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 

Abstract—The motion cueing algorithm (MCA) is the main 

algorithm in motion simulators in charge of generating vehicle 

motions within the platform's constraints. The classical washout 

filter is one of the popular types of MCA, which is used in air and 

land vehicle motion simulators. The fixed home position of the 

simulator platform is always cogitated in the MCA to washout the 

motion simulator after generating each motion. Unfortunately, 

considering the fixed home position reduces the efficient 

consumption of the workspace in the linear directions. The linear 

motion of the motion simulator is due to the production of the 

high-pass frequency part of the motion scenarios. Prepositioning 

is used to tackle this assumption by varying the home position 

rather than the fixed position. The linear motion limitations of the 

motion simulator can virtually be enlarged using the 

prepositioning method. The efficient regeneration of the high-pass 

motion cues using a new propositioning technique is the main goal 

of this study to increase the motion realism of the simulator and 

remove any false motion cues due to the platform limitations. The 

proposed model utilised the recurrent neural network (RNN) to 

estimate the motion scenario along the prediction horizon. The 

nonlinear model predictive control (MPC) uses the estimated 

motion signals to extract the best optimal off-centre position of the 

motion simulator platform. The newly developed prepositioning 

technique is developed in the simulation environment of MATLAB 

to validate the proposed technique in terms of efficiency and 

applicability. The outcomes prove the capability of the proposed 

technique against the recently developed prepositioning technique 

using fuzzy logic and RNN. 

 
Index Terms—prepositioning, motion cueing algorithm, 

nonlinear model predictive control, neural network, motion 

simulator platform. 

 

I. INTRODUCTION 

HE motion cueing algorithm (MCA) is used to reproduce 

the motion cues for the motion simulator platform’s user 

based on the driving signals produced by the vehicle user in the 
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virtual environment [1-3]. In general, implementing the virtual 

vehicle motion signals to the motion simulator is not possible 

because of the workspace boundaries. The MCA aims to 

regenerate the high-fidelity motion signals for the motion 

simulator user, identical to what a real driver experience in a 

real vehicle. The low-fidelity motion signals may cause motion 

sickness. The experienced motion sickness caused by false 

motion cues can force the user to stop using the simulator. 

The human vestibular organ oversees sensing the driving 

motion signal and stabilising the body's motion. It consists of 

semicircular systems and otolith organs which is situated inside 

the inner ears [4]. The otolith organs perceive linear motion, 

while the semicircular systems perceive the angular motions. It 

is very important to respect the threshold unit of the 

semicircular systems and otolith organs to avoid motion 

sickness for the motion simulator user. 

Conrad and Schmitt [5] invented the first MCA known as a 

classical washout filter, and Reid and Nahon [6] improved the 

classical washout filter used in the aeroplane simulator 

platform. The classical washout filter is one of the common 

shapes of the MCA, which is very applicable, easy to tune, low 

computational load and extremely safe. Unfortunately, the 

classical washout filter has poor usage of the workspace. The 

MCA is developed by different researchers since the 

introduction using different techniques that can be categorized 

in classical, adaptive [7-9], optimal [10-12] and model 

predictive control (MPC) [13-15] sectors. The variation of the 

home position of the motion simulator extends the linear 

displacement of the motion simulator known as prepositioning 

technique.  

The prepositioning technique is achieved using the 

regeneration of the motion compensation signal, which works 

in parallel with a classical washout filter. This method can be 

categorised as an adaptive washout filter. The initial 

prepositioning technique is introduced by Weiß [16] based on 
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the motion indexes of the end-effector without forecasting the 

motion signals via the virtual vehicle user. But this method [16] 

is relatively weak, facing unpredictable motion signals or 

sudden changes such as sharp turns or changing the lane. The 

reason for reproducing false motion cues is due to the non-

prediction of the motion signals of the virtual vehicle along the 

prediction horizon. Chapron and Colinot [17] used the 

information of the road to anticipate the next action of the 

driver. However, analytical analysis of the road is not possible 

for every motion scenario. Hansson et al. [18] used the 

information of the road and a vehicle to estimate the motion 

signal along with longitudinal and lateral modes. Unfortunately, 

they did not consider the current position of the end-effector, 

which could dramatically decrease the efficiency of their 

proposed technique. Recently, Qazani et al. [19] proposed the 

new propositioning technique to tackle all disadvantages of the 

previous methods [16-18], such as not considering the current 

end-effector positions or neglecting the estimation of the 

motion signals. Qazani et al. [19] utilised the feedforward 

neural network (NN) to estimate the driving scenarios along the 

prediction horizon. The appropriate prepositioning of the end-

effector is calculated based on the high-pass filter of the 

estimated motion signals and the current position of the end-

effector. However, their proposed method [19] uses the fuzzy 

logic controller to calculate the new home position of the 

motion simulator. However, they did not use the optimal off-

centre position of the motion simulator since the work did not 

take into account any optimisation methods such as optimal or 

model predictive methods. In addition, the high-pass filtering 

of the predicted motion signals using feedforward NN is very 

time-consuming, and it will affect the real-time implementation 

of the method. The linear model predictive control (MPC) was 

used in MCA by Dagdalan et al. [20] for the first time to 

consider the workspace limitation of the simulator in 

regeneration of the motion cues for the user simulator based on 

the real vehicle motion signals. Qazani et al. [21] used the 

terminal condition in linear MPC-based MCA to increase the 

efficiency of the system facing abrupt motion signals. Also, the 

nonlinear MPC was recently employed in the MCA domain. As 

an example, Katliar et al. [22] employed the RTI method [23] 

