22 research outputs found

    Physical Layer Security in Integrated Sensing and Communication Systems

    Get PDF
    The development of integrated sensing and communication (ISAC) systems has been spurred by the growing congestion of the wireless spectrum. The ISAC system detects targets and communicates with downlink cellular users simultaneously. Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers which might surveil the information sent from the base station (BS) to communication users (CUs) via the radar probing signal. To address this issue, we propose security solutions for ISAC systems to prevent confidential information from being intercepted by radar targets. In this thesis, we firstly present a beamformer design algorithm assisted by artificial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target while ensuring the quality of service (QoS) of legitimate receivers. Furthermore, to reduce the power consumed by AN, we apply the directional modulation (DM) approach to exploit constructive interference (CI). In this case, the optimization problem is designed to maximize the SINR of the target reflected echoes with CI constraints for each CU, while constraining the received symbols at the target in the destructive region. Apart from the separate functionalities of radar and communication systems above, we investigate sensing-aided physical layer security (PLS), where the ISAC BS first emits an omnidirectional waveform to search for and estimate target directions. Then, we formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the Cram\'er-Rao bound (CRB) with the aid of the AN, designing a beampattern with a wide main beam covering all possible angles of targets. The main beam width of the next iteration depends on the optimal CRB. In this way, the sensing and security functionalities provide mutual benefits, resulting in the improvement of mutual performances with every iteration of the optimization, until convergence. Overall, numerical results show the effectiveness of the ISAC security designs through the deployment of AN-aided secrecy rate maximization and CI techniques. The sensing-assisted PLS scheme offers a new approach for obtaining channel information of eavesdroppers, which is treated as a limitation of conventional PLS studies. This design gains mutual benefits in both single and multi-target scenarios

    Nonorthogonal Multiple Access for 5G and Beyond

    Get PDF
    This work was supported in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/N029720/1 and Grant EP/N029720/2. The work of L. Hanzo was supported by the ERC Advanced Fellow Grant Beam-me-up

    On the performance of hybrid beamforming for millimeter wave wireless networks

    Get PDF
    The phenomenal growth in the demand for mobile wireless data services is pushing the boundaries of modern communication networks. Developing new technologies that can provide unprecedented data rates to support the pervasive and exponentially increasing demand is therefore of prime importance in wireless communications. In existing communication systems, physical layer techniques are commonly used to improve capacity. Nevertheless, the limited available resources in the spectrum are unable to scale up, fundamentally restricting further capacity increase. Consequently, alternative approaches which exploit both unused and underutilised spectrum bands are highly attractive. This thesis investigates the use of the millimeter wave (mmWave) spectrum as it has the potential to provide unlimited bandwidth to wireless communication systems. As a first step toward realising mmWave wireless communications, a cloud radio access network using mmWave technology in the fronthaul and access links is proposed to establish a feasible architecture for deploying mmWave systems with hybrid beamforming. Within the context of a multi-user communication system, an analytical framework of the downlink transmission is presented, providing insights on how to navigate across the challenges associated with high-frequency transmissions. The performance of each user is measured by deriving outage probability, average latency and throughput in both noise-limited and interference-limited scenarios. Further analysis of the system is carried out for two possible user association configurations. By relying on large antenna array deployment in highly dense networks, this architecture is able to achieve reduced outages with very low latencies, making it ideal to support a growing number of users. The second part of this work describes a novel two-stage optimisation algorithm for obtaining hybrid precoders and combiners that maximise the energy efficiency (EE) of a general multi-user mmWave multiple-input, multiple-output (MIMO) interference channel network involving internet of things (IoT) devices. The hybrid transceiver design problem considers both perfect and imperfect channel state information (CSI). In the first stage, the original non-convex multivariate EE maximization problem is transformed into an equivalent univariate problem and the optimal single beamformers are then obtained by exploiting the correlation between parametric and fractional programming problems and the relationship between weighted sum rate (WSR) and weighted minimum mean squared error (WMMSE) problems. The second stage involves the use of an orthogonal matching pursuit (OMP)-based algorithm to obtain the energy-efficient hybrid beamformers. This approach produces results comparable to the optimal beam-forming strategy but with much lower complexity, and further validates the use of mmWave networks in practice to support the demand from ubiquitous power-constrained smart devices. In the third part, the focus is on the more practical scenario of imperfect CSI for multi-user mmWave systems. Following the success of hybrid beamforming for mmWave wireless communication, a non-traditional transmission strategy called Rate Splitting (RS) is investigated in conjunction with hybrid beamforming to tackle the residual multi-user interference (MUI) caused by errors in the estimated channel. Using this technique, the transmitted signal is split into a common message and a private message with the transmitted power dynamically divided between the two parts to ensure that there is interference-free transmission of the common message. An alternating maximisation algorithm is proposed to obtain the optimal common precoder. Simulation results show that the RS transmission scheme is beneficial to multi-user mmWave transmissions as it enables remarkable rate gains over the traditional linear transmission methods. Finally, the fourth part analyses the spectral efficiency (SE) performance of a mmWave system with hybrid beamforming whilst accounting for real-life practice transceiver hardware impairments. An investigation is conducted into three major hardware impairments, namely, the multiplicative phase noise (PN), the amplified thermal noise (ATN) and the residual additive transceiver hardware impairments (RATHI). The hybrid precoder is designed to maximise the SE by the minimisation of the Euclidean distance between the optimal digital precoder and the noisy product of the hybrid precoders while the hybrid combiners are designed by the minimisation of the mean square error (MSE) between the transmitted and received signals. Multiplicative PN was found to be the most critical of the three impairments considered. It was observed that the additive impairments could be neglected for low signal-to-noise-ratio (SNR) while the ATNs caused a steady degradation to the SE performance

