133 research outputs found

    A Multidisciplinary Analysis of Frequency Domain Metal Detectors for Humanitarian Demining

    Get PDF
    This thesis details an analysis of metal detectors (low frequency electromagnetic induction devices) with emphasis on Frequency Domain (FD) systems and the operational conditions of interest to humanitarian demining. After an initial look at humanitarian demining and a review of their basic principles we turn our attention to electromagnetic induction modelling and to analytical solutions to some basic FD direct (forward) problems. The second half of the thesis focuses then on the analysis of an extensive amount of experimental data. The possibility of target classification is first discussed on a qualitative basis, then quantitatively. Finally, we discuss shape and size determination via near field imaging

    Seismic Imaging of UXO-Contaminated Underwater Sites (Interim Report)

    Full text link

    A comparative and combined study of EMIS and GPR detectors by the use of Independent Component Analysis

    Get PDF
    Independent Component Analysis (ICA) is applied to classify unexploded ordnance (UXO) on laboratory UXO test-field data, acquired by stand-off detection. The data are acquired by an Electromagnetic Induction Spectroscopy (EMIS) metal detector and a ground penetrating radar (GPR) detector. The metal detector is a GEM-3, which is a monostatic sensor measuring the response of the environment on a multi-frequency constant wave excitation field (300 Hz to 25 kHz), and the GPR detector is a stepped-frequency GPR with a monostatic bow-tie antenna (500MHz to 2.5GHz). For both sensors the in-phase and the quadrature responses are measured at each frequency. The test field is a box of soil where a wide range of UXOs are placed at selected positions. The position and movement of both of the detectors are controlled by a 2D-scanner. Thus the data are acquired at well-defined measurement points. The data are processed by the use of statistical signal processing based on ICA. An unsupervised method based on ICA to detect, discriminate, and classify the UXOs from clutter is suggested. The approach is studied on GPR and EMIS data, separately and compared. The potential is an improved ability: to detect the UXOs, to evaluate the related characteristics, and to reduce the number of false alarms from harmless objects and clutter

    Experimental time-domain controlled source electromagnetic induction for highly conductive targets detection and discrimination

    Get PDF
    The response of geological materials at the scale of meters and the response of buried targets of different shapes and sizes using controlled-source electromagnetic induction (CSEM) is investigated. This dissertation focuses on three topics; i) frac- tal properties on electric conductivity data from near-surface geology and processing techniques for enhancing man-made target responses, ii) non-linear inversion of spa- tiotemporal data using continuation method, and iii) classification of CSEM transient and spatiotemporal data. In the first topic, apparent conductivity profiles and maps were studied to de- termine self-affine properties of the geological noise and the effects of man-made con- ductive metal targets. 2-D Fourier transform and omnidirectional variograms showed that variations in apparent conductivity exhibit self-affinity, corresponding to frac- tional Brownian motion. Self-affinity no longer holds when targets are buried in the near-surface, making feasible the use of spectral methods to determine their pres- ence. The difference between the geology and target responses can be exploited using wavelet decomposition. A series of experiments showed that wavelet filtering is able to separate target responses from the geological background. In the second topic, a continuation-based inversion method approach is adopted, based on path-tracking in model space, to solve the non-linear least squares prob- lem for unexploded ordnance (UXO) data. The model corresponds to a stretched- exponential decay of eddy currents induced in a magnetic spheroid. The fast inversion of actual field multi-receiver CSEM responses of inert, buried ordnance is also shown. Software based on the continuation method could be installed within a multi-receiver CSEM sensor and used for near-real-time UXO decision. In the third topic, unsupervised self-organizing maps (SOM) were adapted for data clustering and classification. The use of self-organizing maps (SOM) for central- loop CSEM transients shows potential capability to perform classification, discrimi- nating background and non-dangerous items (clutter) data from, for instance, unex- ploded ordnance. Implementation of a merge SOM algorithm showed that clustering and classification of spatiotemporal CSEM data is possible. The ability to extract tar- get signals from a background-contaminated pattern is desired to avoid dealing with forward models containing subsurface response or to implement processing algorithm to remove, to some degree, the effects of background response and the target-host interactions

    Enhancing magnetic signals in unexploded ordnances (UXO) detection based on edge-preserved stable downward continuation method