to develop an NMPC-based MCA model for an 8-DoF serial 

DMP system with cogitation of the discretised inverse 

kinematic solution of the manipulator. Lamprecht et al. [24] 

used GRAMPC to design an NMPC-based MCA model for a 7-

DoF hexapod DMP system. Khusro et al. [25] developed the 

NMPC-based MCA for a 6-DoF hexapod DMP  using the 

ACADO toolkit [26] with adaptive weight tuning to smooth out 

the motion of the end-effector. 

The main motivation of this study can be divided into two 

parts, i.e. the lower computational load and higher accuracy, in 

comparison with those of the recently introduced prepositioning 

algorithm [19] due to using recurrent neural network (RNN) 

and nonlinear MPC. Also, the main contribution of this study is 

to increase the perceived motion fidelity for the user of the 

simulator via better generation of linear motion of the end-

effector based on the current position of the end-effector and 

the prediction of driving motion signals. The MPC is 

substituted with a high-pass filter and fuzzy logic system used 

in [4] to recalculate the off-centre position to achieve a lower 

computational load. Also, an RNN is used to estimate the 

driving motion signal with the attempt to achieve higher 

accuracy rates in comparison with those of the traditional 

shallow feedforward NN [19], as the second motivation of this 

work. It should be noted that RNN is able to reach better results 

as compared with feedforward NN for tackling time-series 

driving motion signals [27]. In addition, the nonlinear MPC 

method calculates the motion simulator’s optimal off-centre 

position with higher accuracy rates than those of the fuzzy logic 

system adopted in [4]. The RNN model is used to predict the 

driving motion signal, while the nonlinear MPC method 

calculates the optimal off-centre position based on the current 

position of the end-effector as well as the predicted motion 

signal via the RNN. It should be noted that the nonlinear MPC 

method is designed and developed using MAT-MPC [28] to 

decrease the computational cost of the system for facilitating 

real-time applications. Using the proposed method, the linear 

acceleration signal is regenerated as the motion compensation 

signal in order to minimise the motion perception error for the 

user pertaining to the motion simulator platform via the highly 

efficient usage of the linear workspace limitations. 

The methodology of the newly developed prepositioning 

technique is described in Section II. It includes the description 

of the motion simulator platform, a human vestibular system, 

the classical washout filter, as well as the proposed 

prepositioning algorithm. The newly developed method is 

verified and validated in Section III utilising 

MATLAB/Simulink. The conclusions of the study are 

remarked in Section IV. 

II. METHODOLOGY 

This Section describes the employed motion simulator, a 

mathematical model of the human vestibular model, classical 

washout filter, and proposed prepositioning technique using 

RNN and nonlinear MPC.  

A. Motion Simulator Platform 

The MATLAB/SimMechanic model of the parallel Stewart-

Gough platform is used to reproduce the motion cues in the 

simulation study of the proposed method in this work [29, 30]. 

It is a parallel-based motion simulator with the ability to 

generation 6-DoF motions, accurate kinematic solution and 

high acceleration. Wang et al. [31] employed a parallel-based 

motion simulator platform to investigate the efficiency of their 

industrial developed collision warning algorithm. Nillson et al. 

[32] employed the motion simulator platform to 

comprehensively compare the lane change for long vehicle 

manual and autonomous vehicles. Casas et al. [33] objectively 

compared the different motion cueing algorithms using parallel- 

and serial-based motion simulator platforms. Qazani et al. [11] 

consider the limitations of the parallel-based motion simulator 

platform in the development of the optimal MCA. The Simulink 

model uses a multi-body system technique to solve the parallel 

robot's inverse kinematic and dynamic problem with high 

resolution. The parallel-based motion simulator platform can be 
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used in various sectors such as training the air/land vehicle 

users, virtual prototyping, study of motion sickness, etc. The 

dynamical models of the intended vehicles can be imported into 

the motion simulator platform to test the vehicle's driving 

experience before manufacturing those models. It should be 

noted that the workspace boundaries of the investigated 

Stewart-Gough platform along x-axis are ±0.6 metres and pitch-

angle ±25 degrees. Also, the velocity limitations of the 

investigated platform along the x-axis and pitch-angle are 1.3 

m/s and 61 degrees/s, respectively. Lastly, the acceleration 

limitations of the investigated platform along the x-axis and 

pitch-angle are 3.3 m/s2 and 600 degrees/s2, respectively. 

