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Abstract
This paper studies the step complexity of adaptive algorithms using primitives stronger than
reads and writes. We first consider unconditional primitives, like fetch&inc, which modify the
value of the register to which they are applied, regardless of its current value. Unconditional
primitives admit snapshot algorithms with O(log k) step complexity, where k is the total or
the point contention. These algorithms combine a renaming algorithm with a mechanism for
propagating values so they can be quickly collected.

When only conditional primitives, e.g., compare&swap or LL/SC, are used (in addition to
reads and writes), we show that any collect algorithm must perform Ω(k) steps, in an execution
with total contention k ∈ O(log logn). The lower bound applies for snapshot and renaming,
both one-shot and long-lived. Note that there are snapshot algorithms whose step complexity is
polylogarithmic in n using only reads and writes, but there are no adaptive algorithms whose
step complexity is polylogarithmic in the contention, even when compare&swap and LL/SC are
used.
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1 Introduction

Collecting up-to-date information from all processes is a key to coordination and synchroniz-
ation, for example, for implementing atomic snapshots [1] or solving renaming [7]. A simple
way to do so is to have an array where each process stores its latest value in the entry
associated with its index, and to read this array in order to collect the values of all processes.

This scheme is an overkill when only a few processes participate in the algorithm: many
entries are read from the array although they contain irrelevant information about processes
not wishing to coordinate. Better performance is achieved when the step complexity depends
only on the total contention, namely, the number of processes that participate in the algorithm.
We say that such an algorithm is adaptive to total contention. Even better is an algorithm
whose step complexity is adaptive to point contention, which is the maximal number of
processes simultaneously executing the algorithm concurrently.
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Algorithm Problem Step Complexity Contention Primitives

Algorithm 1,
using [22]

atomic snap-
shot

O(log(k)) point LL/SC, fetch&inc,
bounded-fetch&dec

Algorithm 1,
using fetch&inc

atomic snap-
shot

O(log(k)) total LL/SC, fetch&inc

Algorithm 2 atomic snap-
shot

O(min(k, log n)) point LL/SC

Figure 1 Summary of upper bounds for long-lived atomic snapshots.

There has been significant progress in designing adaptive collect algorithms that only use
reads and writes. These algorithms have step complexity that is at least linear in the total
or point contention [3, 12, 2]. They have been used in algorithms for atomic and immediate
snapshots, renaming and timestamping [9, 4, 10, 12, 11].

Much less is known about the complexity of adaptive collect using primitives stronger
than reads and writes. A notable exception is the collect algorithm of Moir et al. [17], which
uses test&set. This algorithm uses less memory than collect algorithms that use only reads
and writes, but its step complexity is not much better, as it is linear in the point contention.

This paper studies the step complexity of adaptive algorithms using primitives stronger
than reads and writes and investigates whether they can be used to obtain adaptive algorithms
with poly-logarithmic step complexity.

We present a snapshot algorithm with O(log k) step complexity, where k is the total
contention; the algorithm uses fetch&inc (as well as LL/SC). We also describe a snapshot
algorithm with O(log k) step complexity, where k is point contention, using fetch&inc and
bounded-fetch&dec primitives (and LL/SC). These algorithms combine a renaming algorithm
for having processes obtain unique locations to store their values, with a mechanism for
propagating these values up a tree (“bubbling” them up), so they can be quickly collected.
(See Table 1.)

These algorithms use unconditional primitives, like fetch&inc and bounded-fetch&dec,
which modify the value of the register to which they are applied regardless of the current
value of the register. In contrast, conditional primitives [15], like compare&swap and LL/SC,
modify the register only if it holds a specific value that depends on the input of the conditional
operation. When only conditional primitives are used (in addition to reads and writes), we
show that any collect algorithm must perform Ω(k) steps, in an execution with total contention
k ∈ O(log logn). Specifically, the bound applies for the sum of the step complexities of a
pair of store and collect operations performed by some process on a one-shot collect object.

There is a trade-off between the contention k and the step complexity lower bound of
collect. If the total contention k is in Θ(n), we prove that at least O(log k) steps are required
to perform store and collect. We present an algorithm with O(min(k, logn)) step complexity,
matching the lower bounds.

Clearly, the lower bound for collect immediately applies for snapshots. Moreover, the
reduction from collect to renaming, described earlier, implies that the lower bound also
applies to renaming, giving an alternative proof of the Ω(k) step complexity lower bound
previously proved by Alistarh et al. [5]. Obviously, it also implies a Ω(k) lower bound for the
long-lived versions of collect, snapshot and renaming, where k is point contention.

Related Work. The work of Fich, Hendler and Shavit [15] showed a separation (in terms
of space complexity) between conditional and unconditional primitives. It proves that any
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wait-free implementation of a large class of objects that includes counters, stacks, queues and
snapshots from reads, writes and conditional primitives requires at least Ω(n) space. The
same space is required for any starvation-free mutual exclusion implemented from conditional
primitives. In contrast, using unconditional primitives (like fetch&add) allows to implement
these objects and to solve mutual exclusion using only constant space. These results align
with the separation in the terms of time complexity presented in our work.

There is an Ω(k) lower bound on the step complexity of adaptive mutual exclusion using
reads, writes and compare&swap [21].1 The lower bound requires that the total number of
the processes n = Ω(k2k ), which is slightly higher than the requirement on n in our lower
bound.

