609,206 research outputs found

    Time evolution of MX-80 bentonite geochemistry under thermo-hydraulic gradients

    Get PDF
    Indexación: Web of ScienceTwo 20-cm long columns of MX-80 bentonite compacted at a nominal dry density of 1.7 g/cm(3) with a water content of 17% were tested in thermo-hydraulic (TH) cells with the aim of simulating the conditions of a sealing material in a nuclear waste repository. On top of the columns a hydration surface simulated the host rock supplying groundwater and at the bottom a heater simulated the waste canister. The tests comprised two phases: a heating phase and a 'heating + hydration' phase. The temperatures at the ends of the columns were set during the last phase to 30 degrees C at the top and 140 degrees C at the bottom, respectively. The thermo-hydraulic treatment resulted in major changes along the bentonite columns. These changes led to significant gradients along the column with respect to the physical state (water content, dry density) and geochemistry of the bentonite. Smectite dissolution processes occurred. As a result, colloids were probably produced, particularly in the more hydrated areas. In the warmest part of the columns precipitation of carbonates took place, caused by their solubility decrease with temperature and the evaporation. The increase in water content reduced the ionic strength of the pore water in the more hydrated areas where species such as gypsum were dissolved. The solubilized ions were transported towards the bottom of the columns; Na+, Ca+, Mg2+ and SO42- moved at a similar rate and K+ and Cl- moved farther. These solubilized ions precipitated in the form of salts farther away along the columns as the test was longer. The TH treatment implied the loss of exchangeable positions in the smectite, particularly towards the heater. The cation exchange complex was also modified.http://www.ingentaconnect.com/content/minsoc/cm/2016/00000051/00000002/art0000

    Tetraammonium Tetrametaphosphimate Tetrahydrate

    Get PDF
    The tetrametaphosphimate ring in the title compound, (NH4)4+(PO2NH)4-.4H2O exhibits a chair conformation. The tetrametaphosphimate rings are linked by N-HO bonds forming columns along [100]. These columns are interconnected by O-HO and N-HO hydrogen bonds through water molecules and ammonium ions. All H atoms are involved in hydrogen bonding

    Transport and reduction of nitrate in clayey till underneath forest and arable land.

    Get PDF
    Transport and reduction of nitrate in a typically macroporous clayey till were examined at variable flow rate and nitrate flux. The experiments were carried out using saturated, large diameter (0.5 m), undisturbed soil columns (LUC), from a forest and nearby agricultural sites. Transport of nitrate was controlled by flow along the macropores (fractures and biopores) in the columns. Nitrate reduction (denitrification) determined under active flow mainly followed first order reactions with half-lives (t1/2) increasing with depth (1.5–3.5 m) from 7 to 35 days at the forest site and 1–7 h at the agricultural site. Nitrate reduction was likely due to microbial degradation of accumulated organic matter coupled with successive consumption of O2 and NO3− in the macropore water followed by reductive dissolution of Fe and Mn from minerals along the macropores. Concentrations of total organic carbon measured in soil samples were near identical at the two study sites and consequently not useful as indicator for the observed differences in nitrate reduction. Instead the high reduction rates at the agricultural site were positively correlated with elevated concentration of water-soluble organic carbon and nitrate-removing bacteria relative to the forest site. After high concentrations of water-soluble organic carbon in the columns from the agricultural site were leached they lost their elevated reduction rates, which, however, was successfully re-established by infiltration of new reactive organics represented by pesticides. Simulations using a calibrated discrete fracture matrix diffusion (DFMD) model could reasonably reproduce the denitrification and resulting flux of nitrate observed during variable flow rate from the columns

    Mathematical modeling of thermal stabilization of vertical wells on high performance computing systems

    Full text link
    Temperature stabilization of oil and gas wells is used to ensure stability and prevent deformation of a subgrade estuary zone. In this work, we consider the numerical simulation of thermal stabilization using vertical seasonal freezing columns. A mathematical model of such problems is described by a time-dependent temperature equation with phase transitions from water to ice. The resulting equation is a standard nonlinear parabolic equation. Numerical implementation is based on the finite element method using the package Fenics. After standard purely implicit approximation in time and simple linearization, we obtain a system of linear algebraic equations. Because the size of freezing columns are substantially less than the size of the modeled area, we obtain mesh refinement near columns. Due to this, we get a large system of equations which are solved using high performance computing systems.Comment: 9 pages, 5 figure

    Trisodium Trimetaphosphimate Monohydrate

    Get PDF
    The trimetaphosphimate anion (PO2NH)33- in trisodium cyclo-tri--imidotriphosphate monohydrate, Na3(PO2NH)3.H2O, exhibits a chair conformation. Two trimetaphosphimate rings are linked to each other by six N-HO hydrogen bonds forming pairs. These units are interconnected by O-HO hydrogen bonds through water molecules forming columns

    Bis (2-pyrimidinyl) disulfide dihydrate: a redetermination

    Get PDF
    The crystal structure of bis(2-pyrimidinyl) disul®de dihydrate, C8H6N4S22H2O, has been redetermined using CCD diffractometer data. This has allowed for a more precise location of the water H atoms and shows the water molecules forming unusual spiral hydrogen-bonded aqua columns, as well as giving inter-column crosslinks through the pyrimidine N-atom acceptors of the disul®de molecules. The structural chemistry of aromatic disul®des has also been reviewed

    A model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory

    Get PDF
    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil–water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil–water interface and to the water–calcium carbonate interface, and oil–water–calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate–air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate–water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil–water–calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil–water interfacial tension and a pumping pressure increase

    Formation, Manipulation, and Elasticity Measurement of a Nanometric Column of Water Molecules

    Full text link
    Nanometer-sized columns of condensed water molecules are created by an atomic-resolution force microscope operated in ambient conditions. Unusual stepwise decrease of the force gradient associated with the thin water bridge in the tip-substrate gap is observed during its stretch, exhibiting regularity in step heights (~0.5 N/m) and plateau lengths (~1 nm). Such "quantized" elasticity is indicative of the atomic-scale stick-slip at the tip-water interface. A thermodynamic-instability-induced rupture of the water meniscus (5-nm long and 2.6-nm wide) is also found. This work opens a high-resolution study of the structure and the interface dynamics of a nanometric aqueous column.Comment: 4 pages, 3 figure
    • …
    corecore