B. Human Vestibular Model 

The driving motion signals of the real vehicle refer to the 

regenerated motion signals of the vehicle recorded via the 

driver using the steering wheel, gas pedal and brake pedal in a 

virtual vehicle dynamic environment. It should be noted that 

these motions are what the simulator driver is supposed to feel 

using the simulator; that is why we called them the driving 

motion signal of the real vehicle or motion reference. These 

signals need to be tracked and regenerated by a motion 

simulator to provide the most realistic motion feeling to the 

simulator user, similar to what they can experience while 

driving a real vehicle. 

The motion perception model comprises three systems, 

including the auditory, vestibular and visual systems. The 

vestibular system senses the rotational and translational 

motions [34-36], shown in Fig. 1.  

Telban and Cardullo [34] and Asadi et al. [35] reviewed 

various mathematical models of the human otolith organs, and 

they found the best model to link the sensed specific force of 

the motion simulator's user 𝑓 with the stimulus-specific force 𝑓 

as follows: 
𝑓̂

𝑓
= 𝐾𝑂𝑇𝑂 (

(𝜏𝑎𝑠+1)

(𝜏𝐿𝑠+1)(𝜏𝑠𝑠+1)
) (1) 

where 𝐾𝑂𝑇𝑂 is the static sensitivity of the otolith organs. Also, 

𝜏𝑎, 𝜏𝐿 and 𝜏𝑠 are the otolith time constants. 

Also, Telban and Cardullo [34] and Asadi et al. [36] 

extracted the best transfer function filter of the semicircular 

canals as follows: 
𝜔̂

𝜔
=

𝐺𝑆𝐶𝐶𝜏1𝜏𝑎𝑠2(1+𝜏𝐿𝑠)

(1+𝜏𝑎𝑠)(1+𝜏1𝑠)(1+𝜏2𝑠)
 (2) 

where 𝜔̂ and 𝜔 are the sensed angular velocity and applied 

angular velocity. Also, 𝐺𝑆𝐶𝐶  is the angular velocity threshold, 

and 𝜏1, 𝜏2, 𝜏𝑎 and 𝜏𝐿 are the semicircular time constants. 

Then, using Eq. (1) and Eq. (2), the sensed specific force and 

sensed angular velocity based on the applied linear acceleration 

and angular velocity signals can be calculated for the user of the 

motion simulator and a real vehicle. It should be noted that the 

stimulus-specific force along three directions regarding the 

angular displacement of the motion simulator head along the 

horizons can be found as below: 

{

𝑓𝑥 ≜ 𝑎𝑥 + 𝑔𝜃
𝑓𝑦 ≜ 𝑎𝑦 − 𝑔𝜙

𝑓𝑧 ≜ 𝑎𝑧 − 𝑔   

 (3) 

where 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 are the linear acceleration signal along the 

x-, y- and z-axis. 𝜙 and 𝜃 are roll- and pitch-angle, and 𝑔 =

9.81 m/s2 is the gravity. The angular displacement of the end-

effector should be less than 30 degrees using Eq. (3) to use the 

simplified version of sine and cosine functions. 

C. Classical Washout Filter 

The structure of the classical washout filter is shown in Fig. 

2, along with longitudinal mode. The longitudinal mode 

consists of three sub-modes: translational, tilt coordination, and 

rotational modes. Based on Fig. 2, the linear acceleration signal 

of the virtual vehicle in the world frame (𝑎𝑥
𝐼 )Veh is the input 

signal of the translational mode. Also, the angular velocity 

signal of the virtual vehicle in the world frame 𝜃̇Veh
𝐼  is the input 

signal of the rotational mode. There is a scale and limit block in 

a translational and rotational mode which should be chosen 

based on the workspace limitations of the motion simulator 

platform. These motion signals should be transformed from the 

world frame to the vehicle seat frame via multiplying the 

rotation matrix, including 𝐿𝐼𝑆 and 𝑇𝑆 for translational and 

rotational modes, respectively. The calculated linear 

acceleration signal (𝑎𝑥)Veh in the seat frame of the virtual 

vehicle is employed as an input signal of the high-pass 𝐻𝑃Trans 

(second-order) and low-pass 𝐿𝑃Tilt (second-order) filters to 

calculate the linear acceleration (𝑎𝑥)Sim and tilt angle 

(𝜃𝑇𝑖𝑙𝑡)Sim of the end-effector. Also, the high-pass filter of the 

rotation mode is first-order. These high-pass and low-pass 

filters can be defined as: 

𝐻𝑃trans =
𝑠2

𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛
2 (4.a) 

 
Fig. 1.  The schematic structure of the human vestibular system. 

  
Fig. 2.  The longitudinal mode of classical washout filter. 
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𝐿𝑃tilt =
𝜔𝑛

2

𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛
2 (4.b) 

𝐻𝑃rot =
𝑠

𝑠+𝜔𝑛
 (4.c) 

where 𝜉 and 𝜔𝑛 are constant parameters of the filters, including 

damping ratios and cut-off frequencies. 

The proposed prepositioning algorithm using nonlinear MPC 

and RNN in the following subsection should be implemented in 

the translational mode of the investigated classical washout 

filter. 

