25 research outputs found

    Walking improves your cognitive map in environments that are large-scale and large in extent

    No full text
    This study investigated the effect of body-based information (proprioception, etc.) when participants navigated large-scale virtual marketplaces that were either small (Experiment 1) or large in extent (Experiment 2). Extent refers to the size of an environment, whereas scale refers to whether people have to travel through an environment to see the detail necessary for navigation. Each participant was provided with full body-based information (walking through the virtual marketplaces in a large tracking hall or on an omnidirectional treadmill), just the translational component of body-based information (walking on a linear treadmill, but turning with a joystick), just the rotational component (physically turning but using a joystick to translate) or no body-based information (joysticks to translate and rotate). In large and small environments translational body-based information significantly improved the accuracy of participants' cognitive maps, measured using estimates of direction and relative straight line distance but, on its own, rotational body-based information had no effect. In environments of small extent, full body-based information also improved participants' navigational performance. The experiments show that locomotion devices such as linear treadmills would bring substantial benefits to virtual environment applications where large spaces are navigated, and theories of human navigation need to reconsider the contribution made by body-based information, and distinguish between environmental scale and extent

    Real walking in virtual environments for factory planning and evaluation

    Get PDF
    Nowadays, buildings or production facilities are designed using specialized design software and building information modeling tools help to evaluate the resulting virtual mock-up. However, with current, primarily desktop based tools it is hard to evaluate human factors of such a design, for instance spatial constraints for workforces. This paper presents a new tool for factory planning and evaluation based on virtual reality that allows designers, planning experts, and workforces to walk naturally and freely within a virtual factory. Therefore, designs can be checked as if they were real before anything is built.ISSN:2212-827

    Rotational Self-motion Cues Improve Spatial Learning when Teleporting in Virtual Environments

    Get PDF
    Teleporting interfaces are widely used in virtual reality applications to explore large virtual environments. When teleporting, the user indicates the intended location in the virtual environment and is instantly transported, typically without self-motion cues. This project explored the cost of teleporting on the acquisition of survey knowledge (i.e., a ”cognitive map”). Two teleporting interfaces were compared, one with and one without visual and body-based rotational self-motion cues. Both interfaces lacked translational self-motion cues. Participants used one of the two teleporting interfaces to find and study the locations of six objects scattered throughout a large virtual environment. After learning, participants completed two measures of cognitive map fidelity: an object-to-object pointing task and a map drawing task. The results indicate superior spatial learning when rotational self-motion cues were available. Therefore, virtual reality developers should strongly consider the benefits of rotational self-motion cues when creating and choosing locomotion interfaces

    Inattentional Blindness for Redirected Walking Using Dynamic Foveated Rendering

    Get PDF
    Redirected walking is a Virtual Reality(VR) locomotion technique which enables users to navigate virtual environments (VEs) that are spatially larger than the available physical tracked space. In this work we present a novel technique for redirected walking in VR based on the psychological phenomenon of inattentional blindness. Based on the user's visual fixation points we divide the user's view into zones. Spatially-varying rotations are applied according to the zone's importance and are rendered using foveated rendering. Our technique is real-time and applicable to small and large physical spaces. Furthermore, the proposed technique does not require the use of stimulated saccades but rather takes advantage of naturally occurring saccades and blinks for a complete refresh of the framebuffer. We performed extensive testing and present the analysis of the results of three user studies conducted for the evaluation

    Examination of fire scene reconstructions using virtual reality to enhance forensic decision-making. A case study in Scotland.

    Get PDF
    When attending a crime scene, first responders are responsible for identifying areas of potential interest for subsequent forensic examination. This information is shared with the police, forensic practitioners, and legal authorities during an initial meeting of all interested parties, which in Scotland is known as a forensic strategy meeting. Swift documentation is fundamental to allow practitioners to learn about the scene(s) and to plan investigative strategies, traditionally relying on word-of-mouth briefings using digital photographs, videos, diagrams, and verbal reports. We suggest that these early and critical briefings can be augmented positively by implementing an end-to-end methodology for indoor 3D reconstruction and successive visualisation through immersive Virtual Reality (VR). The main objective of this paper is to provide an integrative documentation tool to enhance the decision-making processes in the early stages of the investigation. Taking a fire scene as an example, we illustrate a framework for rapid spatial data acquisition of the scene that leverages structure-from-motion photogrammetry. We developed a VR framework that enables the exploration of virtual environments on a standalone, low-cost immersive head-mounted display. The system was tested in a two-phased inter-agency fire investigation exercise, where practitioners were asked to produce hypotheses suitable for forensic strategy meetings by (1) examining traditional documentation and then (2) using a VR walkthrough of the same premises. The integration of VR increased the practitioners’ scene comprehension, improved hypotheses formulation with fewer caveats, and enabled participants to sketch the scene, in contrast to the orientation challenges encountered using conventional documentation

    Spatial Cognitive Implications of Teleporting Through Virtual Environments

    Get PDF
    Teleporting is a popular interface to allow virtual reality users to explore environments that are larger than the available walking space. When teleporting, the user positions a marker in the virtual environment and is instantly transported without any self-motion cues. Five experiments were designed to evaluate the spatial cognitive consequences of teleporting and to identify environmental cues that could mitigate those costs. Participants performed a triangle completion task by traversing 2 outbound path legs before pointing to the unmarked path origin. Locomotion was accomplished via walking or 2 common implementations of the teleporting interface distinguished by the concordance between movement of the body and movement through the virtual environment. In the partially concordant teleporting interface, participants teleported to translate (change position) but turned the body to rotate. In the discordant teleporting interface, participants teleported to translate and rotate. Across all 5 experiments, discordant teleporting produced larger errors than partially concordant teleporting which produced larger errors than walking, reflecting the importance of translational and rotational self-motion cues. Furthermore, geometric boundaries (room walls or a fence) were necessary to mitigate the spatial cognitive costs associated with teleporting, and landmarks were helpful only in the context of a geometric boundary
    corecore