    Get PDF
    Abstract This paper describes an efficient edge-preserved regularization algorithm for downward continuation of magnetic data in detecting unexploded ordnance (UXO). The magnetic anomalies arising from multi-source UXO can overlap at a height over the ground surface while causative sources may not be readily separated due to low level of signal-to-noise ratio of the observed data. To effectively work the magnetic method in the cleanup stage of contaminated area with UXO, the magnetic anomalies of UXO sources should be enhanced in order to separate the locations of different sources. The stable downward continuation of magnetic data can increase the signal-to-noise ratio, which subsequently causes the separation of UXO sources by enhancing the signals. In this study the researchers formulated the downward continuation as a linear ill-posed deconvolution problem. To obtain a reasonable downward continued field, the proposed filter is stabilized in a Fourier domain to regularize the downward solution using the edge-preserved (or total-variation) algorithm. The L-curve method was used to choose the optimum value of the regularization parameter, which is a trade-off between the misfit and the solution norms in the cost function of optimization problem. A synthetic magnetic field was constructed from isolated multi-source UXO anomalies, the results of which show that the data can be stably downward continued to the ground surface. Likewise, a field data set was provided to demonstrate the capability of the applied method in UXO detection. The results of the synthetic and real case study revealed that the observed magnetic anomalies at a specific height of survey over the ground surface have low amplitude, indeed, the causative UXO sources may not be readily distinguished in detection process, especially anomalies from small UXOs. It was shown that the continued data can enhance the locations of UXOs while small ones are not distinguishable in the primary data

    An electromagnetic imaging system for metallic object detection and classification

    Get PDF
    PhD ThesisElectromagnetic imaging currently plays a vital role in various disciplines, from engineering to medical applications and is based upon the characteristics of electromagnetic fields and their interaction with the properties of materials. The detection and characterisation of metallic objects which pose a threat to safety is of great interest in relation to public and homeland security worldwide. Inspections are conducted under the prerequisite that is divested of all metallic objects. These inspection conditions are problematic in terms of the disruption of the movement of people and produce a soft target for terrorist attack. Thus, there is a need for a new generation of detection systems and information technologies which can provide an enhanced characterisation and discrimination capabilities. This thesis proposes an automatic metallic object detection and classification system. Two related topics have been addressed: to design and implement a new metallic object detection system; and to develop an appropriate signal processing algorithm to classify the targeted signatures. The new detection system uses an array of sensors in conjunction with pulsed excitation. The contributions of this research can be summarised as follows: (1) investigating the possibility of using magneto-resistance sensors for metallic object detection; (2) evaluating the proposed system by generating a database consisting of 12 real handguns with more than 20 objects used in daily life; (3) extracted features from the system outcomes using four feature categories referring to the objects’ shape, material composition, time-frequency signal analysis and transient pulse response; and (4) applying two classification methods to classify the objects into threats and non-threats, giving a successful classification rate of more than 92% using the feature combination and classification framework of the new system. The study concludes that novel magnetic field imaging system and their signal outputs can be used to detect, identify and classify metallic objects. In comparison with conventional induction-based walk-through metal detectors, the magneto-resistance sensor array-based system shows great potential for object identification and discrimination. This novel system design and signal processing achievement may be able to produce significant improvements in automatic threat object detection and classification applications.Iraqi Cultural Attaché, Londo