D. Prepositioning Using Nonlinear MPC and RNN 

The schematic structure of the newly developed 

prepositioning method is shown in Fig. 3. It consists of the 

RNN, nonlinear MPC and a decision block to calculate the 

prepositioning along with the longitudinal mode. The idea of 

using state-of-art technology such as NN and MPC reaches the 

accurate results compared with traditional methods in lots of 

area such as pose estimation [37], image detection [38], 

electronic [39], emotion detection [40], and text detection [41]. 

Recurrent Neural Network: An RNN treats the input data 

in a sequential or time-series format. The network has been 

widely used in temporal or ordinal problems such as natural 

language processing, speech recognition, language translation, 

and image captioning. The practical applications which are 

developed using the RNN can be exampled as voice search, 

Google Translate and Siri. The RNN uses the training data to 

learn from the existing instance records like other phases of NN 

forms such as feedforward NN. The most distinguished part of 

the RNN compared with feedforward NN is a memory cell that 

can hold the information from initial inputs to affect the current 

input and output. The results of RNN depend on the initial 

inputs within the sequence, while the inputs and outputs are 

considered independently using feedforward NN. Another 

distinguishable part of the RNN compared with feedforward 

NN is the parameter sharing capacity across each network layer. 

It means that the RNN has the same weights across each 

network layer, while the feedforward NN has different weights 

across each node. These weights are determined through the 

gradient descent and processes of backpropagation to facilitate 

reinforcement learning. As a result, an RNN can reach better 

results in the presence of arbitrary input sequences than those 

of the feedforward NN. 

Fig. 4. a-b shows the RNN’s schematic rolled and unrolled 

structures. Each structure consists of input, hidden and output 

layers at the tth time of the training, respectively. The memory 

block can be described as the hidden states of the network in the 

unrolled version of the RNN. Then, the memory of the network 

can be generated using the previous memory and the current 

input of the network as indicated below: 

𝑠(𝑡) = 𝑓(𝑢𝑥𝑡 + 𝑤𝑠𝑡−1) (5) 

where 𝑠𝑡, 𝑢𝑥𝑡 and 𝑤𝑠𝑡  are the hidden layer, input and memorised 

states of the network, respectively. 

The leverage backpropagation through time (BPTT) is used 

to calculate the gradients of the network [42, 43]. It should be 

noted that the gradients of the BPTT are a bit different from the 

traditional backpropagation because it is responsible for 

handling the sequential data. However, the principles of BPTT 

are similar to those in other NNs, as the model makes attempts 

to correct itself via calculation of the error from its output layer 

to its input layer. The difference from traditional 

backpropagation is the strategy of calculating the error. The 

error is the sum of the errors at each time step using BPTT since 

RNN shares the parameters across each layer. 

In this study, the driving motion signal of the virtual vehicle 

(linear acceleration signal) is the input of the RNN. The 

network sequences the history of the data using 50 time-step 

delays as the input, while the next time-step linear acceleration 

signal is the output of the network. Then, the driving motion 

signal can be predicted using the prediction model after training 

the RNN. It happens via calculation of the linear acceleration of 

the next time step and substituting this value as the current 

linear acceleration signal of the virtual vehicle, in order to 

calculate the second future linear acceleration signal. This 

strategy is followed until the driving motion signal is predicted 

along the prediction horizon. Using the RNN, the driving 

motion signal of the virtual vehicle provides predictions along 

the prediction horizon. This signal is exploited inside the 

nonlinear MPC using a time-varying reference signal. In order 

to prevent the over fitting problem regarding the usage of RNN 

for prediction of the driving motion signals, the dropout layer is 

defined equal to 0.5 [44, 45]. Then, if the problem occurs, the 

 

 
Fig. 3.  The structure of the newly developed prepositioning classical washout 

filter using NN and nonlinear MPC; (a): The proposed nonlinear MPC using 

the output of RNN as a reference signal to calculate the linear displacements 
and velocities of the platform along prediction horizon; (b): The decision block 

program to calculate the prepositioning linear acceleration signal to increase the 

fidelity of the regeneration motion signals for the simulator’s user. 

 
Fig. 4.  The structures of the RNN (a) Rolled version; (b): Unrolled version. 
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size of the network will be decreased as the second solution for 

preventing this phenomenon. In addition, the data 

regularization block is added to the algorithm to reduce the 

complexity of the model and decrease the chance overfitting 

[46, 47]. 

Nonlinear Model Predictive Control: The nonlinear plant 

model of the motion simulator is considered a nonlinear plant 

model of the MPC. Besides, the nonlinear MPC that operates 

the linear position and velocity of the end-effector along the 

prediction horizon can be calculated from the QP solution of the 

nonlinear MPC during each sampling time. The linear 

acceleration signal of the prepositioning is determined based on 

the linear position and velocity calculated via nonlinear MPC 

and linear position and velocity of the home position at the 

current sampling time. The nonlinear MPC and decision-

making blocks are explained in this subsection. 

