65 research outputs found

    Model-Based Control Techniques for Automotive Applications

    Get PDF
    Two different topics are covered in the thesis. Model Predictive Control applied to the Motion Cueing Problem In the last years the interest about dynamic driving simulators is increasing and new commercial solutions are arising. Driving simulators play an important role in the development of new vehicles and advanced driver assistance devices: in fact, on the one hand, having a human driver on a driving simulator allows automotive manufacturers to bridge the gap between virtual prototyping and on-road testing during the vehicle development phase; on the other hand, novel driver assistance systems (such as advanced accident avoidance systems) can be safely tested by having the driver operating the vehicle in a virtual, highly realistic environment, while being exposed to hazardous situations. In both applications, it is crucial to faithfully reproduce in the simulator the driver's perception of forces acting on the vehicle and its acceleration. This has to be achieved while keeping the platform within its limited operation space. Such strategies go under the name of Motion Cueing Algorithms. In this work, a particular implementation of a Motion Cueing algorithm is described, that is based on Model Predictive Control technique. A distinctive feature of such approach is that it exploits a detailed model of the human vestibular system, and consequently differs from standard Motion Cueing strategies based on Washout Filters: such feature allows for better implementation of tilt coordination and more efficient handling of the platform limits. The algorithm has been evaluated in practice on a small-size, innovative platform, by performing tests with professional drivers. Results show that the MPC-based motion cueing algorithm allows to effectively handle the platform working area, to limit the presence of those platform movements that are typically associated with driver motion sickness, and to devise simple and intuitive tuning procedures. Moreover, the availability of an effective virtual driver allows the development of effective predictive strategies, and first simulation results are reported in the thesis. Control Techniques for a Hybrid Sport Motorcycle Reduction of the environmental impact of transportation systems is a world wide priority. Hybrid propulsion vehicles have proved to have a strong potential to this regard, and different four-wheels solutions have spread out in the market. Differently from cars, and even if they are considered the ideal solution for urban mobility, motorbikes and mopeds have not seen a wide application of hybrid propulsion yet, mostly due to the more strict constraints on available space and driving feeling. In the thesis, the problem of providing a commercial 125cc motorbike with a hybrid propulsion system is considered, by adding an electric engine to its standard internal combustion engine. The aim for the prototype is to use the electrical machine (directly keyed on the drive shaft) to obtain a torque boost during accelerations, improving and regularizing the supplied power while reducing the emissions. Two different control algorithms are proposed 1) the first is based on a standard heuristic with adaptive features, simpler to implement on the ECU for the prototype; 2) the second is a torque-split optimal-control strategy, managing the different contributions from the two engines. A crucial point is the implementation of a Simulink virtual environment, realized starting from a commercial tool, VI-BikeRealTime, to test the algorithms. The hybrid engine model has been implemented in the tool from scratch, as well as a simple battery model, derived directly from data-sheet characteristics by using polynomial interpolation. The simulation system is completed by a virtual rider and a tool for build test circuits. Results of the simulations on a realistic track are included, to evaluate the different performance of the two strategies in a closed loop environment (thanks to the virtual rider). The results from on-track tests of the real prototype, using the first control strategy, are reported too

    Servo-control of a pneumatic motion platform for use as a low cost simulator

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1997.Includes bibliographical references (leaf 55).by Keith J. Breinlinger.M.S

    Dual Loop Rider Control of a Dynamic Motorcycle Riding Simulator

    Get PDF
    Compared to the automotive industry, the use of simulators in the motorcycle domain is negligible as for their lack of usability and accessibility. According to the state-of-the-art, it is e.g. not possible for motorcyclists to intuitively control a high-fidelity dynamic motorcycle riding simulator when getting in contact with it for the first time. There are four main reasons for the insufficient simulation quality of dynamic motorcycle riding simulators: ▪ The instability of single-track vehicles at low speed, ▪ The steering force-feedback with highly velocity-dependent behavior, ▪ Motion-simulation (high dynamics, roll angle, direct contact to the environment), ▪ The specific influence of the rider to vehicle dynamics (incl. rider motion). The last bullet point is peculiar for motorcycles and dynamic motorcycle riding simulators in comparison with other vehicle simulators, as motorcycles are significantly affected in their dynamics by the rider’s body motion. However, up until today, almost no special emphasis has been put on the consideration of rider motion on dynamic motorcycle riding simulators. In this thesis, a motorcycle riding simulator is designed, constructed and put into operation. The focus here is attaching a real rider to a virtual motorcycle. Based on a commercially available multi-body-simulation model, a simulator architecture is designed, that allows to control the virtual motorcycle not only by steering, but by rider leaning as well. This is realized by determining the so-called rider induced roll torque, that allows a holistic measurement of the apparent coupling forces between rider and simulator mockup. Performance measures and study concepts are developed that allow to rate the system. In expert and participant studies, the influence of the system on the riding behavior of the simulator is investigated. It is shown that the rider motion determination allows realistic control inputs and has a positive effect on the stabilization at various velocities. The feedback of the rider induced roll torque to the virtual dynamics model allows study participants to control the virtual motorcycle more intuitively. The vehicle states during cornering are affected as expected from real riding. First results indicate that it becomes easier for naïve study participants to access the simulator in first-contact scenarios. The achieved improvements regarding the rideability of the simulator however do not suffice to overcome the abovementioned challenges to a degree that allows for a completely intuitive interaction with the simulator throughout the whole dynamic range

