
Fault Tolerant Coloring of the Asynchronous Cycle
Pierre Fraigniaud #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Patrick Lambein-Monette1 #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Mikaël Rabie #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract
We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle Cn, where
each crash-prone node starts with its (unique) identifier as input. The algorithm is independent
of n ⩾ 3, and runs in O(log∗ n) rounds in Cn. This round-complexity is optimal thanks to a known
matching lower bound, which applies even to synchronous (failure-free) executions. The range of
colors used by our algorithm, namely { 0, . . . , 4 }, is optimal too, thanks to a known lower bound on
the minimum number of names for which renaming is solvable wait-free in shared-memory systems,
whenever n is a power of a prime. Indeed, our model coincides with the shared-memory model
whenever n = 3, and the minimum number of names for which renaming is possible in 3-process
shared-memory systems is 5.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph coloring; Computer systems organization → Dependable and fault-tolerant
systems and networks; Theory of computation → Models of computation

Keywords and phrases graph coloring, LOCAL model, shared-memory model, immediate snapshot,
renaming, wait-free algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.23

Related Version Full Version: https://arxiv.org/abs/2207.11198

Funding Pierre Fraigniaud: additional support from the project ANR-20-CE48-0006 (ducat).

1 Introduction

1.1 Motivation
Two forms of coloring tasks are at the core of distributed computing. One is vertex-
coloring [8] in the framework of synchronous distributed network computing [29]. The other
is renaming [3] in the framework of asynchronous shared-memory distributed computing [7].
For both tasks, each process starts with its own identifier as input, which is supposed to be
unique in the system, and must compute a color as output. The identifiers are supposed
to be in a large range of values (typically of size poly(n)), while the colors should lie in
a restricted range of values, typically { 0, . . . , k − 1 } for some k ⩾ 1. Depending on the
context, k may be an absolute constant, or may depend on parameters of the system, like the
maximum degree ∆ of the network, or even the total number n of processes. In the context
of network computing, the outputs must properly color the underlying graph of the network,
i.e., any two neighboring nodes must output distinct colors. In the context of shared-memory
computing, each process must output a color that is unique in the system, i.e., different from
the color of any other process.

1 Correponding author

© Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
https://orcid.org/0000-0003-4534-4803
mailto:patrick.lambein@irif.fr
https://orcid.org/0000-0002-9401-8564
mailto:mikael.rabie@irif.fr
https://orcid.org/0000-0001-6782-7625
https://doi.org/10.4230/LIPIcs.DISC.2022.23
https://arxiv.org/abs/2207.11198
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Fault Tolerant Coloring of the Asynchronous Cycle

On the negative side, it is “hard” to color cycles of even size using only two colors in a
distributed manner [26], in the sense that Ω(n) synchronous rounds of communication are
required to solve this problem in the n-node cycle Cn (n even; 2-coloring an odd length cycle
is impossible). A synchronous round consists of (1) an exchange of information between the
two end-points of every edge in the network, and (2) a local computation at every node.
Similarly, renaming the n processes of an asynchronous shared-memory system in a wait-free
manner using a palette with fewer than 2n− 1 names (i.e., k-renaming with k < 2n− 1) is
impossible [6, 14, 24] whenever n is a power of a prime number (n = 6 is the smallest integer
for which this bound does not hold [15]). Wait-free essentially means that each process
terminates in a bounded number of write/read steps, independently of the asynchronous
scheduling of the n− 1 other processes, i.e., independently of the interleaving of read and
write operations in the shared memory.

On the positive side, it is known that 3-coloring the n-node cycle Cn for n ⩾ 3 can
be achieved in 1

2 log∗ n + O(1) synchronous rounds thanks to deterministic coin tossing,
an efficient color-reduction technique due to Cole and Vishkin [17]2. This bound is tight,
as no algorithms can 3-color the n-node cycle in less than 1

2 log∗ n − 1 rounds, thanks to
Linial’s celebrated lower bound [26]. In shared-memory systems, while (2n− 2)-renaming
is impossible wait-free for infinitely many values of n, (2n− 1)-renaming can be achieved
wait-free for all values of n ⩾ 2 [3].

The above results are at the core of two separate lines of intensive research. One line
studies extensions of 3-coloring the synchronous cycle, in particular (∆+1)-coloring arbitrary
networks of maximum degree ∆; see, e.g., [9, 20, 23, 30] for recent contributions in this field.
This line also studies variants of (∆ + 1)-coloring, including, for example, ∆-coloring, edge-
coloring, weak-coloring, defective coloring; see, e.g., [8, 21, 22, 28]. The other line of research
studies variants of renaming (e.g., long-lived [1, 5]), renaming in different shared-memory
or message-passing models (e.g., [2, 16]), and the search for algorithms using fewer names
whenever n is not a power of a prime [4, 15].

1.2 Objective
Our aim is to study coloring tasks in a framework relaxing two strong assumptions made
in the aforementioned contexts. First, it relaxes the “all-to-all assumption” of the shared-
memory model, which enables some form of global communication between the processing
nodes, or processes. Second, our framework relaxes the “synchrony assumption” of the
LOCAL [29] model of network computing, where the processes proceed in lock-step, in the
sense that we allow processes to be fully asynchronous and crash-prone, while we keep reliable
and instantaneous communications (the latter is in contrast with the classic asynchronous
model known as message-passing [19], where, in addition, the delivery of messages is itself
asynchronous). Specifically, we consider a round-based, asynchronous computing model in
the n-node cycle Cn, where each round of a process consists of the following sequence of
operations: (1) writing in its local register, (2) reading the local registers of its two neighbors
in Cn, and (3) updating its local state.

The difference with the standard LOCAL model, in which vertex-coloring is typically
studied, is that the rounds are asynchronous. That is, the scheduler may allow some processes
to perform many rounds while other processes may perform just a few rounds, or even no

2 For every x > 0, let log(0) x := x and, for k ⩾ 0 such that log(k) x > 0, let log(k+1) x := log2(log(k) x);
log∗ x is then defined as the smallest k ⩾ 0 such that log(k) x ⩽ 1.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:3

rounds. Moreover, the operations performed during a round are also asynchronous, e.g., a
process can write, read, and then spend a lot of time idle before changing state. In particular,
the cycle may become disconnected, and processes may become isolated, due to processes
that are very slow, or even crashed (a crash is a full-stop form of failure: a crashed process
stops functioning, and does not recover). As a consequence, information may propagate
poorly in the network due to slow or crashed processes.

The difference between our setting and typical models (e.g., shared memory) used for
studying renaming [7] is that the processes do not share a single array of single-writer/multiple-
reader registers. Instead, only processes sitting on adjacent nodes in Cn can read each-other’s
registers. Thus, instead of having processes perform snapshot operations – i.e., read the
registers of all processes at once – or even immediate snapshots – i.e., write a value and read
everything all at once – each process is restricted to local (immediate) snapshots, i.e., that
only read the registers of its neighbors in the cycle.

We seek to address a few basic questions about this model. Is wait-free proper vertex-
coloring at all possible in Cn? That is, can the n processes of the asynchronous cycle pick
colors distinct from those of their neighbors in a bounded number of computational steps?
If yes, what is the smallest range of colors that make it possible to color the asynchronous
cycle Cn? And what is the smallest number of asynchronous rounds that a process may have
to perform in order to achieve this task?

Note that it is a priori unclear whether wait-free proper vertex-coloring is at all possible in
the asynchronous cycle, even if allowing a large range of colors (but less than the number n of
processes). Indeed, there are very similar problems which are not solvable in this framework.
An example is maximal independent set (MIS). MIS and 3-coloring are reducible one to
another in the cycle under the synchronous failure-free setting [26]; in contrast, MIS is not
solvable wait-free in the asynchronous crash-prone version of the LOCAL model considered in
this paper (Property 1). Indeed, as we detail further down, a wait-free algorithm for MIS could
be simulated in the asynchronous shared-memory model for solving strong symmetry-breaking
wait-free, which was proved impossible in [6].

1.3 Our Results
We describe a wait-free algorithm for proper coloring the n processes of the asynchronous
crash-prone cycle Cn. So, wait-free proper vertex-coloring is possible in Cn, as opposed
to, e.g., MIS. Our algorithm is independent of n ⩾ 3, and each process performs O(log∗ n)
asynchronous rounds in Cn. The round complexity of our algorithm is therefore asymptotically
optimal, thanks to Linial’s lower bound [26], which holds for the executions of our model
that are synchronous and failure-free.

The range of colors used by our algorithm, namely { 0, . . . , 4 }, is optimal too for the
class of all cycles, thanks to the aforementioned minimum number 2n− 1 of names for which
renaming is solvable wait-free in shared-memory systems, whenever n is a power of a prime.
Indeed, in the specific case of the cycle C3, our model coincides with the shared-memory
model with n = 3 processes, which implies that proper coloring C3 with less than five colors
is impossible.