A nonlinear MPC model in the discretised mode using direct 

multiple shooting [48] and sampling time 𝑇𝑠 = 0.01 (𝑠) along 

the prediction horizon (𝑡0 to 𝑡𝑓) can be formulated as: 

min
𝑥𝑘,𝑢𝑘

∑ {
1

2
‖ℎ𝑘(𝑥𝑘 , 𝑢𝑘)‖𝑊

2 +
1

2
‖ℎ𝑁(𝑥𝑁)‖𝑊𝑁

2 }𝑁−1
𝑘=0  (6.a) 

𝑠. 𝑡.     0 = 𝑥0 − 𝑥̂0 (6.b) 

0 = 𝑥𝑘+1 − ∅𝑘(𝑥𝑘 , 𝑢𝑘), 𝑘 = 0,1, … , 𝑁 − 1 (6.c) 

𝑟𝑘 ≤ 𝑟𝑘(𝑥𝑘 , 𝑢𝑘) ≤ 𝑟𝑘, 𝑘 = 0,1, … , 𝑁 − 1 (6.d) 

𝑟𝑁 ≤ 𝑟𝑘(𝑥𝑁) ≤ 𝑟𝑁 (6.e) 

where 𝑁 = (𝑡𝑓 − 𝑡0) 𝑇𝑠⁄  is the shooting intervals; 𝑥̂0 is the state 

at the initial time of system; ℎ is the objective function of the 

optimal control problem, which is used to minimise the driving 

sensation error and displacement of the cockpit and joints; ∅ is 

the nonlinear dynamical model of the plant; 𝑥𝑘 and 𝑢𝑘 are the 

states and control input at every sampling time; 𝑟 is the linear 

and nonlinear constraints of the model with the upper limits 𝑟 

and lower limits 𝑟; respectively. Eq. (5.e) is used to define the 

terminal constraints of the state as the end of the prediction 

horizon to increase the model stability. The first item of the 

extracted control action is implemented in the system, known 

as the receding horizon technique. 

Using sequential quadratic programming (SQP) concerning 

the discretised state and input, quadratic programming (QP) 

problem form of Eq. (5) is: 

min
∆x,∆u

∑ {(
1

2
[
∆𝑥𝑘

∆𝑢𝑘
]

T

H𝑘
𝑖 [

∆𝑥𝑘

∆𝑢𝑘
] + g𝑘

𝑖 T
[
∆𝑥𝑘

∆𝑢𝑘
]) +𝑁−1

𝑘=0

1

2
∆𝑥𝑁

TH𝑁
𝑖 ∆𝑥𝑁 + g𝑁

𝑖 T
∆𝑥𝑁} (7.a) 

𝑠. 𝑡.       ∆𝑥0 = 𝑥̂0 − 𝑥0 (7.b) 

∆𝑥𝑘+1 = 𝐴𝑘
𝑖 ∆𝑥𝑘 + 𝐵𝑘

𝑖 ∆𝑢𝑘 + 𝑑𝑘
𝑖  (7.c) 

𝑐𝑘
𝑖 ≤ 𝐶𝑘

𝑖 ∆𝑥𝑘 + 𝐷𝑘
𝑖 ∆𝑢𝑘 ≤ 𝑐𝑘

𝑖
 (7.d) 

𝑐𝑁
𝑖 ≤ 𝐶𝑘

𝑖 ∆𝑥𝑘 ≤ 𝑐𝑁
𝑖

 (7.e) 

where 𝐱 = [𝑥0
T ⋯ 𝑥𝑁

T], 𝐮 = [𝑢0
T ⋯ 𝑢𝑁

T ], ∆𝐱 = 𝐱 − 𝐱𝑖 

and ∆𝐮 = 𝐮 − 𝐮𝑖, H𝑘
𝑖  and g𝑘

𝑖  are the Hessian matrices; 𝐴𝑘
𝑖  and 

𝐵𝑘
𝑖  are matrices from linearisation of sensitivity concerning the 

initial states and control over the prediction horizon, 

respectively; 𝐶𝑘
𝑖  is the Jacobian constraint matrix; while 𝑑𝑘

𝑖  

refers to the existing gap between the previous shooting point 

and the next starting point; H𝑘
𝑖  and g𝑘

𝑖  are the kth block and sub-

vector of the Hessian matrix and the gradient of the objective 

function. 

Decision Block: The decision block is employed to calculate 

the linear acceleration signal to preposition the end-effector for 

increasing the motion fidelity of the motion simulator user. Fig. 

5.a-d shows the all-possible motions of the end-effector along 

the prediction horizon, which is estimated at every sampling 

time using the developed nonlinear MPC.  

There is a change in the behaviour of the end-effector motion 

in Fig. 5.a-b. Based on Fig. 5.a, the motion simulator will 

initially move along the opposite side of the x-axis (A1 to A3), 

then it will move along the positive side of the x-axis (A3 to A2). 