Alistarh et al. [5] show how to transform any adaptive wait-free renaming with sub-
exponential name space M(k) into adaptive mutual exclusion with O(log(M(k)) = o(k)
additional steps. Using the Ω(k) lower bound on the step complexity of adaptive mutual
exclusion [21], they derive an Ω(k) lower bound on the step complexity of adaptive renaming.
This lower bound also requires n = Ω(k2k ).

Another reduction from mutual exclusion to renaming can be obtained using unbalanced
tournament tree presented in [8]. For sub-exponential name space M(k) this transformation
also requires O(log(M(k)) = o(k) additional steps. Combined with the Ω(k) lower bound
for mutual exclusion [21], it also provides an Ω(k) step complexity lower bound for adaptive
renaming.

There is a simple implementation of O(k2)-renaming from lattice agreement, with O(1)
additional steps [16, Algorithm 11]. Together with the Ω(k) step complexity lower bound for
adaptive renaming [5, 8] it implies an Ω(k) step complexity lower bound for adaptive lattice
agreement (and therefore, for atomic and immediate snapshots).

We could not find a reduction with sublinear step complexity from these problems (mutual
exclusion, renaming or snapshots) to adaptive store / collect, even with compare&swap and
LL/SC. Without a way to deduce the lower bound for adaptive store-collect from the existing
lower bounds for mutual exclusion or renaming, we had to directly prove the lower bound for
adaptive collect presented in this paper.

2 The Computation Model

In the wait-free asynchronous shared-memory model, n processes, p0, . . . , pn−1 communicate
by applying primitive operations (in short, primitives) to shared memory registers [21]. A
process is described as a state machine, with a set of (possibility infinite number of) states,
one of which is a designated initial state, and a state transition function.

The executions of the system are sequences of events. In each event, based on its current
state, a process applies a primitive to a shared memory register and then changes its state,
according to the state transition function. At the beginning of the execution, all shared
registers hold the value ⊥. During an execution, no process ever changes the value of a
shared register to ⊥.

An event φ in which a process p applies a primitive op to register R is denoted by a triple
〈p,R, op〉. An execution α is a (finite or infinite) sequence of events φ0, φ1, φ2, . . .. There are
no constraints on the interleaving of events by different processes, reflecting the assumption

1 This lower bound holds also for LL/SC by using an implementation of LL/SC from compare&swap, with
constant step complexity [19].
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that processes are asynchronous. We denote by next_event(pi, α) the next event a process
pi will perform if it is scheduled to take a step after an execution prefix α.

For an execution α and a set of processes P , α|P is the sequence of all events in α by
processes in P ; α|P is the sequence of all events in α that are not by processes in P . If
P = {p}, we write α|p instead of α|{p} and α|p instead of α|{p}. An execution α is P -only if
α = α|P , and it is P -free execution if α = α|P . Two executions α and α′ are equivalent with
respect to P if α|P = α′|P .

We always assume the availability of read and write primitives. A read(R) primitive
returns the current value of R and does not change its value. A write(v, R) operation sets
the value of R to v, and does not return a value. We make no restrictions on which process
can read from or write to each register, i.e., they are multi-writer multi-reader.

A fetch&inc on register R atomically increments the value of the register by 1 and returns
the previous value. That is, if the value of R immediately before the invocation of fetch&inc
(R) was v, then the primitive sets the value of R to v + 1 and returns v. Similarly, fetch&dec
atomically decrements the value of the register by 1 and return the previous value. A
bounded-fetch&dec primitive is similar to standard fetch&dec, except that if the value of
register R is 0 before the primitive is applied to it, then the value of R remains unchanged.

LL on register R returns the current state of R. SC (R, v) invoked by a process p changes
the state of R to v only if no other process has changed the value of R since the the latest
execution of LL (R) by p. If the value of R is changed SC returns true, otherwise it returns
false.

A compare&swap(R, v, u) primitive works as follows. If the register R holds the value v,
then the state of R is changed to u and and true is returned (the compare&swap succeeds).
Otherwise, the state of R remains unchanged and false is returned (the compare&swap fails).

An implementation of a high-level object provides algorithms for each high-level operation
supported by the object. Some of the transitions are requests, invoking a high-level operation,
or responses to a high-level operation. When a high-level operation is invoked, the process
executes the algorithm associated with the operation, applying primitives to the shared
registers, until a response is returned.

In a well-formed execution, a high-level operation is invoked only if there is a response
to the previous high-level operation, that is, a process alternates between invocations and
matching responses, beginning with an invocation. A well-formed execution α defines a
partial order on operations: If the response of operation op1 occurs in α before the invocation
of operation op2, then op1 precedes op2 and op2 follows op1. We say that op1 and op2 are
non-overlapping.

We require implementations to be linearizable [18]. Roughly speaking, a linearizable
object guarantees that there is a reordering of the object operations which satisfies the
sequential specification of the object and respects the real-time order of non-overlapping
operations among all the processes.

Adaptive Algorithms. Let α′ be a finite prefix of an execution α. Process pi performing a
high-level operation op is active at the end of α′, if α′ includes an invocation of op without a
return from op. The set of the processes active at the end of α′ is denoted active(α′). The
point contention at the end of α′, denoted pointCont(α′), is |active(α′)|.