    On the feasibility and applications of in-band full-duplex radios for future wireless networks

    Get PDF
    Due to the continuous increase of the demands for the wireless network’s capacity, in-band full-duplex (IBFD) has recently become a key research topic due to its potential to double spectral efficiency, reduce latency, enhance emerging applications, etc., by transmitting and receiving simultaneously over the same channel. Meanwhile, many studies in the literature experimentally demonstrated the feasibility of IBFD radios, which leads to the belief that it is possible to introduce IBFD in the standard of the next-generation networks. Therefore, in this thesis, we timely study the feasibility of IBFD and investigate its advantages for emerging applications in future networks. In the first part, we investigate the interference suppression methods to maximize the IBFD gain by minimizing the effects of self-interference (SI) and co-channel interference (CCI). To this end, we first study a 3-step self-interference cancellation (SIC) scheme. We focus on the time domain-based analog canceller and nonlinear digital canceller, explaining their rationale, demonstrating their effectiveness, and finding the optimal design by minimizing the residual effects. To break the limitation of conventional electrical radio frequency (RF) cancellers, we study the photonic-assisted canceller (PAC) and propose a new design, namely a fiber array-based canceller. We propose a new low-complexity tuning algorithm for the PAC. The effectiveness of the proposed fiber array canceller is demonstrated via simulations. Furthermore, we construct a prototype of the fiber array canceller with two taps and carry out experiments in real-world environments. Results show that the 3-step cancellation scheme can bring the SI close to the receiver's noise floor. Then, we consider the multiple-input multiple-output (MIMO) scenarios, proposing to employ hybrid RF-digital beamforming to reduce the implementation cost and studying its effects on the SIC design. Additionally, we propose a user allocation algorithm to reduce the CCI from the physical layer. A heterogeneous industrial Internet of Things (IIoT) scenario is considered, while the proposed algorithm can be generalized by modifying the parameters to fit any other network. In the second part, we study the beamforming schemes for IBFD multi-cell multi-user (IBFD-MCMU) networks. The transceiver hardware impairments (HWIs) and channel uncertainty are considered for robustness. We first enhance zero-forcing (ZF) and maximum ratio transmission and combining (MRTC) beamforming to be compatible with IBFD-MCMU networks in the presence of multi-antenna users. Then, we study beamforming for SIC, which is challenging for MCMU networks due to the limited antennas but complex interference. We propose a minimum mean-squared error (MMSE)-based scheme to enhance the SIC performance while minimizing its effects on the sum rate. Furthermore, we investigate a robust joint power allocation and beamforming (JPABF) scheme, which approaches the performance of existing optimal designs with reduced complexity. Their performance is evaluated and compared through 3GPP-based simulations. In the third part, we investigate the advantages of applying IBFD radios for physical layer security (PLS). We focus on a channel frequency response (CFR)-based secret key generation (SKG) scheme in MIMO systems. We formulate the intrinsic imperfections of IBFD radios (e.g., SIC overheads and noise due to imperfect SIC) and derive their effects on the probing errors. Then we derive closed-form expressions for the secret key capacity (SKC) of the SKG scheme in the presence of a passive eavesdropper. We analyze the asymptotic behavior of the SKC in the high-SNR regime and reveal the fundamental limits for IBFD and half-duplex (HD) radios. Based on the asymptotic SKC, numerical results illustrate that effective analog self-interference cancellation (ASIC) is the basis for IBFD to gain benefits over HD. Additionally, we investigate essential processing for the CFR-based SKG scheme and verify its effectiveness via simulations and the National Institute of Standards and Technology (NIST) test. In the fourth part, we consider a typical application of IBFD radios: integrated sensing and communication (ISAC). To provide reliable services in high-mobility scenarios, we introduce orthogonal time frequency space (OTFS) modulation and develop a novel framework for OTFS-ISAC. We give the channel representation in different domains and reveal the limitations and disadvantages of existing ISAC frameworks for OTFS waveforms and propose a novel radar sensing method, including a conventional MUSIC algorithm for angle estimation and a delay-time domain-based range and velocity estimator. Additionally, we study the communication design based on the estimated radar sensing parameters. To enable reliable IBFD radios in high-mobility scenarios, a SIC scheme compatible with OTFS and rapidly-changing channels is proposed, which is lacking in the literature. Numerical results demonstrate that the proposed ISAC waveform and associated estimation algorithm can provide both reliable communications and accurate radar sensing with reduced latency, improved spectral efficiency, etc