Also, the motion simulator will initially move along the positive 

side of the x-axis (A1 to A3), then it will move along the 

opposite side of the x-axis (A3 to A2) in Fig. 5.b. It gives the 

privilege of using the prepositioning technique. The motion 

behaviour of the end-effector in Fig. 5.c-d is purely ascending 

and descending, respectively. The vertical line is the end-

effector's position along the x-axis, and the horizontal line is the 

time. The motion scenario, which is shown in Fig. 5.a, presents 

that the end-effector moves towards the opposite side of the x-

axis from A1 position, but after a while, it changes its behaviour 

by moving towards the positive side of the x-axis from A2 

position to A3 position. This motion behaviour of the end-

effector can be used for prepositioning by moving the end-

effector towards the opposite side of the x-axis before reaching 

A2 position concerning the perception threshold of the sensed 

specific force. The same behaviour occurs for the end-effector 

as in Fig. 5.b by reversing the directional movement of the end-

effector. In order to extract the linear acceleration of the 

prepositioning, the position of A3 should be obtained using the 

platform's velocity along the prediction horizon using 

find(Vx,Pre==0). If 𝑑1 is the linear motion of the platform from 

A1 to A3, and 𝑑2 is the linear motion of the platform from A2 to 

A3, 𝑑1 and 𝑑2 can be found as follows: 

  

      
Fig. 5.  The whole possible linear motion of the end-effector along prediction 
horizon: (a) prepositioning toward the opposite side of x-axis; (b) 

prepositioning toward the positive side of x-axis; (c) washout towards the initial 

home position; (d) washout towards the initial home position. 
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𝑑1 = A3. 𝑥̂ − A1. 𝑥̂ (8.a) 

𝑑2 = A3. 𝑥̂ − A2. 𝑥̂ (8.b) 

where 𝑥̂ is the unit vector along the x-axis. The influence factor 

of the prepositioning ℎ can be found as: 

ℎ = |
𝑑2

𝑑1
| (9) 

Definition 1: If A1. 𝑥̂ and A2. 𝑥̂ are greater than A3. 𝑥̂, then the 

end-effector follows the motion presented in Fig. 5.a. The linear 

acceleration signal of the prepositioning can be defined as: 

𝑎𝑥,𝑃𝑃 = −0.17ℎ (10) 

where ±0.17 m/s2 is the threshold unit of the otolith organs for 

sensing the linear acceleration signal via the otolith organ 

following the work in [35]. 

Definition 2:  

If the A1. 𝑥̂ and A2. 𝑥̂ are smaller than A3. 𝑥̂, then the end-

effector follows the shown motion in Fig. 5.b. Then, the linear 

acceleration signal of the prepositioning can be exhibited as: 

𝑎𝑥,𝑃𝑃 = +0.17ℎ (11) 

Definition 3: If none of both scenarios happens, then the end-

effector should be washout towards the zero-home position 

under the motion perception threshold based on the study by 

Fang and Kemeny [49], in order to increase stability as well as 

efficiency, as follows: 

𝑎𝑥,𝑃𝑃 = −
𝑉𝑥,𝐶𝑢𝑟

2

2𝑥𝐶𝑢𝑟
 (12) 

where 𝑉𝑥,𝐶𝑢𝑟 and 𝑥𝐶𝑢𝑟  are the current velocity and position of 

the platform using the prepositioning technique. 

It should be noted that if the extracted 𝑎𝑥,𝑃𝑃 value is bigger 

than +0.17 m/s2 or smaller than -0.17 m/s2, the linear 

acceleration of the prepositioning should be saturated to +0.17 

or -0.17 m/s2, in order to respect the perception threshold of the 

sensed specific force. In the next step, the extracted 𝑎𝑥,𝑃𝑃 value 

should be filtered using a high-pass filter in order to washout 

the end-effector towards the home position after prepositioning. 

Fig. 6 presents the proposed algorithm's pseudocode to find the 

optimal off-centre position of the end-effector. 

III. RESULT AND DISCUSSION 

MATLAB software is used to verify the newly developed 

prepositioning technique to model and simulate the model 

presented in Section II. Using prepositioning, the extracted 

linear acceleration is added as a motion compensation signal to 

the classical washout filter [5]. Then, the proposed model is 

initially compared with the classical washout filter without 

using the prepositioning method. In addition, the newly 

developed prepositioning technique is compared with a 

previous prepositioning technique developed by Qazani et al. 

[19] as it is the most recent technique which can increase 

motion fidelity more than previous prepositioning techniques 

[16-18].  

The driving scenario is recorded using the Rigs of Rod 

vehicle simulation environment for 150 seconds (version 

0.39.5). The road map, linear acceleration signal along the x-

axis and angular velocity along the pitch-angle are shown in 

Fig. 7.a-c, respectively. The driving scenario includes every 

possible motion such as sudden moving, massive accelerations 

and decelerations, and sharp turns. 

The vehicle has been driven for ten loops in the road map as 

 

 
Fig. 7.  The virtual vehicle driving scenario using Rigs of Rod: (a) road map; 

(b) linear acceleration signal along x-axis; (c) angular velocity signal along 

pitch-axis. 