The total contention during α is the total number of processes active in α:

totalCont(α) =

∣∣∣∣∣∣
⋃

α′ prefix of α
active(α′)

∣∣∣∣∣∣ .
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Assume that β is a finite interval β of α, i.e., α = α1βα2. The point contention during β,
denoted pointCont(β), is the maximum contention in all prefixes α1β

′ of α1β:

pointCont(β) = max
α1β′ prefix of α1β

pointCont(α1β
′) .

Consider an execution α of an algorithm A implementing a high-level operation op. For
process pi executing operation opi, step(A,α, opi) is the number of operations on shared
registers pi performs executing opi in α. The step complexity of A in α, denoted step(A,α),
is the maximum of step(A,α, opi) over all operations opi of all processes pi.

Consider a bounded function S : N 7→ N . An algorithm implementing operation op
is S-adaptive to total contention if for every execution α and every operation opi with
interval βi, step(A,α) ≤ S(totalCont(α)). That is, the step complexity of the algorithm in
any execution is bounded by a function of the total contention during the execution. An
algorithm implementing operation op is S-adaptive to point contention if for every execution
α and every operation opi with interval βi, step(A,α, opi) ≤ S(pointCont(βi)). That is, the
step complexity of an operation opi with interval βi is bounded by a function of the point
contention during βi.

Since contention is bounded by n, an operation opi of pi terminates within a bounded
number of steps of pi, regardless of the behavior of other processes; that is, adaptive algorithms
are wait-free.

3 Problems Studied in this Paper

Collect. A solution for the collect problem should define algorithms for two operations –
store and collect. Intuitively, a store(val) operation of pi declares val as the latest value for pi,
and a collect operation returns a view containing the latest values stored by active processes.
A view is a set of process-value pairs, V = {〈pi1 , vi1〉, . . .}, without repetitions of processes.
V (pj) refers to vj , if 〈pj , vj〉 ∈ V , and to ⊥ otherwise.

A collect operation cop returns a view V such that the following holds for every process
pj :
Validity: If V (pj) = ⊥, then no store operation of pj precedes cop; if V (pj) = v 6= ⊥ then v

is the value of a store operation sop of pj that does not follow cop, and there is no other
store operation sop′ of pj that follows sop and precedes cop.

That is, cop does not read from the future or miss a preceding store operation.
Moreover, if a collect operation op follows another collect operation cop′, then cop should

return a view which is more up-to-date. To capture this notion, we define a partial order on
views: V1 � V2, if for every process pi such that 〈pi, v1

i 〉 ∈ V1, we have 〈pi, v2
i 〉 ∈ V2, and v2

i

is written in a store operation of pi that follows or is equal to a store operation of pi which
writes v1

i . Using this definition, we formulate the property of the collect problem as follows:
Regularity: Assume a collect operation cop by pi returns V1, and a collect operation cop′ by

pj returns V2. If cop precedes cop′, then V1 � V2.

Atomic Snapshots. The atomic snapshot problem [1] extends the collect problem by
requiring views to look instantaneous. We assume a combined upscan operation, which
updates a new value and atomically collects a view. The returned views should satisfy the
following conditions:

OPODIS 2015
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Validity: If an upscan operation op returns a view V , and precedes an upscan operation op′,
then V does not include the value written by op′.2

Self-inclusion: The view returned by the `th upscan operation of pj includes the `th value
written by pj .

Comparability: If V1 and V2 are the views returned by two upscan operations, then either
V1 � V2 or V2 � V1.

The lattice agreement problem is a special case of atomic snapshots, in which a process
performs the algorithm at most once, writing its own identifier and collecting a view which
contains identifiers of participating processes. The returned views should satisfy the validity,
self-inclusion and comparability properties of the atomic snapshot.

Immediate Snapshots. The immediate snapshot problem [14] is an extension of the atomic
snapshot problem; it supports a combined im-upscan operation, which updates a new value
and returns a view. In addition to the validity, self-inclusion, and comparability properties
of the atomic snapshot problem, returned views should satisfy the next condition:
Immediacy: If the view returned by some im-upscan operation, V1, includes the value written

in the `th im-upscan of pj which returns the view V2, then V2 � V1.

M -Renaming. In the long-lived M-renaming problem, processes p1, . . . , pn with unique
names from the range {0, . . . , N − 1} repeatedly acquire and release distinct names in the
range {0, . . . ,M − 1}. The range {0 . . . N − 1} is the initial name space, and the range
{0 . . .M − 1} is the final name space. A solution supplies two procedures: getName returning
a new name, and releaseName; pi alternates between invoking getNamei and releaseNamei,
starting with getNamei.

For the long-lived renaming problem we redefine the notion of an active process. Process
pi is active at the end of execution prefix α′, if α′ includes an invocation of getNamei without
a return from the matching releaseNamei. A long-lived renaming algorithm should guarantee
uniqueness of new names: Active processes hold distinct names at the end of α′.

A renaming algorithm has a name space adaptive to point contention, if there is a
function M, such that the name obtained in an interval β of getName is in the range
{1, . . . ,M(pointCont(β))}. The name space is adaptive to total contention, if the new names
are in the range {1, . . . ,M(totalCont(β))}.