    Adaptive Washout Filter Based on Fuzzy Logic for a Motion Simulation Platform With Consideration of Joints Limitations

    Get PDF
    Motion simulation platforms (MSPs) are widely used to generate driving/flying motion sensations for the users. The MSPs have a restricted workspace area due to the dynamical and physical restrictions of the Motion Platforms active joints as well as the physical limitations of its passive joints. The motion cueing algorithm (MCA) is the reproduction of the motion signal including linear accelerations and angular velocities. It aims to simultaneously respect the MSP's workspace limitations and make the same motion feeling for the user as a real vehicle. The Classical washout filter (WF) is a well-known type of MCA. The classical WF is easy to set-up, offers a low computational burden and high functionality but has some major drawbacks such as fixed WF parameters tuned according to worst-case scenarios and no consideration of the human vestibular system. As a result, adaptive WFs were developed to consider the human vestibular system and enhance the efficiency of the method using time-varying filters. The existing adaptive WFs only cogitate the boundaries of the end-effector in the Cartesian coordinate space as a substitute for the active and passive joints limitations, which is MSP's main limiting factor. This conservative assumption reduces the available workspace area of the MSP and increases the motion sensation error for the MSPs user. In this study, a fuzzy logic-based WF is developed, to consider the dynamical and physical boundaries of the active joints as well as the physical boundaries of the passive joints. A genetic algorithm is used to select the membership functions values of the active and passive joints boundaries. The model is designed using MATLAB /Simulink and the outcomes demonstrate the efficiency of the proposed method versus existing adaptive WFs

    Vibration-induced friction control for walkway locomotion interface

    Get PDF
    Falls represent a major challenge to mobility for the elderly community, a point that has motivated various studies of balance failures. To support this work, we are interested in mechanisms for the synthesis of ground environments that can be controlled to exhibit dynamic friction characteristics. As a first step, we investigate the design and development of such a variable-friction device, a hybrid locomotion interface using a cable-driven vibrotactile mechanism. Measurements on our prototype, consisting of an aluminum tile covered with low-friction polytetrafluoroethylene (PTFE), demonstrate that it can effectively simulate a low coefficient of static friction. As part of the design, we also investigated the role that induced vibration plays in modifying the coefficient of friction. Measurements of sliding on a PTFE-covered tile in a tilted configuration showed a significant influence of normal low-frequency vibration, particularly for frequencies around 20 Hz, regardless of the user's weight

    Enhancing human motion perception in model predictive motion cueing algorithm

    Full text link
    In this research, the predictive motion cueing algorithm has been optimized for improving a human driver sensation based on the mathematical model. The Model Predictive Control cost function and the prediction and control horizons are optimized. The future trajectory is predicted by artificial intelligence and the related control actions are applied beforehand in real-time

    Evaluating Semi-Natural Travel and Viewing Techniques in Virtual Reality

    Get PDF
    With seated virtual reality (VR), the use cases based on seating conditions need to be considered while designing the travel and viewing techniques. The most natural method in seated VR, for viewing interactions is the standard 360-degree rotation, for which a swivel chair that spins around the vertical axis is commonly used. However, the VR users will not have the affordances of a swivel chair or the physical space to turn around, all the time. This limits their VR usage based on the availability of certain physical setups. Moreover, for prolonged usage, users might prefer to have convenient viewing interactions by sitting on a couch, not rotating physically all the way around. Our research addresses these scenarios by studying new and existing semi-natural travel and viewing techniques that can be used when full 360-degree rotation is not feasible or is not preferred. Two new techniques, guided head rotation and user-controlled resetting were developed and were compared with existing techniques in three controlled experiments. Standard 360- degree rotation and three joystick-control based viewing techniques (discrete rotation, continuous rotation and continuous rotation with reduced fov) were the existing techniques compared in our experiments. Since the new techniques and some of the existing techniques involve some rotation manipulations that are not natural, they could disorient the users during a virtual experience. So, two VR puzzle games were designed to study the effects of the techniques on spatial awareness of the users. Convenience, simulator sickness, comfort and preferences for home entertainment were the other factors investigated in the experiments. From the experiments, we found out that the results were based on 3D gaming experience of the participants. Participants who played 3D games one or more hours per week had higher tolerance towards the new techniques that had rotational manipulations compared to the participants who did not play any 3D game. Among the joystick rotation techniques, discrete rotation was rated the best by users in terms of simulator sickness. In addition to these experiments, we also present a case study that demonstrates the application of guided head rotation in an experiment that studied natural hand interaction with virtual objects under constrained physical conditions
    • …
    corecore