641 research outputs found

    Fast compressed domain watermarking of MPEG multiplexed streams

    Get PDF
    In this paper, a new technique for watermarking of MPEG compressed video streams is proposed. The watermarking scheme operates directly in the domain of MPEG multiplexed streams. Perceptual models are used during the embedding process in order to preserve the quality of the video. The watermark is embedded in the compressed domain and is detected without the use of the original video sequence. Experimental evaluation demonstrates that the proposed scheme is able to withstand a variety of attacks. The resulting watermarking system is very fast and reliable, and is suitable for copyright protection and real-time content authentication applications

    Scene-based imperceptible-visible watermarking for HDR video content

    Get PDF
    This paper presents the High Dynamic Range - Imperceptible Visible Watermarking for HDR video content (HDR-IVW-V) based on scene detection for robust copyright protection of HDR videos using a visually imperceptible watermarking methodology. HDR-IVW-V employs scene detection to reduce both computational complexity and undesired visual attention to watermarked regions. Visual imperceptibility is achieved by finding the region of a frame with the highest hiding capacities on which the Human Visual System (HVS) cannot recognize the embedded watermark. The embedded watermark remains visually imperceptible as long as the normal color calibration parameters are held. HDR-IVW-V is evaluated on PQ-encoded HDR video content successfully attaining visual imperceptibility, robustness to tone mapping operations and image quality preservation

    Robust Video Watermarking Scheme Based on Intra-Coding Process in MPEG-2 Style

    Get PDF
    The proposed scheme implemented a semi blind digital watermarking method for video exploiting MPEG-2 standard. The watermark is inserted into selected high frequency coefficients of plain types of discrete cosine transform blocks instead of edge and texture blocks during intra coding process. The selection is essential because the error in such type of blocks is less sensitive to human eyes as compared to other categories of blocks. Therefore, the perceptibility of watermarked video does not degraded sharply. Visual quality is also maintained as motion vectors used for generating the motion compensated images are untouched during the entire watermarking process. Experimental results revealed that the scheme is not only robust to re-compression attack, spatial synchronization attacks like cropping, rotation but also strong to temporal synchronization attacks like frame inserting, deleting, swapping and averaging. The superiority of the anticipated method is obtaining the best sturdiness results contrast to the recently delivered schemes

    REAL-TIME VIDEO WATERMARKING FOR COPYRIGHT PROTECTION BASED ON HUMAN PERCEPTION

    Get PDF
    There is a need for real-time copyright logo insertion in emerging applications, such as Internet protocol television (IPTV). This situation arises in IP-TV and digital TV broadcasting when video residing in a server has to be broadcast by different stations and under different broadcasting rights. Embedded systems that are involved in broadcasting need to have embedded copyright protection. Existing works are targeted towards invisible watermarking, not useful for logo insertion. MPEG-4 is the mainstream exchangeable video format in the Internet today because it has higher and flexible compression rate, lower bit rate, and higher efficiency while superior visual quality.The main steps for MPEG-4 are color space conversion and sampling, DCT and its inverse (IDCT), quantization, zigzag scanning, motion estimation, and entropy coding. In this work a watermarking algorithm that performs the broadcaster\u27s logo insertion as watermark in the DCT domain is been presented. The robustness of DCT watermarking arises from the fact that if an attack tries to remove watermarking at mid frequencies, it will risk degrading the fidelity of the image\video because some perceptive details are at mid frequencies. The suggested methods has implemented in matlab

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Watermarking Technique for Multimedia Documents in the Frequency Domain

    Get PDF
    In order to secure and maintain the authenticity and integrity of multimedia documents, we use digital watermarking. This discipline can be applied to images, audios, and videos. For this reason, and to be independent of the nature of the signal composing the document to be watermarked, we will propose in this chapter two watermarking techniques, one for the audio and another for the image to watermark a video containing the two components audio and image. MDCT is combined with Watson model and a motion detection algorithm in the image watermarking technique and is combined with a psychoacoustic model to elaborate the audio watermarking technique. For the two techniques, the bits of the mark will be duplicated to increase the capacity of insertion and then inserted into the least significant bit (LSB). We will use an error correction code (Hamming) on the mark for more reliability in the detection phase. To highlight our experimental results point of view robustness and imperceptibility, we will compare the proposed techniques with some other existing techniques

    Blind quality assessment system for multimedia communications using tracing watermarking

    Full text link

    Video object watermarking robust to manipulations

    Get PDF
    This paper presents a watermarking scheme that embeds a signature in video objects for the MPEG-4 video standard. The different constraints associated with this standard are quite different from classical video watermarking schemes. The mark detection had to be achieved after different video object manipulations such as rotation or scaling operations. Principal component analysis and warping methods are used to enable the synchronization of the mark after geometric manipulations. The embedding of the mark is done adding an oriented random sequence and the detection of the mark is processed using a correlation criterion. The different results point out the fact that the presented scheme can detect the mark after bit-rate modification, object shape sub-sampling and geometric manipulations (scaling and rotations).Cet article présente un schéma de tatouage permettant de marquer des objets vidéo tels qu'ils sont décrits dans le cadre de la norme MPEG-4. Les contraintes liées à cette norme sont différentes de celles connues en tatouage de séquences classiques. Dans un tel contexte, la détection de la signature doit en effet être possible après diverses manipulations de l'objet vidéo telles que des rotations ou changements d'échelle. La méthode proposée utilise la forme de l'objet vidéo pour permettre la synchronisation de la signature. Cette étape est effectuée en utilisant des techniques d'analyse en composantes principales et de « morphing » de séquences de forme prédéfinie. L'insertion de la signature s'effectue ensuite par addition d'une séquence aléatoire orientée, et la détection s'opère par corrélation. Les tests appliqués sur des objets vidéo indiquent que le schéma présenté permet la détection de la signature après des opérations telles que la réduction du débit, le sous-échantillonnage du masque associé à l'objet, ou encore des manipulations géométriques (rotations, changements d'échelle)

    Video Watermarking Based on Interactive Detection of Feature Regions

    Get PDF
    International audienceVideo watermarking is very important in many areas of activity and especially in multimedia applications. Therefore, security of video stream has recently become a major concern and has attracted more and more attention in both the research and industrial domains. In this perspective, several video watermarking approaches are proposed but, based on our knowledge, there is no method which verified the compromise between invisibility and robustness against all usual attacks. In our previous work, we proposed a new video watermarking approach based on feature region generated from mosaic frame and multi-frequential embedding. This approach allowed obtaining a good invisibility and robustness against the maximum of usual attacks. In our future work, we propose to optimize the choice of the region of interest by using crowdsourcing technique. This last one is an emerging field of knowledge management that involves analyzing the behavior of users when the
    • …
    corecore