Algorithm 1: Decision Block 
Input: Predicted linear motion of the simulator along prediction horizon 

using nonlinear MPC A(𝑥). 

Output: Best linear acceleration signal 𝑎𝑥,𝑃𝑃 , 

Begin 

1. Calculation of A1 and A2 using the beginning and last 

position of the end-effector along prediction horizon. 

// Solving the MATLAB function find(Vx,Pre==0) for calculation of A3. 

A1 = Begining Position, A2 = Last Position, A3 =

Optimal Position. 

2. Calculation of ℎ = |
𝑑2

𝑑1
|, while 𝑑1 = A3 − A1, and 𝑑2 =

A3 − A2. 

3. Deciding the possible motion scenario based on A1, A2, 

and A3 (Fig. 5) 

3.1. If A1 > A3 and A2 > A3, then 𝑎𝑥,𝑃𝑃 = −0.17ℎ 

3.2. If A1 < A3 and A2 < A3, then 𝑎𝑥,𝑃𝑃 = +0.17ℎ 

3.3. If 3.1 and 3.2 are not applied, then 𝑎𝑥,𝑃𝑃 = −
𝑉𝑥,𝐶𝑢𝑟

2

2𝑥𝐶𝑢𝑟
 

      Saturation of 𝑎𝑥,𝑃𝑃 between -0.17 m/s2 and +0.17 m/s2 to the 

implement the recalculated 𝑎𝑥,𝑃𝑃 to the classical washout filter. 

End for t = t + 1 

End. 

Fig. 6.  The pseudocode of the proposed decision block algorithm in order to 

evaluate the motion scenario and calculate the best correction linear 

acceleration signal for the motion simulator platform. 
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shown in Fig. 7.a to produce the driving motion signals (linear 

acceleration and angular velocity) for training the RNN, which 

is mentioned in the previous Section. The linear acceleration 

signal is used for training the RNN. As the RNN is a time-series 

forecasting network, there is no need for sequencing the data. 

The hyperparameters of the feedforward NN is employed based 

on the recommended settings in [19] with a single hidden layer 

with 36 neurons. Also, the same number of layers and neurons 

are chosen for the RNN to reach a fair comparison with 

feedforward NN. It should be noted that the data is divided into 

80% and 20% for training and testing, respectively. The mean 

square errors (MSEs) using RNN and feedforward NN during 

the testing process of the network are 6.14×10-10 and 3.29×10-

5, respectively. These empirical results indicate the efficiency 

of RNN in comparison with feedforward NN. The error 

histograms of feedforward NN and RNN are shown in Fig. 8.a-

b, respectively. Based on the represented data in Fig. 8.a-b, the 

mean error of RNN is -1.2×10-8, which is lower than the mean 

error of 3.15×10-4 for the feedforward NN. It should be noted 

that RNN is trained based on the regenerated vehicle motion 

signals in the road map which is shown in Fig. 7.a. Therefore, 

the change of road map needs retraining of RNN in order not to 

affect the efficiency of the model. 

Fig. 9.a-b shows the sensed specific force for the virtual 

vehicle and the motion simulator users using the three 

investigated MCA models, namely the classical washout filter 

without using the prepositioning technique, classical washout 

filter using the previous prepositioning technique [19], and 

classical washout filter using the newly developed 

prepositioning technique in two different periods. The first 

period is chosen between 0 and 20 seconds to show the start of 

the motion. Also, the second period (100-120 seconds) is 

chosen, as the most abrupt motion signals are generated in this 

period. The RMSE sensation values between the virtual vehicle 

and the motion simulator users indicate the first validation 

between different MCA models to reveal the associated 

efficiency. The RMSE scores of the sensed specific force 

between motion simulator and virtual vehicle users using 

classical washout filter without prepositioning technique, 

 

   
Fig. 9.  The sensed specific force for the virtual vehicle and the motion 

simulator users using the classical washout filter without using prepositioning 

technique, classical washout filter using the previous prepositioning technique 
and the classical washout filter using the newly developed prepositioning 

technique for duration of: (a) 0-20 seconds of driving scenario; (b) 100-120 

seconds of driving scenario. 

 

   
Fig. 8.  Error histograms for estimation of the driving motion signals along x-

axis using (a): feedforward NN; (b): RNN. 

TABLE I 

THE RESULTS OF SENSED SPECIFIC FORCE ERROR BETWEEN THE VIRTUAL 

VEHICLE DRIVER AND THE SIMULATOR USER USING THREE INVESTIGATED 

METHODS 

Index 

RMSE CC 

CL-
WO PP 

CL-W 

PRE 

PP 

CL-W 

NEW 

PP 

CL-
WO PP 

CL-W 
PRE PP 

CL-W 
NEW PP 

Part I 2.1598 1.9039 1.7229 0.2300 0.7263 0.8441 
Part 

II 
1.9455 1.7067 1.5439 0.0270 0.7270 0.8618 

Part 
III 

2.1128 1.8511 1.6776 0.0388 0.7555 0.8771 

Part 

IV 
2.6440 2.3335 2.1121 0.0925 0.7922 0.9005 

All 

Part 
2.1721 1.9125 1.7312 0.1135 0.7564 0.8755 

CC: Correlation Coefficient; CL-WO PP: Classical Washout Filter Without 

Prepositioning Technique; CL-W PRE PP: Classical Washout Filter Using 

Previous Prepositioning Technique; CL-W NEW PP: Classical Washout Filter 

Using Newly Prepositioning Technique; RMSE: Root Mean Square Error. 
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classical washout filter using previous prepositioning technique 