To our knowledge, our algorithm is the first distributed coloring algorithm designed for a
framework combining the following two sources of difficulties: on the one hand, the possibility
of crash failures in a fully asynchronous setting, and, on the other hand, a network limiting
direct communications between processes.

Our Technique. Our main algorithm, given in Algorithm 3, has two components.

DISC 2022

23:4 Fault Tolerant Coloring of the Asynchronous Cycle

The first component of Algorithm 3 is introduced standalone in Algorithm 2. It bears
some resemblance to the rank-based (2n− 1)-renaming algorithm (see [7, Algorithm 55], and
[3, Step 4 in Algorithm A]). It is a wait-free 5-coloring algorithm for Cn, i.e., in each of its
executions over a cycle of length n ⩾ 3, the processes that perform enough computational
steps output a color in the set { 0, . . . , 4 }, and no two neighboring processes output the same
color. However, Algorithm 2 is slow, in the sense that its running time may be as large as
the longest sub-path of the cycle along which process identifiers are increasing, which can be
as large as Θ(n).

The second component of Algorithm 3 uses and modifies the identifiers, in parallel to the
first component. This quickly shortens such increasing sub-paths, until their length less than
some constant L ⩽ 10, in a manner directly inspired from Cole and Vishkin’s method [17].
Each process starts with its input identifiers, and successively tries to adopt new ones taken
from increasingly smaller ranges of identifiers, by performing O(log∗ n) identifier-reductions.
As this reduction process goes on, the identifiers might not remain unique in the cycle, but
we ensure that they nonetheless maintain a proper coloring, i.e., adjacent processes always
hold distinct identifiers. This invariant is difficult to enforce in an asynchronous environment,
and we resort to a synchronization mechanism by which a process awaits a “green light”
from both of its neighbors each time it seeks to change its identifier.

The second component of our algorithm is thus not wait-free by itself, since processes
are constantly waiting for “green lights” from their neighbors. However, it offers starvation
free progress [25]: termination is guaranteed whenever all processes perform infinitely many
computational steps. Our core result is that the interaction between the two components,
i.e., between the (wait-free) first component and the (starvation-free) second component,
remains itself wait-free, and has a running time O(log∗ n).

We can decompose the description of the first component further, into a starvation-free
subcomponent that looks for a color ap for every process p, which does not collide with the
colors of the neighbors of p with greater identifiers, and in another subcomponent that looks
for a (potentially different) color bp for process p, which doesn’t collide with the colors of any
of p’s neighbors. The latter subcomponent offers obstruction-free progress [25]: termination
is guaranteed whenever processes are scheduled to take multiple consecutive steps alone. As
obstruction-free progress and starvation-free progress are both strictly weaker than wait-free
progress, it is of independent interest that we are able to bootstrap a wait-free algorithm
from subcomponents that aren’t themselves wait-free.

1.4 Related Work
The closest recent contributions related to the current work are [13], and the follow-up
work [18], which consider a related model, albeit a distinct one. The former provides a
distributed algorithm for 3-coloring the ring, while the latter provides a distributed algorithm
for (∆+1)-coloring graphs with maximum degree ∆. The two papers assume n asynchronous
crash-prone processes occupying the n nodes of a reliable and synchronous network. That is,
the communications remain synchronous, and a message emitted by a node u at round r

reaches all nodes at distance d from u at round r + d. Moreover, no messages are lost, in
the sense that a late-waking process will find all messages that passed through the node it
occupies. Because it “decouples” the computing layer from the communication layer, this
model is called DECOUPLED in [13].

The DECOUPLED model is stronger than the fully asynchronous model considered in
this paper. In fact, [18] shows that, for every task (e.g., vertex-coloring, edge-coloring,
maximal independent set, etc.), if there exists an algorithm for solving that task in the

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:5

LOCAL model in t = O(polylog n) rounds, then there exists an algorithm for solving the
task in the DECOUPLED model in O(t)-round. In contrast, some tasks that are trivial in the
LOCAL and the DECOUPLED model become impossible in our fully asynchronous model,
like 3-coloring C3 (Property 3), or computing a maximal independent set (Property 1).

The model considered in this paper bears similarities with some models used in the
context of self-stabilization. Many papers (see, e.g., [9, 10, 11, 12]) have addressed the design
of self-stabilizing algorithms for 3-coloring the cycles, or for (∆ + 1)-coloring graphs with
maximum degree ∆. Self-stabilization assumes that the processes start in an arbitrarily bad
state (all variables can be corrupted). The objective is to design algorithms which, starting
from an arbitrary initial configuration, eventually compute a legal configuration (e.g., a
configuration in which the colors assigned to the nodes form a proper coloring) whenever no
failures occur during a sufficiently long period. In contrast, we assume an initial configuration
in which variables are correctly set. However, we do not assume that the system will be
failure-free during the execution of the algorithm, and the presence of crash-failures should
not prevent the correct processing nodes from computing a solution. While 3-coloring the
cycle Cn is possible in a self-stabilizing manner for all n ⩾ 3, k-coloring C3 is impossible in
our fully asynchronous model for k < 5 (Property 3).

2 Model and Observations

In this section, we first describe an asynchronous variant of the (synchronous) LOCAL
model, which we will call the partial immediate snapshot model for reasons that will soon
become apparent. The model can be viewed as a sort of asynchronous message-passing on a
graph with a local broadcast communication primitive and instantaneous message delivery.
Equivalently, it can be viewed as a shared-memory system where access to the shared memory
is mediated by a graph; we adopt the latter approach in our description. We define what is
a round in this model, what is the round complexity of an algorithm, what it means to be
wait-free, and then we provide lower bounds on the round-complexity and on the range of
colors for the problem of wait-free vertex-coloring the cycle.

2.1 Operational Model
The model is described for the cycle, but it can directly be extended to any network.
Specifically, we consider asynchronous wait-free computing in the n-node cycle Cn, where
the processes attached to each node exchange information between neighbors using single-
writer/multiple-reader registers. Each process is a deterministic (infinite) state machine. All
n processes are initially asleep; they may wake up at any time, and not all processes need to
wake up, or to take enough steps to terminate correctly (i.e., processes are prone to fail-stop
faults). Awakened processes proceed asynchronously, each with the objective of computing
a color in { 0, . . . , 4 }. We focus on wait-free tasks, i.e., where a process that takes enough
steps is guaranteed to terminate, regardless of the scheduling of the other processes, so as
to prevent deadlocks resulting from a process waiting for an event which will never occur
because another process has crashed.

Just like for the standard coloring and renaming tasks, the only input given to a process p

is its identifier Xp, which is an integer in the range [0, poly(n)] that is unique in the system.
We do not assume that the processes are aware of the length n of the cycle, nor even of an
upper bound on n. Every process proceeds with a sequence of exchanges of information with
its neighbors until some condition is satisfied by its local state, at which point it terminates
and outputs a color obtained by applying some function to this local state.

DISC 2022

23:6 Fault Tolerant Coloring of the Asynchronous Cycle

Immediate snapshots. Let us first recall how communication works using a standard
immediate snapshot communication primitive. In this model, the n processes p1, . . . , pn

communicate through n single-writer/multiple-readers registers R1, . . . , Rn, initialized with
an initial value ⊥. Every process can read all registers, but each process pi is the single writer
in register Ri, i ∈ { 1, . . . , n }. Each process pi goes through a (possibly infinite) sequence of
write-read-update steps, where in each step it: (1) writes a value in register Ri, (2) reads the
content of all registers, and (3) performs a private computation. Taken together, these three
steps constitute an asynchronous round of process pi.

Each of the rounds is instantaneous, but the time elapsed between two of pi’s rounds may
be arbitrarily long. For example, process pi may perform many rounds while pj performs
none, in which case pi will read the same value in register Rj every time, possibly ⊥ if pj

hasn’t awakened yet. Conversely, in-between two consecutive rounds of pi’s, there may be
faster processes that performed many writes in their registers.

The value read by a process in a register Rj is the one written by pj in its most recent
round. Multiple processes may perform a round at the same time. In this case, the system
behaves as if each of these processes first wrote a value in its own register, then all processes
read all registers, and, finally, they all performed their private computation. Note that
distinct processes may be at distinct rounds of their execution. For example, one process
may be just starting, i.e., in its first round, while another may already have been running for
some time, and so be at a later round.

Local immediate shapshots. Our model simply adds a graph to the above, which mediates
which registers a process is able to read. For example, in the cycle, a process only reads
three registers: its own register, and the register of each of its two neighbors. We do not
assume a coherent notion of left and right, i.e., each node assigns an arbitrary order to the
registers of its neighbors.

In this paper, we do not assume that the registers are bounded. Nevertheless, our
algorithms only manipulate a constant number of variables using O(log n) bits each.