One-shot M -renaming is a special case of long-lived renaming. The processes start with
unique names from the range {0, . . . , N − 1} and are required to choose distinct names in
the range {0 . . .M − 1}, where M < N .

4 Sub-linear Adaptive Algorithms for Atomic Snapshots

4.1 Atomic Snapshots Using Renaming
This section presents a modular construction of atomic snapshots using renaming. The
algorithm uses an unbalanced binary tree, consisting of a sequence of complete binary trees of
growing sizes, connected as shown in Figure 2. (This tree structure was also used in [6, 22].)

In Algorithm 1, a process starts by acquiring a name i using an adaptive renaming
algorithm (Line 1.2). Then it exclusively accesses the i-th leaf of the unbalanced binary tree,

2 Typically, this condition trivially holds and we do not prove it below.
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Figure 2 Unbalanced binary tree used in Algorithm 1.

writes its information in the register associated with the leaf. Then, it climbs up to the root,
updating the views associated with the nodes on the path. (This part of the algorithm is
similar to the f -array implementation of Jayanti [20].) After updating the root, the process
releases the acquired name.

The next lemma shows that the sequence of the views stored in a node is monotonically
increasing:

I Lemma 1 (Comparability). Let V1, V2, . . . be the sequence of the views written into
v.subtree-View of some node v in Line 1.3, 1.17 or 1.17. Then V1 � V2 � . . ..

Proof. If node v is a leaf, then define a sequence of execution intervals γ1, γ2, . . . as follows:
γi starts in the ith time a process p acquires the name associated with leaf v (Line 1.2), and
it ends when p releases this name (Line 1.6). By the uniqueness of renaming, the intervals
γ1, γ2, . . . do not overlap.

If v is an inner node, let γ1, γ2, . . . be the execution intervals corresponding to the pairs
of successful LL/SC primitives that write views V1, V2, . . . into v.subtree-View. That is, for
each successful pair SCi, the interval γi starts with the corresponding LL (Line 1.16 or 1.18)
and ends with the corresponding SC (Line 1.17 or 1.19). Clearly, the intervals γ1, γ2, . . . do
not overlap.

In both cases, processes access node v in non-overlapping intervals γ1, γ2, . . .. Therefore,
a view Vi written by a process p into v.subtree-View in interval γi, (in Line 1.3 if v is a leaf,
or in Line 1.17 or 1.19 if v is an inner node) is read after that by a process q in the next
interval γi+1 (in Line 1.16 or 1.18). Therefore, it is included in the view Vi+1 written by q
into v.subtree-View (in Line 1.3, Line 1.17 or 1.19). This implies that Vi � Vi+1, and the
lemma follows by induction on i. J

The following lemma states that the views returned by scan operations satisfy the
self-inclusion property of atomic snapshot.

I Lemma 2 (Self-inclusion). Assume pi performs update(idi, vali), and then scan() that
returns view Vi. Then vali ∈ Vi.

Proof. We show by induction on the sequence of the nodes visited by pi during refresh that
vali ∈ v.subtree-View after pi leaves node v (Line 1.21).

If node v is a leaf, then pi appends vali to v.subtree-View in Line 1.3. Therefore,
vali ∈ v.subtree-View after pi leaves v.

OPODIS 2015
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Algorithm 1 Adaptive atomic snapshot algorithm using renaming
Type:

node :
subtree-View: view of the values stored in the subtree of the node, initially ∅
left-child: pointer to left child node
right-child: pointer to right child node
parent: pointer to the parent node

Global variables:
T: unbalanced binary tree of nodes

Local variables:
id : process id
val : value to be written; for simplicity we assume increasing numbers

1: procedure update(id, val)
2: i = acquire-name() . using any adaptive long-lived renaming algorithm
3: v = i-th leaf of the unbalanced tree T . start at the bottom of the unbalanced tree
4: v.subtree-View = merge(v.subtree-View, {〈id, val〉}) . update your value in the leaf
5: refresh(v) . start from the current leaf v and ascend back to the root

. updating the views in the nodes along the path
6: release-name(i) . release the name associated with the i-th leaf
7: end procedure

8: procedure scan
9: return(root.subtree-View) . return the view from the root node

10: end procedure

11: procedure merge(views V1, V2, . . .) . return the view of the latest processors’ values
12: return({〈pi, vi〉 | vi = max(V1(pi), V2(pi), . . .)})
13: end procedure

14: procedure refresh(node v) . start at leaf v and ascend back to the root
15: while v 6= root do . updating the views in the nodes along the path
16: view = LL(v.subtree-View)

. merge the views stored v and in both its children and try to store it in v.subtree-View
17: if ¬ SC(v.subtree-View, merge(view, v.right-child.View,v.left-child.View) then
18: view = LL(v.subtree-View) . if the previous store failed, try once more
19: SC(v.subtree-View, merge(view, v.right-child.View,v.left-child.View))
20: end if
21: v = v.parent . climb up to the patent node even if both updates failed
22: end while
23: end procedure
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For the induction step, assume that vali ∈ subtree-View in the left child or the right child
of the current node v. Process pi reads these views before it attempts to write the merged
view into v.subtree-View with SC (Line 1.17 or 1.19). If one of the SC primitives succeeds,
then vali ∈ v.subtree-View after pi leaves node v.