    The Estimation Methods for an Integrated INS/GPS UXO Geolocation System

    Get PDF
    This work was supported by a project funded by the US Army Corps of Engineers, Strategic Environment Research and Development Program, contract number W912HQ- 08-C-0044.This report was also submitted to the Graduate School of the Ohio State University in partial fulfillment of the PhD degree in Geodetic Science.Unexploded ordnance (UXO) is the explosive weapons such as mines, bombs, bullets, shells and grenades that failed to explode when they were employed. In North America, especially in the US, the UXO is the result of weapon system testing and troop training by the DOD. The traditional UXO detection method employs metal detectors which measure distorted signals of local magnetic fields. Based on detected magnetic signals, holes are dug to remove buried UXO. However, the detection and remediation of UXO contaminated sites using the traditional methods are extremely inefficient in that it is difficult to distinguish the buried UXO from the noise of geologic magnetic sources or anthropic clutter items. The reliable discrimination performance of UXO detection system depends on the employed sensor technology as well as on the data processing methods that invert the collected data to infer the UXO. The detection systems require very accurate positioning (or geolocation) of the detection units to detect and discriminate the candidate UXO from the non-hazardous clutter, greater position and orientation precision because the inversion of magnetic or EMI data relies on their precise relative locations, orientation, and depth. The requirements of position accuracy for MEC geolocation and characterization using typical state-of-the-art detection instrumentation are classified according to levels of accuracy outlined in: the screening level with position tolerance of 0.5 m (as standard deviation), area mapping (less than 0.05 m), and characterize and discriminate level of accuracy (less than 0.02m). The primary geolocation system is considered as a dual-frequency GPS integrated with a three dimensional inertial measurement unit (IMU); INS/GPS system. Selecting the appropriate estimation method has been the key problem to obtain highly precise geolocation of INS/GPS system for the UXO detection performance in dynamic environments. For this purpose, the Extended Kalman Filter (EKF) has been used as the conventional algorithm for the optimal integration of INS/GPS system. However, the newly introduced non-linear based filters can deal with the non-linear nature of the positioning dynamics as well as the non-Gaussian statistics for the instrument errors, and the non-linear based estimation methods (filtering/smoothing) have been developed and proposed. Therefore, this study focused on the optimal estimation methods for the highly precise geolocation of INS/GPS system using simulations and analyses of two Laboratory tests (cart-based and handheld geolocation system). First, the non-linear based filters (UKF and UKF) have been shown to yield superior performance than the EKF in various specific simulation tests which are designed similar to the UXO geolocation environment (highly dynamic and small area). The UKF yields 50% improvement in the position accuracy over the EKF particularly in the curved sections (medium-grade IMUs case). The UKF also performed significantly better than EKF and shows comparable improvement over the UKF when the IMU noise probability iii density function is symmetric and non-symmetric. Also, since the UXO detection survey does not require the real-time operations, each of the developed filters was modified to accommodate the standard Rauch-Tung-Striebel (RTS) smoothing algorithms. The smoothing methods are applied to the typical UXO detection trajectory; the position error was reduced significantly using a minimal number of control points. Finally, these simulation tests confirmed that tactical-grade IMUs (e.g. HG1700 or HG1900) are required to bridge gaps of high-accuracy ranging solution systems longer than 1 second. Second, these result of the simulation tests were validated from the laboratory tests using navigation-grade and medium-grade accuracy IMUs. To overcome inaccurate a priori knowledge of process noise of the system, the adaptive filtering methods have been applied to the EKF and UKF and they are called the AEKS and AUKS. The neural network aided adaptive nonlinear filtering/smoothing methods (NN-EKS and NN-UKS) which are augmented with RTS smoothing method were compared with the AEKS and AUKS. Each neural network-aided, adaptive filter/smoother improved the position accuracy in both straight and curved sections. The navigation grade IMU (H764G) can achieve the area mapping level of accuracy when the gap of control points is about 8 seconds. The medium grade IMUs (HG1700 and HG1900) with NN-AUKS can maintain less than 10cm under the same conditions as above. Also, the neural network aiding can decrease the difference of position error between the straight and the curved section. Third, in the previous simulation test, the UPF performed better than the other filters. However since the UPF needs a large number of samples to represent the a posteriori statistics in high-dimensional space, the RBPF can be used as an alternative to avoid the inefficiency of particle filter. The RBPF is tailored to precise geolocation for UXO detection using IMU/GPS system and yielded improved estimation results with a small number of samples. The handheld geolocation system using HG1900 with a nonlinear filter-based smoother can achieve the discrimination level of accuracy if the update rate of control points is less than 0.5Hz and 1Hz for the sweep and swing respectively. Also, the sweep operation is more preferred than the swing motion because the position accuracy of the sweep test was better than that of the swing test

    3D Contour Shaping of Buried Objects in Soil

    Get PDF
    The basic question of this paper was, whether a detected anomaly found in the ground during an explosives disposal process is actually a non-detonated bomb or non-dangerous metallic scrap. Based on a borehole radar, an approach is to be presented in which first a 2-dimensional contour of the object is created with the aid of a spatial runtime evaluation. By repeating this step at different depths with subsequent graphic overlay, a 3D shape of the buried object is created. The method is first tested using a simulation model with inhomogeneous soil. In the second step the method will be applied and evaluated using a field measurement of a real object. The results shows that both 2D and 3D evaluations reflect the position and orientation of the object. Furthermore, the shape and the dimensions can be estimated, with the restriction that the 3D contour has distortions along the vertical axis. The aim of this work is to show an application of borehole radar, with which the identification of buried objects should be facilitated
    • …
    corecore