2.2 Schedules and complexity
In our model, an execution is entirely characterized by the code of each process, the graph
(here, the cycle Cn), the input identifiers of each process, as well as the activation patterns of
each process. The latter is captured by the collection of n increasing sequences t

(1)
p , t

(2)
p , . . . of

positive integers, one for each process p ∈ [n], where t
(i)
p denotes the time in which process p

performs its i-th round.
As multiple processes may be performing rounds simultaneously, let us introduce, for t ⩾ 1,

the set σ(t) of activated processes at time t. We set: p ∈ σ(t) ⇐⇒ ∃i ⩾ 1 : t
(i)
p = t.

The schedule of an execution is the infinite sequence σ = σ(1), σ(2), . . . An execution of
a given algorithm on the cycle Cn is thus determined by the schedule σ and the input
identifiers (Xp)p∈[n].

We will say that a process p ∈ σ(t) is working if the stopping condition of p has not been
fulfilled before time t. This leads us to define, for any schedule σ, the restricted schedule σ

of working processes:

σ(t) := { p ∈ σ(t) | p has not fulfilled the stopping condition at time ⩽ t− 1 }.

An execution terminates if there exists some time t∗ such that σ(t) = ∅ for all subsequent
times t ⩾ t∗, i.e., if eventually all processes stop working. Note that a process stops working
according to two possible scenarios: it may have been activated sufficiently many times for

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:7

allowing it to fulfill the stopping condition, or it was not activated after some time t, before
it fulfilled the stopping condition. The latter scenario models the crash of a process (at
time t, or earlier in the execution). The round complexity of a terminating execution is then
defined as

max{ i ∈ N | ∃p ∈ [n] : p ∈ σ(t(i)
p) }.

The running time of an algorithm over the cycle Cn is then the supremum of the round
complexity for all possible executions, i.e., all possible identifier assignments and schedules.
Informally, the running time corresponds to the maximal number of times a process can be
activated before it is guaranteed to terminate. An algorithm is then wait-free if its running
time is finite.

2.3 Lower Bounds and Impossibility Results
We complete this section by a couple of observations on the round complexity, and on the
range of colors used by wait-free vertex-coloring algorithms for the cycle. Before that, we
formalize the fact that, as claimed in the introduction, the maximal independent set (MIS)
problem cannot be solved in the asynchronous cycle. Solving the MIS problem requires that,
at the end of every execution, (1) every node that terminates and outputs 0 is neighbor
of at least one node that terminates and output 1, and (2) no two neighboring nodes that
terminate output 1.

▶ Property 1. For every n ⩾ 3, MIS in the n-node cycle Cn, cannot be solved wait-free in
our model.

Proof. The proof is by reduction from the strong symmetry-breaking (SSB) problem, which
cannot be solved wait-free in the asynchronous shared-memory model (see [6, Theorem 11]).
We show that if there were an algorithm solving MIS in the n-node cycle, then there would
exist an algorithm for SSB in the n-node shared-memory system. Recall that SSB requires
that (1) if all processes terminate, then at least one processes outputs 0, and at least one
process outputs 1, and (2) in every execution, at least one process outputs 1. By way of
contradiction, let A be an algorithm solving MIS in Cn. The n processes of shared-memory
system can simulate the algorithm A as follows. Process pi, i = 0, . . . , n− 1, simulates the
execution of the algorithm A at the node of Cn with identifier i, and with neighbors the
nodes with identifiers i± 1 mod n, which are simulated by processes pi±1 mod n, respectively.
Since the algorithm A solves MIS, it guarantees that, if all processes terminate, then at least
one outputs 0, and at least one outputs 1. Moreover, in every execution of the algorithm A, a
node that terminates and is isolated (none of its neighbors terminated) must output 1, and a
node that terminates and has a neighbor that terminates is such that either itself outputs 1,
or at least one of its neighbors outputs 1. This guarantees that, in every execution, at least
one process output 1. The two conditions for solving SSB are therefore fulfilled by simulating
the algorithm A, and thus A cannot exist. ◀

We now show that the round-complexity of our vertex-coloring algorithm is optimal.

▶ Property 2. For every k ⩾ 2, the round-complexity of any wait-free algorithm for k-coloring
the vertices of the n-node cycles Cn, n ⩾ 3, requires Ω(log∗ n) rounds in the state model.

Proof. This directly follows from [26], which proved that, in synchronous and failure-free
executions, i.e., σ(t) = { 1, . . . , n } for all t ⩾ 1, k-coloring the vertices of the n-node cycles Cn,
requires Ω(log∗ n) rounds. ◀

DISC 2022

23:8 Fault Tolerant Coloring of the Asynchronous Cycle

Finally, we show that the range of colors used by our algorithm is optimal.

▶ Property 3. If a wait-free algorithm k-colors all asynchronous cycles C = {Cn | n ⩾ 3 },
then k ⩾ 5.

Proof. The partial shared-memory model in the cycle coincides with the standard shared-
memory model when n = 3, since the cycle C3 is complete. The result thus directly follows
from the impossibility for n = 3 asynchronous processes to solve renaming wait-free using
fewer than five names in an immediate snapshot shared-memory model [6, 14]. ◀

Note that Property 3 leaves open the possibility that, for specific values of n, fewer colors
could be used to color the cycle Cn wait-free, the same way the lower bound 2n− 1 on the
number of names for renaming only holds when n is a power of a prime. However, a generic
algorithm capable of proper coloring every cycle Cn, for all n ⩾ 3, must use at least 5 colors,
as our algorithm does. Nevertheless, the shared-memory model with immediate snapshots
does not coincide with our model when n > 3, and thus it may well be the case that fewer
than 5 colors could be used for some specific values of n > 3, although we conjecture that
this is not the case.

3 Asynchronously coloring the cycle in linear time

Here we develop asynchronous coloring algorithms, and show that a) they guarantee wait-
free progress – i.e., a process will terminate in all executions, provided that it is activated
sufficiently many times – and b) they are correct – i.e., the graph induced by the terminating
processes is properly colored by the output colors of these processes. These algorithms have
a poor runtime complexity of O(n) steps when compared to state-of-the-art algorithms in
the LOCAL model, which terminate in O(log∗ n) synchronous rounds. We will achieve a
similar runtime complexity in the next section by augmenting our wait-free algorithms with
a mechanism that speeds up termination.

We first present an algorithm that uses a 6-color palette. Although it uses one extra color
when compared to the theoretical minimum of 5 colors required to color the cycle C3, this
allows us to illustrate some of our main algorithmic ingredients. We then present another
wait-free algorithm that colors any cycle using a 5-color palette. Some of the longer proofs of
this section can be found in Appendix B.

3.1 Warm-up: using a palette of 6 colors
In Algorithm 1, we present a simple algorithm for wait-free coloring any cycle Cn (n ⩾ 3),
using the six colors in the set { (a, b) ∈ N×N |a+b ⩽ 2 }. Given a process p, we denote by Xp

its identifier, and by q and q′ its two neighboring process in the cycle. We denote by u ∼ v

the fact that processes u and v are neighbors in Cn. A process p, with neighbors q and q′,
is said to be locally extremal (with respect to the identifiers) if either Xp > max{Xq, Xq′ }
or Xp < min{Xq, Xq′ }.

Intuitively, Algorithm 1 guarantees that locally extremal processes quickly terminate,
by sticking to one of the two components ap or bp of their color cp = (ap, bp) (Lemma 7).
Termination then propagates throughout the cycle, due to the wait-free nature of the algorithm
(Lemmas 6 and 7). Given an initial coloring of Cn provided by the nodes’ identifiers, we will
show that the worst-case convergence time of a process is determined by its distance to its
nearest local extrema, which is bounded by O(min{n, maxp Xp −minq Xq }), which yields a
linear convergence time.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:9

Algorithm 1 6-coloring algorithm, code for process p with neighbors q and q′.

1 Input : Xp ∈ N

2 Initially:
3 cp = (ap, bp)← (0, 0) ∈ N× N

4 Forever:
5 write(Xp, cp) and read((Xq, cq), (Xq′ , cq′)) ▷ local immediate snapshot
6 if cp /∈ { cq, cq′ } then return(cp)
7 else
8 ap ← minN∖ { au | (u ∼ p) ∧ (Xu > Xp) }
9 bp ← minN∖ { bu | (u ∼ p) ∧ (Xu < Xp) }

▶ Theorem 4. In any execution of Algorithm 1 over the cycle Cn with a proper coloring
provided by the values (Xp)p∈[n] given to the processes as input, we have:
Termination: every process terminates after having been activated at most ⌊3n/2⌋+ 4 times;
6-color palette: every process that terminates outputs a color in the set { (a, b) | a + b ⩽ 2 };
Correctness: the outputs properly color the graph induced by the terminating processes in Cn.

The rest of the subsection is dedicated to the proof of Theorem 4. Recall that, in a
schedule σ, a process p ∈ σ(t) is working in t if it has not returned before t. Once a working
process returns, it no longer partakes in the execution.