If both of these SC primitives fail, then there is a successful pair LLj and SCj by some
process pj such that LLj starts after the first LL of pi and SCj ends before the second
SC of pi. Process pj reads v.left-child.subtree-View and v.right-child.subtree-View (one of
them containing vali) between LLj and SCj . Therefore, SCj writes a view containing vali
into v.subtree-View. By Lemma 1, v.subtree-View is monotonically increasing. Therefore,
vali ∈ v.subtree-View after pi leaves node v.

Process pi completes refresh after leaving the root. Therefore, vali ∈ root.subtree-View
after pi returns from update. By Lemma 1, root.subtree-View is monotonically increasing.
Therefore, the view Vi returned by the following scan operation contains vali. J

By Lemmas 1 and 2 we have that Algorithm 1 implements a long-lived atomic snapshot.
Let M(k) be the size of the name space of the adaptive renaming algorithm used in the
algorithm. The distance from the M(k)-th leaf of the unbalanced tree to the root is
O(logM(k)). In each node on the path from the leaf to the root in update, a process
performs a constant number of steps. Therefore, the step complexity of the resulting
snapshot algorithm is f(k) +O(logM(k)), where f(k) is the step complexity of the adaptive
renaming algorithm.

A simple way to do renaming in Line 1 is by applying fetch&inc to a shared register.
When a process executes update for the first time, it performs fetch&inc to get a name, and
then it uses this name in all the following update operations. The names obtained in this
way are in 0, . . . , k − 1, where k is the total contention. Then the depth of the leaf acquired
is O(log k), and therefore the step complexity of the algorithm is O(log k), where k is the
total contention. The algorithm uses only LL/SC and fetch&inc.

Alternatively, we can use the long-lived adaptive k-renaming of Moir and Anderson [22,
Fig. 8]. The step complexity of this algorithm is O(log k), where k is the point contention.
However, it uses bounded-fetch&dec in addition to the more standard LL/SC and fetch&inc.
Using this algorithm gives a O(log(k)) long-lived atomic snapshot, where k is point contention,
using LL/SC, fetch&inc and bounded-fetch&dec.

4.2 Atomic Snapshot with Conditional Primitives
What is the best step complexity we can achieve with only conditional primitives? When
the number of participants is high (k ∼ n), at least Ω(logn) steps are required to perform
collect (and therefore atomic snapshot) [13]. This section presents a snapshot algorithm with
O(min(k, logn)) step complexity using only reads, writes and LL/SC. In the next section we
prove that at least Ω(k) steps are required when contention is low (k ∈ O(log logn)), and at
least Ω(log k) steps is required when contention is high (k ∈ Θ(n)). The algorithm matches
the both lower bounds.

Algorithm 2 is a modification of Algorithm 1. It uses an unbalanced tree with the
same structure, but the first logn leaves of the tree are reserved for processes that obtain
new names in logn-restricted adaptive k-renaming. This restricted renaming algorithm
guarantees that if the total (or point) contention is less than logn, then all the processes get
new names in range 0, . . . , k − 1. If the contention is higher than logn, then a process pi
either gets a name in range 0, . . . , logn or a special fail value. If pi gets fail then it accesses
the unbalanced tree using its original name idi, starting at leaf logn+ idi.
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Algorithm 2 Adaptive atomic snapshot with O(min(k, logn)) step complexity, using reads,
writes and LL/SC.

1: procedure update(id, val)
2: i = acquire-name() . using long-lived k-renaming restricted to logn names
3: if i == failed then
4: i = logn+ idi . if failed to get a name ≤ logn, use its original name + logn
5: end if
6: v = i-th leaf of the unbalanced tree T . start at the bottom of the unbalanced tree
7: v.subtree-View = merge(v.subtree-View, {val}) . update your value in leaf’s subtree

view
8: refresh(v) . start from the current leaf v and ascend back to the root

. updating the views in the nodes along the path
9: if i < logn then

10: release-name(i) . release the name if it was acquired by the adaptive renaming
11: end if
12: end procedure

The correctness of the algorithm follows by the uniqueness of the new names and by
Lemmas 1 and 2. We can get a restricted renaming adaptive to point contention by using a
sequence of logn LL/SC variables. A process sequentially accesses these variables until it
succeeds to acquire one of them. If the process fails in all logn variable, it returns failed.
This is essentially the k-renaming algorithm using test&set [22, Theorem 4], restricted to
the first logn names. The step complexity of the renaming is O(k), adaptive to point
contention. Therefore, if k < logn, each process gets a name ≤ k in O(k) steps, and accesses
a leaf at depth O(log k). Therefore the total number of steps is O(k). If k ≥ logn, then a
process accesses the tree using its original name at a leaf on depth O(logn). Thus the total
complexity is O(logn). This implies that Algorithm 2 correctly implements atomic snapshot
with O(min(k, logn)) step complexity, where k is the point contention.