    Distributed Processing Methods for Extra Large Scale MIMO

    Get PDF

    Exploiting the location information for adaptive beamforming in transport systems

    Get PDF
    As mobile communication systems evolve, the demand for enhanced network efficiency and pinpoint accuracy in user localization grows, particularly in the context of dynamic environments such as transport systems. This thesis is motivated by the critical challenge of adapting beamforming techniques to the rapidly changing positions of users, a task analogous to hitting a moving target with precision. The aim is to significantly improve cellular network performance by leveraging advanced beamforming and machine learning (ML) for precise user localization. A novel dataset, crucial to this endeavor, has been developed from simulations in open spaces and a digital twin of the University of Glasgow campus, incorporating vital parameters such as direction of arrival (DoA), time of arrival (ToA), and received signal strength indicators (RSSI). Our investigation commences with the deployment of Maximum Ratio Transmission (MRT) and Zero Forcing (ZF) beamforming techniques to evaluate their effectiveness in enhancing network efficiency through both real and simulated user locations. The application of an adaptive MRT algorithm in our beamforming strategy resulted in a remarkable 53% increase in Signal-to-Noise Ratio (SNR), showcasing the potential of contextual beamforming (Cont-BF) using location information. Furthermore, to refine localization accuracy, deep neural networks were employed, achieving a localization error of less than 1 meter surpassing conventional methods in accuracy. This research also introduces technique for user-assisted beam alignment in high-speed scenarios, addressing the challenges in dynamic transport systems. Venturing beyond traditional approaches, it explores the integration of user locations into beamforming decisions via a P4 switch, crafting a dynamic system responsive to user mobility. This is complemented by extensive data collection from 5G base stations (BS) using a TSMA 6 scanner, which enriches our analysis with detailed parameters for precision localization. Moreover, the study evaluates various MIMO beamforming techniques in 5G networks, demonstrating an average throughput increase from 9 Mbps to 14 Mbps, thereby underscoring the effectiveness of our proposed solutions. The potential of low-cost Software Defined Radios (SDR) forDoA estimation and the design of a beam steering setup was also assessed, aiming to evaluate their utility in highfrequency beamforming. Despite uncovering limitations in sub-6GHz environments, this exploration led to the successful development of a DoA estimation setup using USRPs and antennas, alongside a beam steering system crafted through the design of phase shifters and antennas. By integrating precise location information into adaptive beamforming techniques, especially within the dynamic context of transport systems, this thesis underscores the imperative role of such integration in significantly enhancing communication efficiency. Our findings, which include significant improvements in signal-to-interference-to-noise ratio (SINR) (up to 50%) and received power (up to 40%) through advanced beamforming methods, are pivotal for advancing high-demand applications, including smart vehicles and immersive virtual reality. This marks a crucial advancement towards the realization of next-generation cellular networks, paving the way for more efficient and reliable performance in an evolving technological landscape