Notation. We will adopt the following notation for all algorithms throughout the paper. If
xp is a variable used by process p, we use xp(t) to denote the value of xp in p’s memory, at
the end of time t, and we use x̂p(t) to denote the value of xp visible to p’s neighbors at the
end of time t. Let xp(0) be given by the initialization of the algorithm, and let x̂p(0) = ⊥.
By definition, we have

x̂p(t) =
{

xp(t− 1) p ∈ σ(t)
x̂p(t− 1) p /∈ σ(t)

(1)

▶ Lemma 5. Let t ⩾ 0, and let p ∈ σ(t). We have cp(t) /∈ { ĉq(t) | q ∼ p }, and process p

returns at time t if and only if cp(t) = cp(t− 1).

Proof. Process p does not update cp when it returns, and so cp(t) = cp(t− 1) whenever p

returns at time t. Let us then assume that p ∈ σ(t) does not return at time t, and let q

be one of p’s neighbors. If q has not yet been activated then ĉq(t) = ⊥ ≠ ĉp(t). If q has
been already activated then, since the inputs form an initial proper coloring, we either
have Xp > Xq or Xp < Xq. In the former case, we have ap(t) ̸= âq(t), and in the latter
case, we have bp(t) ̸= b̂q(t). Either way, we have cp(t) ̸= ĉq(t), and so cp(t) ̸= cp(t − 1),
since cp(t− 1) = ĉp(t) ∈ { ĉq(t), ĉq′(t) } ◀

Lemma 5 provides us with an effective characterization of σ: for every t ⩾ 0 and
every p ∈ [n],

p ∈ σ(t) ⇐⇒ ∀t′ < t :
(
p ∈ σ(t′) =⇒ cp(t′) ̸= cp(t′ − 1)

)
. (2)

The next lemma formalize the intuition that a process terminates fast, unless the execution
is “very interleaved”.

DISC 2022

23:10 Fault Tolerant Coloring of the Asynchronous Cycle

▶ Lemma 6. Let p be a process that is working at times t1 and t2 > t1, but is not activated
at any time t ∈ [t1 + 1, t2]. If neither of p’s neighbors is working in the time interval (t1, t2),
then process p returns at time t2.

Proof. The result directly follows from Lemma 5, using the fact that cp(t1) /∈ { ĉq(t1) | q ∼ p }
and ĉp(t2) = cp(t1). ◀

As the next lemma shows, a process cannot be prevented from returning by only one of
its neighbors.

▶ Lemma 7. Let process p be activated at times t1 < t2 < t3 < t4, but not at any other time
t ∈ (t1, t4). If ap(t1) = ap(t2) = ap(t3) = ap(t4), and Xp is not a local minimum, then p

returns at time at most t4. The same holds if bp(t1) = bp(t2) = bp(t3) = bp(t4) and Xp is not
a local maximum.

Note that, even though Xp(t) remains constant throughout the execution, the public
value X̂p(t) doesn’t, as initially its value is ⊥. To analyze executions of Algorithm 1, let us
introduce the sets

N+
p (t) := { q ∼ p | X̂q(t) > X̂p(t) } and N−

p (t) := { q ∼ p | X̂q(t) < X̂p(t) }.

We furthermore define the sets

Ap(t) :=


⋃

q∈N+
p (t)

(
Âq(t) ∪ { X̂q(t) }

)
p ∈ σ(t)

Ap(t− 1) p /∈ σ(t)
(3)

and

Bp(t) :=


⋃

q∈N−
p (t)

(
B̂q(t) ∪ { X̂q(t) }

)
p ∈ σ(t)

Bp(t− 1) p /∈ σ(t)
(4)

where Ap(0) = Bp(0) = ∅, and where the sets Âp(t), B̂p(t) are defined according to Equa-
tion (1). The set Ap(t) contains all processes that p has heard of at time t, and that are
linked to p through a subpath of Cn where process identifiers are increasing. Symmetrically,
the set Bp(t) contains processes that p has heard of, and that are linked to p through a
subpath where identifiers are decreasing.

▶ Lemma 8. Let t ∈ N, and let p ∈ [n] be a process. For every x ∈ Ap(t), we have X̂p(t) < x,
and, for every x ∈ Bp(t), we have X̂p(t) > x.

▶ Remark 9. This will be used in the next section, where we present a procedure for speeding
up Algorithm 2 by reducing the space of colors initially provided to the nodes thanks to their
identifiers. On the other hand, the claim X̂p(t) > max Bp(t) doesn’t generalize under the
same weaker condition.

In the case where Xp does not change, we can notice that Ap(t) and Bp(t) are increasing,
inclusion-wise, with time. Moreover, the elements of Ap(t) correspond to increasing identi-
fiers Xq following a path from p (decreasing in the case of Bp(t)). Hence, |Ap(t)| has a size
bounded by the length of the longest path of increasing identifiers from p.

If a process p ∈ σ(t) fails to return in time t, the sets Ap(t) and Bp(t) help us compute
its next color cp(t).

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:11

▶ Lemma 10. For any time t ⩾ 1, if a process p ∈ σ(t) fails to return at time t, then:
1. if

∣∣N+
p (t)

∣∣ ⩽ 1, then ap(t) ≡ |Ap(t)| mod 2;
2. if

∣∣N−
p (t)

∣∣ ⩽ 1, then bp(t) ≡ |Bp(t)| mod 2.

As a direct consequence of Lemma 10, we get the following.

▶ Lemma 11. Let t ⩾ 0, and let p ∈ [n] be non-extremal a process. If p ∈ σ(t), but p fails to
return at time t, then we have Ap(t) ̸= Ap(t− 1) or Bp(t) ̸= Bp(t− 1).

Proof. Using Lemma 10, if Ap(t) = Ap(t− 1) and Bp(t) = Bp(t− 1) then cp(t) = cp(t− 1),
and so by Lemma 5 process p returns, a contradiction. ◀

This leads us to the following complexity bound for processes that are not local extrema.
It relies on the distance of a process to its closest local extrema along monotone paths. Let
qi, i = 0, . . . , k + 1, be a set of distinct processes, excepted possibly qk+1 = q0. Let us assume
that these processes form a subpath of Cn, or possibly the entire cycle Cn if qk+1 = q0. That
is, q0 ∼ q1 ∼ q2 · · · ∼ qk ∼ qk+1. Let us assume that Xq0 < Xq1 and Xqk

< Xqk+1 , but
Xq1 > Xq2 > · · · > Xqk

, i.e., process q1 is locally maximal, process qk is locally maximal, and
for i ∈ { 1, . . . , k }, process qi is at monotone distance i− 1 from its closest local maximum
q1, and at monotone distance k − i from its closest local minimum qk.

▶ Lemma 12. Let p ∈ [n] be a non-extremal process, and let ℓ and ℓ′ be the monotone distances
from p to its closest extremal processes. Process p returns after at most min{ 3ℓ, 3ℓ′, ℓ+ℓ′ }+4
activations.

Proof. We know from Remark 9 that Ap(t) is increasing with time, and that its size is
bounded by ℓ. Thanks to Lemma 10, we have that ap(t) is determined by the size of Ap(t).
It follows that ap(t) changes at most ℓ + 1 times. Symmetrically, bp(t) changes at most ℓ′

times. By Lemma 7, we get that a process p cannot be activated more than 3 times while
keeping the same value for ap(t). It follows that process p can be activated at most 3ℓ + 4
times before it returns. Symmetrically, p can be activated at most 3ℓ′ + 4 times before it
returns. Finally, from Lemma 11, we get that p can be activated at most ℓ + ℓ′ + 1 times
before it returns. ◀

This last results allows us to conclude.

Proof of Theorem 4. As a direct corollary of Lemma 7, that local extrema return after
at most 4 steps: a maximum will maintain a(t) = 0, and a minimum, b(t) = 0. For the
other nodes, Lemma 12 gives us the complexity, knowing that min{ ℓ, ℓ′ } is bounded by
⌊3n/2⌋. ◀

▶ Remark 13. Lemma 12 states that the complexity of Algorithm 1 is linear in the length
of the longest chain of processes p1 ∼ p2 ∼ · · · that is monotone for the identifiers, i.e.,
Xp1 > Xp2 > · · ·. Throughout this section, we have assumed that the processes start with
their identifiers as input, and that each identifier is unique in the network, i.e., Xp ̸= Xq

whenever p ̸= q. Note however that Theorem 4 only requires that identifiers form a proper
coloring, i.e., Xp ≠ Xq whenever p ∼ q. In this case, the length of a monotone chain is
bounded by the number of initial colors, and so is the convergence of Algorithm 1. In the
Section 4, we exploit this property to dramatically accelerate our algorithms by dynamically
adjusting the “identifiers” Xp themselves, using a modification of Cole and Vishkin’s classic
algorithm [17], initially designed for the PRAM model, but easily adapted to the LOCAL
model. As we shall see, its adaptation to the asynchronous setting is more subtle.