5 Lower Bounds on Adaptive Collect with Conditional Primitives

This section proves a trade-off between the total contention and the step complexity of
adaptive one-time collect using conditional primitives. For low contention, k ∈ O(log logn),
at least Ω(k) steps are required to complete an update operation followed by a collect. If the
contention is high, k ∈ Θ(n), then at least Ω(log k) steps are required to complete this pair of
operations. Algorithm 2 presented in Section 4.2 solves the atomic snapshot problem using
only conditional primitives (writes, reads and LL/SC) with O(min(k, logn)) step complexity,
thus matching both lower bounds.

To prove the lower bounds, we construct an execution in which each active process
performs a store followed by a collect, and show that at least one process performs the
required number of steps. In the execution, the active processes are divided to visible
and invisible. Intuitively, an invisible process may be removed from the execution without
affecting the steps of the others. Formally, process p is invisible after an execution prefix α
if α and α|p are equivalent with respect to any process in active(α)− {p}. The set of the
processes invisible after α is denoted invisible(α).

The construction proceeds in rounds. In each round, every process that is still invisible
after the previous round performs its next computational event. After constructing the new
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round, we keep in the execution all the invisible processes, and some of the processes that
became visible; the rest are deleted retroactively.

Provided that the initial number of processes is sufficiently high (as stated below), we
inductively build r rounds of execution so that at least two processes p and q remain invisible
after the last round. By the validity property of collect, it is impossible that two processes
complete their store and collect operations without being aware of each other. This implies
that at least one of them does not complete its collect in r rounds, implying that it takes at
least r steps.

Choosing the number of processes which are allowed to become visible in each round, we
can trade the level of contention, k, and the number of rounds, r. If we allow at most one
process to become visible, we get an execution with very low contention, k = O(log logn), but
the number of rounds is linear in k. Increasing the number of processes that become visible
increases the contention, but decreases the length of the execution. If we allow a constant
fraction of processes to become visible, then we get an execution with high contention
k = Θ(n), but the number of rounds decreases to log k.

The extension by one round relies on the fact that only conditional primitives are used.
Instead of defining conditional primitives formally, the lower bound proof uses a more refined
classification of primitives, according to their transparency, defined as follows.

I Definition 3. Suppose that after an execution prefix α there is a variable v such that
value(v, α) = ⊥ and there is a subset P = {p1, . . . , pk} of invisible processes whose next
events φ1, . . . , φk apply the same primitive Op to the same variable v:

P = {pi|pi ∈ invisible(α) ∧ next_event(pi, α) = 〈pi, v,Op〉} .

We say that primitive Op is (k −m)-transparent (for some m ≤ k), if there is a permutation
π of the next events φ1, . . . , φk such that after execution απ at most m processes from P

become visible, and the rest of the process in invisible(α) remain invisible.
More formally, define W to be the subset of processes P that become visible after α π :

W = {pi|pi ∈ P ∧ pi ∈ visible(α π)} .

The primitive Op is (k −m)-transparent if |W | ≤ m and every pi ∈ invisible(α)−W is in
invisible(α π).

Appendix A shows that read, compare&swap and LL/SC are k-transparent, and that write
is (k − 1)-transparent.

Suppose that the algorithms uses a constant number of primitive types, Op1,Op2, . . . ,Opt.
Assume, without loss of generality, that each process applies primitives cyclically in this
order during its execution. That is, in its i-th step the process performs a primitive of type
Opi mod t. Any algorithm may be modified in this way by introducing “dummy” primitives
of the required type. This increases the step complexity of the algorithm by a constant
factor, since the algorithm uses a constant number of primitive types, and does not affect
the asymptotic step complexity.

For completeness of the explanation, we state Turán’s Theorem [23] used in the induction
step of the lower bound proof (Lemma 5).

I Theorem 4 (Turán). Let G(V,E) be an undirected graph, where V is the set of vertices
and E is the set of edges. If an average degree of G is d, then G(V,E) has an independent
set with at least d|V |/(d+ 1)e vertices.

The next lemma provides the induction step for the lower bound proof.

OPODIS 2015
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I Lemma 5. Suppose that there is an execution αr containing r rounds such that |invisible(αr)|
= mr. Then for any w, 1 ≤ w ≤ mr/2, there is an execution αr+1 containing r + 1 rounds,
such that after αr+1 the number of visible processes |visible(αr+1)| = |visible(αr)|+ w, and
the number of invisible processes mr+1 = |invisible(αr+1)| ≥ 2

√
mr·w

3 − 2w.

Proof. We show how to extend αr with one round (r + 1). In round r + 1, each process
pi ∈ invisible(αr), 1 ≤ i ≤ k, executes its next event φi = next_event(pi, αr). Define round
r + 1 as the sequence of these events πr+1 = φ1, φ2, . . . , φk, and define a new execution
α′r+1 = αr πr+1.

By assumption, all the next events after αr apply the same primitive in round r + 1.
In order to keep many processes invisible, we should take care of two things. First, we need

to ensure that the events of round r+ 1 do not conflict with events performed in the previous
rounds. Otherwise, if process p in round r + 1 overwrites a variable previously written by
another process q, then p can not be further deleted from the execution without making
q visible. We eliminate this kind of conflicts using Turàn’s Theorem. Next, we eliminate
conflicts between primitives in round r + 1, using the fact they are k- or (k − 1)-transparent.

