Field (MRF) based graph-cut algorithm is used to segment the terrain. A Neural Network (NN) is then trained to filter ATR results based on the local sea-floor context. It is shown, for the Haar Cascade algorithm, that the PFA can be reduced by 70% at a PD of 85%. Speed of data processing is addressed using novel pre-processing techniques. The standard three class MRF, for sonar image segmentation, is formulated using graph-cuts. Consequently, a 1.2 million pixel image is segmented in 1.2 seconds. Additionally, local estimation of class models is introduced to remove range dependent segmentation quality. Finally, an A* graph search is developed to remove the surface return, a line of saturated pixels often detected as false alarms by ATR. The A* search identifies the surface return in 199 of 220 images tested with a runtime of 2.1 seconds. The algorithm is robust to the presence of ripples and rocks

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    River flow forecasting using an integrated approach of wavelet multi-resolution analysis and computational intelligence techniques

    Get PDF
    In this research an attempt is made to develop highly accurate river flow forecasting models. Wavelet multi-resolution analysis is applied in conjunction with artificial neural networks and adaptive neuro-fuzzy inference system. Various types and structure of computational intelligence models are developed and applied on four different rivers in Australia. Research outcomes indicate that forecasting reliability is significantly improved by applying proposed hybrid models, especially for longer lead time and peak values
    • …
    corecore