DISC 2022

23:12 Fault Tolerant Coloring of the Asynchronous Cycle

3.2 Saving one color: wait-free 5-coloring the cycle
Here we present, in Algorithm 2, another wait-free coloring algorithm for the cycle, which
only uses a palette of five colors. As already noted, when the graph is a clique, asynchronous
coloring is identical to the renaming problem using an immediate snapshot communication
primitive, which implies that asynchronously coloring the cycle C3 requires at least a five-
colors palette. Our algorithm is thus optimal in terms of colors for the class C = {Cn | n ⩾ 3 }
of all cycles.

Algorithm 2 5-coloring algorithm, code for process p with neighbors q and q′.

1 Input : Xp ∈ N

2 Initially:
3 ap, bp ← 0 ∈ N

4 Forever:
5 write(Xp, ap, bp) and read((Xq, aq, bq), (Xq′ , aq′ , bq′)) ▷ local imm. snap.
6 P + ← {u ∈ { q, q′ } |Xu > Xp }
7 C+ ← { au | u ∈ P + } ∪ { bu | u ∈ P + }
8 C ← { aq, bq, aq′ , bq′ }
9 if ap /∈ C then return(ap)

10 else if bp /∈ C then return(bp)
11 else
12 ap ← minN∖ C+

13 bp ← minN∖ C

▶ Theorem 14. In any execution of Algorithm 2 over the cycle Cn with a proper coloring
provided by the values (Xp)p∈[n] given to the processes as input, we have:
Termination: every process terminates after having been activated at most O(n) times;
5-color palette: every process that terminates outputs a color in the set { 0, . . . , 4 };
Correctness: the outputs properly color the graph induced by the terminating processes in Cn.

From the algorithm, we immediately deduce the following characterization of when a
process returns a value.

▶ Lemma 15. Let t ⩾ 1, and let p ∈ σ(t) be a process with neighbors q and q′. Let
C := { âq(t), b̂q(t), âq′(t), b̂q′(t) }. We have bp(t) /∈ C, and process p returns at time t if and
only if ap(t− 1) /∈ C or bp(t− 1) /∈ C.

Note that, as a consequence of the previous lemma, bp(t) ̸= bp(t − 1) unless p ∈ σ(t)
returns at time t, and so Lemma 6 continues to hold for Algorithm 2.

Defining the sets Ap(t) as we did for Algorithm 1, we get the following sufficient condition
for a process to terminate.

▶ Lemma 16. Suppose that process p ∈ [n] is not a local minimum for the identifiers. If p is
activated at times t1 < t2 < t3 < t4, and Ap(t1) = Ap(t2) = Ap(t3) = Ap(t4), then p returns
at time at most t4.

▶ Lemma 17. Let p ∈ [n] be a process that is not a local minimum for the identifiers, and
let ℓ denote the monotone distance from p to the closest maximal process. Process p returns
after at most 3 ℓ + 4 activations.

Proof. This is a direct consequence of the previous lemma: for p to keep working, its set Ap(t)
must increase at least every 4 activations. The claim follows. ◀

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:13

Proof of Theorem 14. Thanks to Lemma 17, processes that are not local minima return
after a number of steps that is at most ⌊3n/2⌋+ 4. Local minima terminate at most one
step after their two neighbors have terminated, i.e., in at most 3n + 8 rounds. The proper
coloring is an immediate consequence of Lemma 15. ◀

4 From Linear Time to Almost Constant Time

Here, we augment Algorithm 2 with a mechanism designed to reduce Xp, initially set to the
identifier of the process. As the identifiers3 will now be evolving through time, we will say that
a process p, with neighbors q, q′, is a local extremum at time t ⩾ 1 if X̂p(t) > X̂q(t), X̂q′(t).
The resulting algorithm, displayed as Algorithm 3, 5-colors the cycle Cn in O(log∗ n) steps.
Some of the longer proofs of this section can be found in Appendix B.

The intuition for Algorithm 3 is as follows. Every process p essentially runs Algorithm 2
unchanged, and stops whenever this algorithm terminates. However, in parallel, every
process p updates its identifier Xp, initially equal to the identifier of p, à la Cole and Vishkin
using a reduction function f defined hereafter. This helps to shorten long monotone chains
of identifiers down to a constant length, speeding up the convergence of Algorithm 2. This
addition to the algorithm is blocking, as, to maintain a proper coloring of the identifiers Xp

(which is crucial for the wait-free coloration algorithm), every process p must wait for the
approval of both its neighbors each time p wants to update its identifier, through the use
of a local counter rp which tracks the number of times process p tried to pick a smaller
identifier. If all processes advance “almost synchronously”, then they quickly (in O(log∗ n)
steps) reach a stage where the remaining monotone chains of identifiers are all shorter than
a constant L ⩽ 10. From then on, the algorithm behaves as Algorithm 2, and all processes
terminate in O(L) steps, that is, in constant time. The crux of the proof is therefore to
show that slow processes cannot delay the convergence of fast processes too much. Indeed, a
slow process may delay other processes, but if it blocks them during too many iterations
(with respect to the reduction of the identifiers Xp), then the system starts behaving as
Algorithm 2, and neighboring processes actually quickly terminate. On the other hand, if
a process is only “moderately slow”, and allows its neighbors to make some progress on
the reduction of their identifiers Xp, then other processes use this property for breaking
symmetry, and they stop waiting for the slow process.

4.1 Reducing identifiers with deterministic coin-tossing
The considerable speedup achieved in comparison to Algorithm 2 relies on an identifier-
reduction function f : N×N→ N, adapted from Cole and Vishkin’s algorithm [17], defined as
follows. For any natural number Z, we denote its binary decomposition by Z =

∑
k∈N Zk2k,

and its length by |Z| := ⌈log2(Z + 1)⌉. Given two natural numbers X and Y , we then set

f(X, Y) = 2i + Xi where i := min{ |X|, |Y | } ∪ { k ∈ N |Xk ̸= Yk } (5)

As f(x, y) ⩽ 2|x| + 1 = O(log(x)), one reaches a constant fixed point after O(log∗ n)
iterate calls to f , which gives the following. Recall that, for k ∈ N, the k-th iterate of a
function F : A→ A is recursively defined as F (0)(x) = x and, for k ⩾ 1, F (k) = F ◦ F (k−1).

3 For simplicity, we continue to refer to Xp(t) as process p’s “identifier”, even though it is now possible
that Xq(t) = Xp(t) for some other process q ≁ p.

DISC 2022

23:14 Fault Tolerant Coloring of the Asynchronous Cycle

▶ Lemma 18. Let F : [1, +∞) → [1, +∞) be the function x 7→ F (x) = 2⌈log(x + 1)⌉ + 1.
There exists α > 0 such that, for every x ⩾ 1, there exists t ⩽ α log∗ x such that F (t)(x) < 10.

▶ Lemma 19. Let x, y ∈ N. If x > y ⩾ 10, then f(x, y) < y.

Proof. Let ℓ = |y|. By assumption, we have ℓ ⩾ 4. If ℓ = 4, then f(x, y) ⩽ 2ℓ + 1 = 9 < y.
If ℓ ⩾ 5, then we have y ⩾ 2ℓ−1, and so y − f(x, y) ⩾ 2ℓ−1 − 2ℓ − 1 > 0, where the last
inequality is because 2z > 4z + 2 whenever z ⩾ 5. ◀

The proper coloring maintained by the function f relies on the following Cole and
Vishkin-like property.

▶ Lemma 20. Let x, y, z ∈ N. If x > y > z, then f(x, y) ̸= f(y, z).

Proof. Let f(x, y) = 2i∗ + xi∗ . For all i < i∗, xi = yi, and if i∗ < |y| then xi ̸= yi. Suppose
that f(y, z) = f(x, y). Then yi∗ = xi∗ , and by the above i∗ ⩾ |y| ⩾ |z|. In this case, yi = zi

for all i < |y|, and thus y = z, contradicting our assumption y > z. ◀

4.2 5-coloring the cycle in near-constant time

Algorithm 3 Fast 5-coloring algorithm, code for process p with neighbors q and q′.