    I/Q Imbalance in Multiantenna Systems: Modeling, Analysis and RF-Aware Digital Beamforming

    Get PDF
    Wireless communications has experienced an unprecedented increase in data rates, numbers of active devices and selection of applications during recent years. However, this is expected to be just a start for future developments where a wireless connection is seen as a fundamental resource for almost any electrical device, no matter where and when it is operating. Since current radio technologies cannot provide such services with reasonable costs or even at all, a multitude of technological developments will be needed. One of the most important subjects, in addition to higher bandwidths and flexible network functionalities, is the exploitation of multiple antennas in base stations (BSs) as well as in user equipment (UEs). That kind of multiantenna communications can boost the capacity of an individual UE-BS link through spatial antenna multiplexing and increase the quality as well as robustness of the link via antenna diversity. Multiantenna technologies provide improvements also on the network level through spatial UE multiplexing and sophisticated interference management. Additionally, multiple antennas can provide savings in terms of the dissipated power since transmission and reception can be steered more efficiently in space, and thus power leakage to other directions is decreased. However, several issues need to be considered in order to get multiantenna technologies widely spread. First, antennas and the associated transceiver chains are required to be simple and implementable with low costs. Second, size of the antennas and transceivers need to be minimized. Finally, power consumption of the system must be kept under control. The importance of these requirements is even emphasized when considering massive multiple-input multiple-output (MIMO) systems consisting of devices equipped with tens or even hundreds of antennas.In this thesis, we consider multiantenna devices where the associated transceiver chains are implemented in such a way that the requirements above can be met. In particular, we focus on the direct-conversion transceiver principle which is seen as a promising radio architecture for multiantenna systems due to its low costs, small size, low power consumption and good flexibility. Whereas these aspects are very promising, direct-conversion transceivers have also some disadvantages and are vulnerable to certain imperfections in the analog radio frequency (RF) electronics in particular. Since the effects of these imperfections usually get even worse when optimizing costs of the devices, the scope of the thesis is on the effects and mitigation of one of the most severe RF imperfection, namely in-phase/quadrature (I/Q) imbalance.Contributions of the thesis can be split into two main themes. First of them is multiantenna narrowband beamforming under transmitter (TX) and receiver (RX) I/Q imbalances. We start by creating a model for the signals at the TX and RX, both under I/Q imbalances. Based on these models we derive analytical expressions for the antenna array radiation patterns and notice that I/Q imbalance distorts not only the signals but also the radiation characteristics of the array. After that, stemming from the nature of the distortion, we utilize widely-linear (WL) processing, where the signals and their complex conjugates are processed jointly, for the beamforming task under I/Q imbalance. Such WL processing with different kind of statistical and adaptive beamforming algorithms is finally shown to provide a flexible operation as well as distortion-free signals and radiation patterns when being under various I/Q imbalance schemes.The second theme extends the work to wideband systems utilizing orthogonal frequency-division multiplexing (OFDM)-based waveforms. The focus is on uplink communications and BS RX processing in a multiuser MIMO (MU-MIMO) scheme where spatial UE multiplexing is applied and further UE multiplexing takes place in frequency domain through the orthogonal frequency-division multiple access (OFDMA) principle. Moreover, we include the effects of external co-channel interference into our analysis in order to model the challenges in heterogeneous networks. We formulate a flexible signal model for a generic uplink scheme where I/Q imbalance occurs on both TX and RX sides. Based on the model, we analyze the signal distortion in frequency domain and develop augmented RX processing methods which process signals at mirror subcarrier pairs jointly. Additionally, the proposed augmented methods are numerically shown to outperform corresponding per-subcarrier method in terms of the instantaneous signal-to-interference-and-noise ratio (SINR). Finally, we address some practical aspects and conclude that the augmented processing principle is a promising tool for RX processing in multiantenna wideband systems under I/Q imbalance.The thesis provides important insight for development of future radio networks. In particular, the results can be used as such for implementing digital signal processing (DSP)-based RF impairment mitigation in real world transceivers. Moreover, the results can be used as a starting point for future research concerning, e.g., joint effects of multiple RF impairments and their mitigation in multiantenna systems. Overall, this thesis and the associated publications can help the communications society to reach the ambitious aim of flexible, low-cost and high performance radio networks in the future
    corecore