Eliminating conflicts with previous rounds. Consider a visibility graph G(V,E), with
vertices V corresponding to the processes in invisible(αr). If in round r + 1, a process
pi accesses one of the variables previously changed by process pj , then there is an edge
pi → pj ∈ E. In round r+ 1, process pi accesses at most one memory location, and therefore
|E| ≤ |V | and the average degree of G is d = 2|E|/|V | ≤ 2. By Turàn’s Theorem, G has
an independent set V ′ ⊆ V with at least d|V |/(d+ 1)e = d|V |/3e vertices. We leave the
processes corresponding to V ′ in the execution, and delete all the other invisible processes
V − V ′. That is, we define α′′r+1 = α′r+1|V ′ . Note that in the execution α′′r+1, the processes
in V ′ access only variables which were not changed by other processes. Therefore, there are
no conflicts between the primitives of round r + 1 and the primitives of rounds 1, . . . , r.

Eliminating conflicts between events in round r + 1. Let M(V ′) the set of variables
accessed by the processes in V ′. Since |V ′| processes access |M(V ′)| different variables,
the average number of processes that access the same variable is |V ′|

|M(V ′)| . We order the
variables in M(V ′) by the number of processes accessing them, and choose the w variables
{v1, . . . , vw} ∈M(V ′) that are accessed by the largest number of processes. In round r + 1
we keep all the processes accessing the variables {v1, . . . , vw}, and exactly one process for
each variable M(V ′)− {v1, . . . , vw}. Let V ′ be the set of these processes (see Figure 3). We
define αr+1 = α′′r |V ′′ .

For each variable vi ∈ {v1, . . . , vw}, we choose exactly one process p(vi) ∈ V ′′ that
accesses this variable. In round r + 1, we schedule the process p(vi) after all the other
processes accessing vi. Thus, in round r + 1, process p(vi) covers all the other processes
accessing the variable vi, p(vi) becomes visible and is stopped. The rest of the processes
V ′′ − {p(v1), . . . , p(vw)} remain invisible after round r + 1. Below we bound from below the
number of processes that can be kept invisible after this round.

Note that the number of processes that access each variable vi ∈ {v1, . . . , vw} is more
than the average |V ′|

M(V ′) . Therefore, the number of invisible processes is

|V ′′| − w ≥ |V ′|
|M(V ′)| · w + (|M(V ′)| − w)− w = |V ′|

|M(V ′)| · w + |M(V ′)| − 2w .

For simplicity of notation, denote |M(V ′)| = x. Using this notation, the number of processes
that are invisible after round r + 1 is mr+1 ≥ |V

′|
x · w + x− 2w.
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Figure 3 Induction step in the proof of Lemma 5.

Differentiating by x and equating to 0, we get m′r+1(x) = − |V
′|w
x2 + 1 = 0, implying

x =
√
|V ′|w. Therefore, the minimal value of mr+1 is

|V ′|√
|V ′|w

· w +
√
|V ′|w − 2w = 2

√
|V ′|w − 2w .

Substituting |V ′| = mr/3, we get mr+1 ≥ 2
√

mr·w
3 − 2w. J

Different values of w lead to different trade-offs between the total contention and the
number of rounds in the execution. For two extreme values of w, we have lower bounds that
match the upper bounds:

When w = 1, Lemma 5 implies that the number of invisible processes after round r + 1
is mr+1 ≥ 2

√
mr

3 − 2 ≥
√

mr

3 . To prove the lower bound, we need that after r rounds
there are at least two invisible processes, i.e., mr = 2. Solving this recurrence, we get that
m0 = 22r 32r−1 = 62r

3 . That is, the total number of the processes in the system should be
n ≥ m0 ∈ Ω(62r ), or r = O(log logn).

In each round of the execution αr, at most w = 1 processes become visible and stopped,
and two processes remain invisible after αr. The rest of processes are deleted from the
execution. Therefore the total contention in αr is k = r + 2 = Ω(log logn). Thus we have an
execution with contention k ∈ O(log logn), in which a pair of store and collect operations
take at least Ω(k) steps.

When w = |V ′|
2 = mr/6, Lemma 5 implies that the number of invisible processes we

have after round r + 1 is mr+1 ≥ 2
√

mr·w
3 − 2w = 2

√
mr·mr/6

3 − 2 ·mr/6 = mr

3(
√

2+1) . We
need that after r rounds there are at least two invisible processes, i.e., mr = 2. Solving
these recurrences, leads to m0 = 2

(
3
(√

2− 1
))r. Thus, the total number of processes in the

system is n ≥ m0 = 2
(
3
(√

2− 1
))r and hence, r = Θ(logn).

In each round r at most w = mr/6 processes become visible and are stopped. Therefore,
the total contention in the execution αr is k =

∑r
i
mi

6 = 1
6
∑r
i

m0
(3(
√

2+1))i
= Θ(m0) = Θ(n).

Thus we have an execution with contention k ∈ Θ(n), in which a pair of store and collect
operations take at least r = Ω(log k) steps.

Thus, we have the following theorem:

I Theorem 6. Any implementation of one-time collect using (k − 1)-transparent primitives
has an execution of k + 2 processes in which a pair of store and collect operations takes at
least (a) Ω(k) steps, provided k ∈ O(log logn), and (b) Ω(log k) steps, provided k ∈ Θ(n).
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The reduction from collect toM(k)-renaming presented in Section 4.1 requiresO(logM(k))
additional steps. This implies a linear lower bound on the step complexity of adaptive one-
shot renaming with sub-exponential name space M(k) = 2o(k), giving an alternative proof
for the lower bound of Alistarh et al. [5].