1 Input : Xp ∈ N

2 Initially:
3 ap, bp, rp ← 0 ∈ N

4 Forever:
5 write(Xp, rp, ap, bp) and read((Xq, rq, aq, bq), (Xq′ , rq′ , aq′ , bq′))
6 if ap /∈ { aq, bq, aq′ , bq′ } then return(ap)
7 else if bp /∈ { aq, bq, aq′ , bq′ } then return(bp)
8 else
9 ap ← minN∖ { au, bu | (u ∼ p) ∧ (Xu > Xp) }

10 bp ← minN∖ { aq, bq, aq′ , bq′ }
11 if (rp <∞) ∧ (rp ⩽ min{ rq, rq′ }) then
12 if min{Xq, Xq′ } < Xp < max{Xq, Xq′ } then
13 rp ← rp + 1
14 Y ← f(Xp, min{Xq, Xq′ }) ▷ f given in Equation (5)
15 if Y < min{Xq, Xq′ } then Xp ← Y

16 else
17 rp ←∞
18 if Xp < min{Xq, Xq′ } then
19 Xp ← min{Xp, min(N∖ { f(Xq, Xp), f(Xq′ , Xp) }) }

▶ Theorem 21. In any execution of Algorithm 3 over the cycle Cn with a proper coloring
provided by the values (Xp)p∈[n] given to the processes as input:
Termination: every process terminates after having been activated at most O(log∗ n) times;
5-color palette: every process that terminates outputs a color in the set { 0, . . . , 4 };
Correctness: the outputs properly color the graph induced by the terminating processes in Cn.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:15

A crucial ingredient in the proof of correctness is to establish that the coloring provided
by the evolving values of the local variables Xp, p ∈ [n], is always proper throughout any
execution.

▶ Lemma 22. Let p, q ∈ [n] be neighboring processes. For every t ∈ N, if X̂p(t) ̸= ⊥ then
X̂p(t) ̸= X̂q(t).

When discussing executions of Algorithm 3, we say that a process p is blocked at time t

if p has not yet returned at time t and rp(t) = r̂p(t) <∞. Since the value of Xp changes only
if rp increases, we have Xp(t) = X̂p(t) whenever process p is blocked at time t. A process p

that is not blocked at time t, will write a new value for r̂p(t) at its next activation. Moreover,
p writes a new value for X̂p(t) as well, unless p satisfies specific properties: Xp is a local
maximum, Xp is a local minimum, or p has a neighbor q with X̂q < 10. Note that, before its
first activation, every process p is unblocked, as rp(0) = 0 ̸= r̂p(0) = ⊥.

Every process that takes sufficiently many non-blocked steps, namely Ω(log∗ n) steps,
quickly reduces its identifier Xp until either Xp, or the identifier Xq of one of its neighbors q

becomes smaller than 10. At this stage of the execution, monotone chains of identifiers will
cease to evolve after an additional constant number of steps. Once the monotone chains of
identifiers cease to evolve, the analysis developed in the previous section shows that processes
terminate in a number of steps that is not larger than the length of monotone chains of
identifiers, which is itself bounded by a constant L ⩽ 10. In other words, when all processes
take Ω(log∗ n) non-blocked steps, they terminate in an additional O(1) steps.

In the following, we then focus on the case where the identifiers of the processes are still
greater than 10, and we will show fast convergence is guaranteed even in the presence of
blocked processes. Indeed, the main difficulty in proving Theorem 21 is to deal with blocked
processes. Mainly, we show that a process quickly terminates whenever it is not blocked at
too many steps.

▶ Lemma 23. Let p ∈ [n] be a process. For all t ⩾ 1, if p ∈ σ(t) and X̂p(t) is a local
maximum in some time t, then X̂p(t′) is a local maximum for all t′ ⩾ t.

Proof. Local maxima never update their identifiers; other processes might, but only to
decrease them. The claim follows. ◀

▶ Lemma 24. Let p ∈ [n] be a process, and let q, q′ be its two neighboring processes in the
cycle. Let us assume that processes p and q are blocked at some time t0, with r̂q(t0) < r̂p(t0),
X̂q(t0) > X̂p(t0) > X̂q′(t0), and X̂p(t0) ⩾ 10. Additionally, let us assume that process q

remains blocked throughout the whole time interval [t0, t1) for some t1 > t0, but becomes
activated and unblocked at time t1. Then, one of the following claims holds:

Xq is a local maximum at time t1.
If process q is activated again at some time t2 > t1, then Xp will become a local maximum
as soon as p is activated at a time t ⩾ t2.

▶ Lemma 25. Let k ⩾ 1, and let q0 ∼ q1 ∼ · · · ∼ qk be a sequence of k + 1 distinct
processes in the cycle. Let t0 ∈ N, and let t1 ∈ N ∪ {∞} with t1 > t0. Let us assume
that (1) for every t ∈ [t0, t1), q0 /∈ σ(t), (2) processes q1, . . . , qk are blocked at time t0,
with r̂q0(t0) < r̂q1(t0) < · · · < r̂qk

(t0) < ∞, and (3) X̂qk
(t0) ⩾ 10. Then, for every

i ∈ { 1, . . . , k }, process qi terminates after having been activated at most 3i + 1 times in the
time interval [t0, t1).

▶ Lemma 26. Let p, q ∈ [n] be two neighboring processes. If Xq is a local maximum at
time t0 ∈ N, and if r̂q(t0) =∞, then p terminates after having been activated O(log∗ n) times
during the time interval [t0,∞).

DISC 2022

23:16 Fault Tolerant Coloring of the Asynchronous Cycle

▶ Lemma 27. Let p ∈ [n] be a process. If p is blocked at every time t ∈ [t0, t1), and
if p takes 4 steps during that interval, then p takes up to O(log∗ n) steps in [t0,∞) before
terminating.

We are now ready to show Theorem 21.

Proof of Theorem 21. For a process p, there are two possible paths, both leading to p

returning:
1. Process p never gets blocked. By Lemma 18, if a process updates its identifier up

to O(log∗ n) times, its identifier ends up in the interval [0, 10]. Therefore, after O(log∗ n)
rounds, either Xp becomes a local maximum, or Xp ⩽ 10. In the first case, it stays a
maximum by Lemma 23, its ap(t) remains constant, and p terminates after 4 rounds,
thanks to Lemma 16. In the second case, it will stay at distance at most 10 from a local
minimum. As the processes of this path will no longer change their X−, Lemma 17 allows
us to conclude.

2. Process p becomes blocked. This can happen after at most O(log∗ n) rounds (otherwise
we would end up in the previous case). Lemma 27 ensures that at most O(log∗ n) rounds
will happen before p returns.

This complete the proof that 5-coloring the asynchronous cycles Cn, n ⩾ 3, can be achieved
in O(log∗ n) rounds. ◀

5 Conclusion and future works

We have presented a wait-free distributed algorithm for proper coloring the n nodes of the
asynchronous cycle Cn, for every n ⩾ 3. This algorithm performs in O(log∗ n) rounds, which
is optimal, thanks to Linial’s lower bound [26] that applies to the synchronous execution.
The algorithm uses 5 colors to proper color any cycle Cn, n ⩾ 3, matches the minimum
number 5 of colors required to properly color the asynchronous cycle C3 [6, 14, 24]. Even if,
for n > 3, the existence of a 3-coloring algorithm is not directly ruled out by [6, 14, 24], we
conjecture that k-coloring the n-node cycle Cn requires k ⩾ 5 for every n ⩾ 3.

A natural extension of this work is to consider wait-free coloring arbitrary graphs. Note
that, by the renaming lower bound, coloring graphs with maximum degree ∆ requires a
palette of at least 2∆ + 1 colors whenever ∆ + 1 is a power of a prime. This is because the
shared memory model and the model in this paper coincide in the case of coloring the clique
of n = ∆ + 1 nodes. We do not know if 2∆ + 1 colors suffice for properly coloring all graphs
of maximum degree ∆ in a wait-free manner. It is however easy to extend Algorithm 1 to
graphs with maximum degree ∆, for every ∆ ⩾ 2, using a range of colors of size O(∆2)
(see Appendix A). The running time of this algorithm may however be as large as the one
of Algorithm 1, i.e., O(n) rounds. In the synchronous setting, there is a O(∆2)-coloring
algorithm performing in O(log∗ n) rounds [26] in any graph. However, the techniques used
in the synchronous setting for reducing the number of colors from O(∆2) to ∆ + 1 (see [27])
seem hard to transfer to the asynchronous setting.

More generally, it would be interesting to characterize which classical graph problems
studied in synchronous failure-free networks admit wait-free solutions for asynchronous
networks, and which do not. And, for those solvable wait-free, what are their round-
complexities? For instance, 5-coloring can be solved wait-free in the asynchronous cycle,
in O(log∗ n) rounds, while maximal independent set (MIS) cannot be solved at all in
asynchronous cycles.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:17

References
1 Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived renaming

made adaptive. In 18th ACM Symposium on Principles of Distributed Computing (PODC),
pages 91–103, 1999. doi:10.1145/301308.301335.

2 Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers. Early deciding syn-
chronous renaming in o(log f) rounds or less. In 19th International Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO), LNCS 7355, pages 195–206.
Springer, 2012. doi:10.1007/978-3-642-31104-8_17.

3 Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming
in an asynchronous environment. Journal of the ACM, 37(3):524–548, July 1990. doi:
10.1145/79147.79158.

4 Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds on the step
and namespace complexity of renaming. SIAM Journal on Computing, 48(1):1–32, 2019.
doi:10.1137/16M1081439.