and classical washout filter using newly developed 

prepositioning method during the whole 160 seconds of the 

recorded driving scenario are 2.1721, 1.9125 and 1.7312 m/s2, 

respectively. The reduction of the RMSE sensed specific force 

between motion simulator and virtual vehicle users using the 

newly developed prepositioning method compared with the 

previous prepositioning method is due to the better 

reproduction of the high-pass frequency linear acceleration 

motion signal. The better reproduction of the high-pass 

frequency linear acceleration signal is important as it plays the 

main role in motion sickness and artefact. The second 

validation parameter is the correlation coefficient (CC) to 

reveal the shape similarity between two signals, which is used 

in MCA for the first time by Asadi et al. [50]. The CC scores 

between the virtual car and the motion simulator users using 

three techniques are 0.1135, 0.7564 and 0.8755, respectively. 

These performance scores indicate a better reproduction of the 

motion signals using the newly developed prepositioning 

method compared to those of the classical washout filter 

without using the existing prepositioning technique. Also, the 

classical washout filter using the newly developed 

prepositioning technique have a minor improvement over the 

classical washout filter using the existing prepositioning 

technique. It is critical not to sacrifice the sensed angular 

velocity to improve the sensed specific force. As the newly 

developed prepositioning technique tries to use the linear 

motion of the end-effector to improve the motion fidelity for the 

SNMP user, it does not affect the sensed angular velocity. Then, 

this improvement of the sensed specific force is important 

because it employs the high-pass frequency linear acceleration 

signal to generate better motion cues where the tilt coordination 

mode cannot be used. The RMSE and CC of the three 

investigated methods are reported in Table I for the whole and 

four separated zones of the motion scenario between the virtual 

vehicle driver and the simulator’s user. 

Fig. 10.a-b illustrates the end-effector's linear position and 

prepositioning using the three methods, including the two 

prepositioning techniques. As shown in Fig. 10.a, the newly 

developed prepositioning technique can use the workspace 

more productively than those of the classical washout filter with 

and without employing the previous prepositioning method. 

Based on Fig. 10.b, a better prepositioning of the end-effector 

using the proposed technique is shown due to the nonlinear 

MPC, which can estimate the linear displacement of the motion 

simulator along the prediction horizon. It should be mentioned 

that the low-pass filter of the three methods is the same, then 

the same angular displacement is reached using three methods.  

Also, Fig. 11 presents the computational time of the 

processes using three investigated methods, including classical 

MCA without prepositioning, classical MCA using previous 

prepositioning, and classical MCA using proposed 

prepositioning methods. The results prove the lower 

computational load of the newly proposed method as compared 

with the other two methods. 

The outcomes of this research prove the efficiency of the 

newly proposed algorithm compared with those of the previous 

methods, i.e., it can generate better high-frequency motion 

signals. It should be noted that generating inaccurate high-

frequency motion signals is the main reason causing motion 

sickness of the motion simulator user. 

IV. CONCLUSION 

The prepositioning technique in MCA is introduced to allow 

highly efficient workspace usage with consideration of the 

same workspace limits. The previous prepositioning technique 

is designed using the NN to estimate the motion signal and 

fuzzy logic units to calculate the best off-centre position of the 

end-effector. No matter how it improves the workspace usage 

of the motion simulator, the fuzzy logic cannot extract the 

optimal prepositioning of the platform. As a result, a new 

prepositioning technique is developed to calculate the best 

optimal prepositioning of the end-effector. The nonlinear MPC 

    
Fig. 10.  (a) Linear position of the end-effector using the classical washout filter 

without using prepositioning technique, classical washout filter using the 
previous prepositioning technique and the classical washout filter using the 

newly developed prepositioning technique; (b) linear prepositioning of the end-

effector via classical washout filter using the previous and new prepositioning 

techniques. 

 
Fig. 11.  The computational time of three investigated methods including 

effector using the classical washout filter without using prepositioning 

technique, classical washout filter using the previous prepositioning technique 
and the classical washout filter using the newly developed prepositioning 

technique. 
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is employed to reach this goal because MPC can consider the 

workspace boundaries of the motion simulator and the human 

vestibular model. The investigated techniques are simulated in 

MATLAB. The outcomes prove a slightly better production of 

the high-pass frequency linear acceleration signal than those of 

the classical washout filter with and without using the previous 

prepositioning method. As a future study, an uncertainty 

qualification, convolutional NN and fault diagnosis system [51-

54] can be used to increase the efficiency of the MCA in motion 

simulator platform. 
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