904 research outputs found

    Strong Equivalence Relations for Iterated Models

    Full text link
    The Iterated Immediate Snapshot model (IIS), due to its elegant geometrical representation, has become standard for applying topological reasoning to distributed computing. Its modular structure makes it easier to analyze than the more realistic (non-iterated) read-write Atomic-Snapshot memory model (AS). It is known that AS and IIS are equivalent with respect to \emph{wait-free task} computability: a distributed task is solvable in AS if and only if it solvable in IIS. We observe, however, that this equivalence is not sufficient in order to explore solvability of tasks in \emph{sub-models} of AS (i.e. proper subsets of its runs) or computability of \emph{long-lived} objects, and a stronger equivalence relation is needed. In this paper, we consider \emph{adversarial} sub-models of AS and IIS specified by the sets of processes that can be \emph{correct} in a model run. We show that AS and IIS are equivalent in a strong way: a (possibly long-lived) object is implementable in AS under a given adversary if and only if it is implementable in IIS under the same adversary. %This holds whether the object is one-shot or long-lived. Therefore, the computability of any object in shared memory under an adversarial AS scheduler can be equivalently investigated in IIS

    Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

    Get PDF
    This paper studies the step complexity of adaptive algorithms using primitives stronger than reads and writes. We first consider unconditional primitives, like fetch&inc, which modify the value of the register to which they are applied, regardless of its current value. Unconditional primitives admit snapshot algorithms with O(log(k)) step complexity, where k is the total or the point contention. These algorithms combine a renaming algorithm with a mechanism for propagating values so they can be quickly collected. When only conditional primitives, e.g., compare&swap or LL/SC, are used (in addition to reads and writes), we show that any collect algorithm must perform Omega(k) steps, in an execution with total contention k in O(log(log(n))). The lower bound applies for snapshot and renaming, both one-shot and long-lived. Note that there are snapshot algorithms whose step complexity is polylogarithmic in n using only reads and writes, but there are no adaptive algorithms whose step complexity is polylogarithmic in the contention, even when compare&swap and LL/SC are used

    Fault Tolerant Coloring of the Asynchronous Cycle

    Get PDF

    Fault Tolerant Coloring of the Asynchronous Cycle

    Full text link
    We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle CnC_n, where each crash-prone node starts with its (unique) identifier as input. The algorithm is independent of n3n \geq 3, and runs in O(logn)\mathrm{O}(\log^* n) rounds in CnC_n. This round-complexity is optimal thanks to a known matching lower bound, which applies even to synchronous (failure-free) executions. The range of colors used by our algorithm, namely {0,...,4}\{0, ..., 4\}, is optimal too, thanks to a known lower bound on the minimum number of names for which renaming is solvable wait-free in shared-memory systems, whenever nn is a power of a prime. Indeed, our model coincides with the shared-memory model whenever n=3n = 3, and the minimum number of names for which renaming is possible in 3-process shared-memory systems is 5

    Randomized Two-Process Wait-Free Test-and-Set

    Full text link
    We present the first explicit, and currently simplest, randomized algorithm for 2-process wait-free test-and-set. It is implemented with two 4-valued single writer single reader atomic variables. A test-and-set takes at most 11 expected elementary steps, while a reset takes exactly 1 elementary step. Based on a finite-state analysis, the proofs of correctness and expected length are compressed into one table.Comment: 9 pages, 4 figures, LaTeX source; Submitte

    On the Importance of Registers for Computability

    Full text link
    All consensus hierarchies in the literature assume that we have, in addition to copies of a given object, an unbounded number of registers. But why do we really need these registers? This paper considers what would happen if one attempts to solve consensus using various objects but without any registers. We show that under a reasonable assumption, objects like queues and stacks cannot emulate the missing registers. We also show that, perhaps surprisingly, initialization, shown to have no computational consequences when registers are readily available, is crucial in determining the synchronization power of objects when no registers are allowed. Finally, we show that without registers, the number of available objects affects the level of consensus that can be solved. Our work thus raises the question of whether consensus hierarchies which assume an unbounded number of registers truly capture synchronization power, and begins a line of research aimed at better understanding the interaction between read-write memory and the powerful synchronization operations available on modern architectures.Comment: 12 pages, 0 figure
    corecore