5 Hagit Attiya and Arie Fouren. Polynominal and adaptive long-lived (2k-1)-renaming. In
14th International Conference on Distributed Computing (DISC), LNCS 1914, pages 149–163.
Springer, 2000. doi:10.1007/3-540-40026-5_10.

6 Hagit Attiya and Ami Paz. Counting-based impossibility proofs for set agreement and renaming.
Journal of Parallel and Distributed Computing, 87:1–12, 2016. doi:10.1016/j.jpdc.2015.09.
002.

7 Hagit Attiya and Jennifer Welch. Distributed Computing. Wiley Series on Parallel and
Distributed Computing. John Wiley & Sons, Inc., Hoboken, NJ, USA, April 2004. doi:
10.1002/0471478210.

8 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2013. doi:10.2200/S00520ED1V01Y201307DCT011.

9 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (δ + 1)-
coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In 37th ACM Symposium on Principles of Distributed Computing
(PODC), pages 437–446, 2018. doi:10.1145/3212734.3212769.

10 Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil.
Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks.
In 23rd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages
1–8, 2009. doi:10.1109/IPDPS.2009.5161053.

11 Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm.
Theoretical Computer Science, 444:28–39, 2012. doi:10.1016/j.tcs.2012.01.034.

12 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Brief Announcement: Memory Lower
Bounds for Self-Stabilization. In Jukka Suomela, editor, 33rd International Symposium on
Distributed Computing (DISC 2019), volume 146 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 37:1–37:3, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.DISC.2019.37.

13 Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and
Michel Raynal. Making local algorithms wait-free: the case of ring coloring. Theory of
Computing Systems, 63(2):344–365, 2019. doi:10.1007/s00224-017-9772-y.

14 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for re-
naming: the lower bound. Distributed Computing, 22(5-6):287–301, 2010. doi:10.1007/
s00446-010-0108-2.

15 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming:
the upper bound. Journal of the ACM, 59(1):3:1–3:49, 2012. doi:10.1145/2108242.2108245.

16 Armando Castañeda, Michel Raynal, and Julien Stainer. When and how process groups can
be used to reduce the renaming space. In 16th International Conference on the Principles
of Distributed Systems (OPODIS), LNCS 7702, pages 91–105. Springer, 2012. doi:10.1007/
978-3-642-35476-2_7.

DISC 2022

https://doi.org/10.1145/301308.301335
https://doi.org/10.1007/978-3-642-31104-8_17
https://doi.org/10.1145/79147.79158
https://doi.org/10.1145/79147.79158
https://doi.org/10.1137/16M1081439
https://doi.org/10.1007/3-540-40026-5_10
https://doi.org/10.1016/j.jpdc.2015.09.002
https://doi.org/10.1016/j.jpdc.2015.09.002
https://doi.org/10.1002/0471478210
https://doi.org/10.1002/0471478210
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/3212734.3212769
https://doi.org/10.1109/IPDPS.2009.5161053
https://doi.org/10.1016/j.tcs.2012.01.034
https://doi.org/10.4230/LIPIcs.DISC.2019.37
https://doi.org/10.1007/s00224-017-9772-y
https://doi.org/10.1007/s00446-010-0108-2
https://doi.org/10.1007/s00446-010-0108-2
https://doi.org/10.1145/2108242.2108245
https://doi.org/10.1007/978-3-642-35476-2_7
https://doi.org/10.1007/978-3-642-35476-2_7

23:18 Fault Tolerant Coloring of the Asynchronous Cycle

17 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, July 1986. doi:10.1016/S0019-9958(86)
80023-7.

18 Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie. Distributed
computing in the asynchronous LOCAL model. In 21st International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), LNCS 11914, pages 105–110. Springer,
2019. doi:10.1007/978-3-030-34992-9_9.

19 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985. doi:
10.1145/3149.214121.

20 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In 57th

IEEE Symposium on Foundations of Computer Science (FOCS), pages 625–634, 2016. doi:
10.1109/FOCS.2016.73.

21 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed
∆-coloring. Distributed Computing, 34(4):239–258, 2021. doi:10.1007/s00446-021-00397-4.

22 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara
Uitto. Improved distributed degree splitting and edge coloring. Distributed Computing,
33(3-4):293–310, 2020. doi:10.1007/s00446-018-00346-8.

23 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In 53rd ACM Symposium on Theory of Computing (STOC),
pages 1180–1193, 2021. doi:10.1145/3406325.3451089.

24 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

25 Maurice Herlihy and Nir Shavit. On the Nature of Progress. In Antonio Fernàndez Anta,
Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Systems, pages 313–328,
Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-25873-2_22.

26 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

27 Yannic Maus. Distributed Graph Coloring Made Easy. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’21, pages 362–372, New
York, NY, USA, July 2021. Association for Computing Machinery. doi:10.1145/3409964.
3461804.

28 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

29 David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and
Applied Mathematics, USA, 2000.

30 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompo-
sition and distributed derandomization. In 52nd ACM Symposium on Theory of Computing
(STOC), pages 350–363, 2020. doi:10.1145/3357713.3384298.

A Coloring General Graphs

It is possible to extend Algorithm 1 to connected graphs with maximum degree ∆, for every
∆ ⩾ 2 (see Algorithm 4). By construction, every process running Algorithm 4 returns a color
taken in the set

{ (a, b) | a + b ⩽ ∆ },

of cardinality (∆+1)(∆+2)
2 = O(∆2). The proof of correctness for Algorithm 4 uses the same

arguments as for establishing the correctness of Algorithm 1. In particular, a process cannot
run forever whenever its identifier becomes a local extremum among the identifiers of its
active neighbors, which guarantee that every process eventually terminates.

https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1007/978-3-030-34992-9_9
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1007/s00446-021-00397-4
https://doi.org/10.1007/s00446-018-00346-8
https://doi.org/10.1145/3406325.3451089
https://doi.org/10.1145/331524.331529
https://doi.org/10.1007/978-3-642-25873-2_22
https://doi.org/10.1137/0221015
https://doi.org/10.1145/3409964.3461804
https://doi.org/10.1145/3409964.3461804
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3357713.3384298

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:19

Algorithm 4 O(∆2)-coloring algorithm for general graphs, code for process p with
neighbors q1, . . . , qk, k ⩽ ∆.

1 Input : Xp ∈ N

2 Initially:
3 cp = (ap, bp)← (0, 0) ∈ N× N

4 Forever:
5 write(Xp, cp) and read((Xq1 , cq1), . . . , (Xqk

, cqk
))▷ immediate snapshot

6 if cp /∈ { cq1 , . . . , cqk
} then return(cp)

7 else
8 ap ← minN∖ { au | u ∼ p, Xu > Xp }
9 bp ← minN∖ { bu | u ∼ p, Xu < Xp }

B Technical proofs

B.1 Proofs of Section 3
Proof of Lemma 8. We proceed by induction on t ∈ N. For t = 0, the claim is vacuously true,
as Ap(t) = Bp(t) = ∅. For the inductive step, we suppose the claim holds for t = 0, . . . , T ,
and we show that it holds for t = T + 1. If p /∈ σ(T + 1) then we have X̂p(T + 1) = X̂p(T)
and Ap(T + 1) = Ap(T), Thus the claim holds by induction. Let us assume that p ∈
σ(T + 1), and let x ∈ Ap(t). By Equation (3) and the assumption p ∈ σ(T + 1), there
exists q ∈ N+

p (T + 1) such that either x = X̂q(T + 1) or x ∈ Âq(T + 1). In the former
case, we have X̂p(T + 1) < Y by the definition of N+

p . In the latter case, there must exist
some time t′ ⩽ T , with q ∈ σ(t′), for which X̂q(T + 1) = Xq(t′) and Âq(T + 1) = Aq(t′).
Since τ ⩽ T , we get that that X̂q(t′) < x, thanks to the induction hypothesis. Also, since the
value of Xq(t) is stable throughout the execution, we have Xq(t′) = Xq(t′ − 1) = X̂q(t′) < x.
Therefore X̂q(T + 1) < x, and, since q ∈ N+

p (T + 1), we have X̂p(T + 1) < X̂q(T + 1) < x,
which proves the claim.

The proof is symmetric for x ∈ Bp(t). ◀

Proof of Lemma 7. We establish the result for the case where Xp is not a local minimum
and ap(t1) = ap(t2) = ap(t3) = ap(t4). The proof uses the same arguments with local maxima
and bp(t1) = bp(t2) = bp(t3) = bp(t4).