I Theorem 7. An adaptive implementation of one-shot M(k)-renaming with sub-exponential
name space M(k) = 2o(k) using (k − 1)-transparent primitives requires at least Ω(k) steps in
an execution with total contention k ∈ O(log logn).

6 Summary and Open Problems

We have shown that unconditional primitives, like fetch&inc, allow snapshot algorithms with
O(log k) step complexity, where k is the total or the point contention. In contrast, when only
conditional primitives, like compare&swap, are used, any snapshot or collect algorithm must
perform Ω(k) steps, in an execution with total contention k ∈ O(log logn).

We also give an adaptive algorithm whose step complexity is in O(min{k, logn}). The
algorithm has a linear step complexity O(k) when contention is low (this is optimal for
(k ∈ O(log logn)), and logarithmic step complexity O(logn) when contention is high (this
is optimal for k ≈ n). An immediate question is to understand the complexity of adaptive
algorithms in the intermediate range, when the contention is in o(logn), but still growing
faster than log logn.

It is interesting to investigate whether non-standard bounded unconditional primitives,
like bounded-fetch&dec, are needed in order to get adaptive algorithm with sublinear step
complexity as a function of point contention. We believe that sublinear algorithms adaptive
to point contention require unconditional primitives that prevent “wrapping around”, like
bounded-fetch&dec.
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A Transparent Primitives

I Claim 8.
(a) the write primitive is (k − 1)-transparent;
(b) the read primitive is k-transparent;
(c) the compare&swap primitive is k-transparent;
(d) the LL/SC prmitives are k-transparent.

Proof. According to definition 3, suppose that after an execution prefix α there is a variable
v such that value(α) = ⊥ and there is a subset P = {p1, . . . , pk} ⊆ invisible(α) whose next
events φ1, . . . , φk contain the same primitive Op on the variable v:

P = {pi|pi ∈ invisible(α) ∧ next_event(pi, α) = 〈pi, v,Op〉}
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(a) Op is a write. Let π = 〈φ1, . . . , φk〉. In events φ1, . . . , φk processes P do not read
any information, therefore processes invisible(α)− P remain invisible also after α ◦ π. All
the write events φ1, . . . , φk−1 are overwritten by the following writes, thus these events are
undetectable, and therefore processes p1, . . . , pk−1 remain invisible also after α ◦ π. (The
only process that becomes visible after α ◦ π is pk that performs the last write event in π.
Since this event overwrites the previous values written to v, it can not be deleted from the
execution undetectably). By definition 3 this implies that write is (k − 1)-transparent.

(a) Op is a read. Define a permutation π = 〈φ1, . . . , φk〉. Since events φi read from an
empty variable v and do not change values of other variables, there is no information flow
between the processes in invisible(α), and therefore all the processes invisible after α remain
invisible also after α ◦ π. According to definition 3 this imply that read is k-transparent.

(c) Op is a compare&swap We define the permutation π of the events φ1, . . . , φk as follows.
As mentioned in the introduction, we assume that no process attempts to write ⊥. First, we
schedule primitives CAS(u,w) where u 6= ⊥. By semantics of CAS these primitives fail and
do not change the value of v. Then we schedule the remaining primitives CAS(⊥, w), where
w 6= ⊥. By atomicity of CAS, only the first of these primitives reads v = ⊥ and succeeds,
while the rest read v = w 6= ⊥ and fail.

Since none of the events π performed by processes P reads any value written previously
by another process, therefore all the processes in invisible(α)−P remain invisible after α ◦ π.
The k − 1 unsuccessful CAS primitives do not change the value of v. Since a successful
CAS (that changes the value of v from ⊥ to w) does not overwrites any value previously
written to v by another process, all the events π by processes P can be removed from the
execution without affecting the rest of the invisible processes invisible(α) − P . Therefore
all, the processes P remain invisible after α ◦ π, implying invisible(α ◦ π) = invisible(α). By
definition 3, CAS is k-transparent.

(d) Op is an LL. Define π = φ1, . . . , φk. All these primitives read ⊥ from v, thus and they
do not get any information written previously by other invisible processes. Therefore all
the processes invisible(α)− P remain invisible also after α ◦ π. Since LL primitives do not
overwrite any value previously written to v by other processes, all the events π by processes
P can be removed from the execution without affecting the steps of other invisible processes.
Therefore, invisible(α ◦ π) = invisible(α). By Definition 3, LL is k-transparent.

Op is an SCl. Let π = φ1, . . . , φk. By the semantics of LL/SC, only the first SC,
corresponding to event φ1 succeeds, and the rest fail. Since SC does not read any value
previously written by another process to v, the processes invisible(α)− P remain invisible
also after α ◦ π. The k − 1 unsuccessful primitives do not change the value of v, and the
single successful
SC(w), w 6= ⊥ does not overwrite any value written previously by another process. Therefore,
all the computational events π can be removed from the execution without affecting the
values of other invisible processes. Thus, all the processes P remain invisible after α ◦ π. By
Definition 3, SC is k-transparent. J
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