Suppose that process p fails to return at time t1; we consider two cases.
If p is a local maximum, then we have âp(t) = 0 for all t. Moreover, if some process q ∼ p

is working in the interval [t1, t3], then aq(t3) ̸= 0. Furthermore, we have cp(t3) ̸= ĉq(t3) by
Lemma 5. In this case, either process q works in the interval [t3 + 1, t4], and âq(t4) ̸= 0, or it
does not work in this interval, and ĉq(t4) = ĉq(t3). Either way, we get ĉp(t4) ̸= ĉq(t4), and
thus p returns at time at most t4. Suppose now process p has a neighbor q′ that is inactive
in the interval [t1, t3]. If p’s other neighbor q is not working in the interval [t1 + 1, t2], then p

returns at time t2 by Lemma 6; if, on the other hand, q is working in this interval, then we
have aq(t2) ̸= 0, and, as above, process p returns at time at most t3.

If process p is not a local maximum, then it has a neighbor q′ with Xq′ > Xp. If we
had âp(t) = âq′(t), in any t ∈ { t2, t3, t4 }, then ap(t) would be switched, which contradicts
the lemma assumptions; hence we have ĉp(t) ̸= ĉq′(t) for t = t2, t3, t4. Suppose p fails to
return in t2. In this case, as before, either the other neighbor q of p is working in the
interval [t2 + 1, t3], and so aq(t3) ̸= âp(t4); or q is inactive in that interval and p returns at
time t3. Either way, process p returns at the latest at time t4. ◀

DISC 2022

23:20 Fault Tolerant Coloring of the Asynchronous Cycle

Proof of Lemma 10. We only treat the case
∣∣N+

p (t)
∣∣ ⩽ 1, as the other case is symmetric.

First, note that for any process q, X̂q(t) is equal to either ⊥ or Xq. In the former case,
process q is still inactive in time t, and thus Aq(t) = ∅. As a consequence, thanks to
Lemma 8, we have Xq /∈ Aq(t) for all t ∈ N.

Given p ∈ σ(t), we proceed by induction over |Ap(t)| by treating two base cases |Ap(t)| = 0,
|Ap(t)| = 1, and then the general case. For the base cases, as p ∈ σ(t), we have |Ap(t)| = 0 if
and only if N+

p (t) = ∅, which corresponds to p being a local maximum among its neighbors
awaken at time t. In this case, if p fails to return, then the algorithm enforces ap(t) = 0, as
desired, which gives the base case of the induction. If |Ap(t)| = 1, then the set N+

p (t) is a
singleton. Let { q } = N+

p (t). We have Ap(t) = { X̂q(t) } = {Xq }, and Âq(t) ∈ {∅, {Xq } }.
The set Âq(t) is therefore empty, i.e., âq(t) = 0, and thus the algorithm enforces ap(t) = 1 =
|Ap(t)|.

For the inductive case, let us assume that the claim is true for |Ap(t)| = 0, . . . , T with
T ⩾ 1, and let us show that it still holds for |Ap(t)| = T + 1 ⩾ 2. Here again, the set N+

p has
to be a singleton, say { q }, and so we have ap(t) = 1− âq(t), and Ap(t) = {Xq }∪ Âq(t), with
Xq /∈ Âq(t). Thus

∣∣∣Âq(t)
∣∣∣ = T , and there was an earlier time t′ < t where q ∈ σ(t′) failed to

return, and Âq(t) = Aq(t′). Since Xp < Xq, |N+
q (t′)| ̸= 2, and so aq(t′) ≡ T (mod 2) by the

induction hypothesis. Thus ap(t) = 1− aq(t′) ≡ T + 1 (mod 2), which completes the proof
of the claim. ◀

Proof of Lemma 16. We first show the following: if p ∈ σ(t) fails to return at time t ⩾ 1,
then

ap(t) = 0 ⇐⇒ |Ap(t)| ≡ 0 mod 2. (6)

We proceed by induction on |Ap(t)|. If |Ap(t)| = 0, then process p is a local maximum among
its active neighbors, and so in Algorithm 2 we have C+ ← ∅, which implies ap(t) = 0. For
the inductive step, suppose the result true for |Ap(t)| = k, and suppose that |Ap(t)| = k + 1.
Since process p is assumed to be non-minimal, it has one neighbor q with X̂q(t) > X̂p(t)
and |Âq(t)| = k, and we have ap(t) = minN∖ { âq(t), b̂q(t) }.

If k is even, then by inductive assumption we have âq(t) = 0, and so ap(t) ̸= 0. Otherwise,
k is odd, and by inductive assumption we have âq(t) > 0. In the code of Algorithm 2, we
have C+ ⊆ C, and so for any process u ∈ [n] and time τ ⩾ 0 we have bu(τ) ⩾ au(τ). Thus
in particular we have b̂q(t) ⩾ âq(t) > 0, and therefore ap(t) = 0.

For the main claim, let ℓ := |Ap(t1)| = |Ap(t2)| = |Ap(t3)| = |Ap(t4)|. If ℓ is even,
then ap(t) = 0 for all t ∈ [t1, t4]. Reasoning as in Lemma 7, if p still hasn’t returned by
time t4, then we have |Ap(t3)| = |Aq(t3)| − 1 = |Aq′(t3)| + 1 without loss of generality.
Then if neither q nor q′ is activated in the interval [t3 + 1, t4], p terminates by Lemma 6.
Otherwise, using again the fact that bu(τ) ⩾ au(τ) for any process u and time τ , we
have âp(t4) = 0 < min{ âq(t4), b̂q(t4), âq′(t4), b̂q′(t4) }, and so p returns in t4.

If ℓ is odd, we suppose without loss of generality that Xq > Xp > Xq′ . We have âp(τ) > 0
for all τ ∈ [t2, t4], and reasoning again as in Lemma 7, by time t4 we have âq′(t4) = 0, and p

terminates if it is still active. ◀

B.2 Proofs of Section 4
Proof of Lemma 22. We show the following: for every t ∈ N, Xp(t) /∈ {Xq(t), X̂q(t) },
proceeding by induction. The case t = 0 results from the initial proper coloring of the
identifiers.

For the induction, suppose the claim holds for t = 0, . . . , T . If p, q /∈ σ(T + 1), then
nothing changed, and the claim still holds for t = T + 1.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:21

Suppose p, q ∈ σ(T + 1). If rq(T + 1) = rq(T), the claim immediately follows, as does
it if Xq(T + 1) = Xq(T). Otherwise, by assumption we either have Xq(T) > Xp(T), or
the opposite. If the former, Xq(T + 1) = f(Xq(T), Xp(T)) < Xp(T), and by Lemma 20 we
have Xq(T +1) /∈ {Xp(T), Xp(T +1) }, and so Xp(T +1) /∈ { X̂q(T +1), Xq(T +1) }. Otherwise,
Xq(T) < Xp(T); if q is a local minimum in T + 1, then Xq(T + 1) ̸= f(Xp(T), Xq(T)), and
the claim follows from Xp(T + 1) ∈ {Xp(T), f(Xp(T), Xq(T)) }. If q is not a local minimum,
then Xq(T + 1) = f(Xq(T), Z) < Z for some Z < Xq(T); here again, the claim follows from
Lemma 20.

Finally, suppose p ∈ σ(T + 1) and q /∈ σ(T + 1). If Xp(T + 1) = Xp(T), then the claim
still holds. Otherwise, we have rp(T) < rp(T + 1) ⩽∞, and Xp(T + 1) < Xp(T). Process p

is then not a local maximum in T + 1, and the algorithm guarantees Xp(T + 1) < X̂q(T + 1).
If Xq(T + 1) = X̂q(T + 1), and in particular if rq(T + 1) = r̂q(T + 1), and the claim holds.

Suppose then that rq(T +1) < r̂q(T +1), and let t0 be the earliest time when rq(t0) = rq(T),
such that r̂q(t0) = r̂q(T +1). Process q takes no steps in the interval (t0, T +1], and because rq

increases in t0, we have r̂q(t0) ⩽ r̂p(t0). Thus r̂q(T + 1) ⩽ r̂p(t0) ⩽ r̂p(T + 1). Since rp

increases in T + 1, we have r̂p(T + 1) ⩽ r̂q(T + 1), and thus

r̂q(t0) = r̂p(t0) = r̂q(T + 1) = r̂p(T + 1),

i.e., r̂p(t) is constant for t ∈ [t0, T +1], and as a consequence, X̂p(T +1) = X̂p(t0). From here,
we proceed as in the previous case: Xq(T +1) = Xq(t0) was computed with q seeing X̂p(t0) =
X̂p(T + 1), and, since Xp(T + 1) was computed with p seeing X̂q(T + 1) = X̂q(t0), we have
indeed Xp(T + 1) /∈ {Xq(T + 1), X̂q(T + 1) }. ◀

Proof of Lemma 24. Since p ∼ q, and since p is blocked at time t0, we have r̂p(t0) =
r̂q(t0) + 1. Moreover, as X̂p(t0) ⩾ 10, the fact that X̂p(t0) is not a local minimum means
that r̂q′(t0) ⩾ r̂p(t0). Otherwise, by Lemma 19, Xp would be smaller than Xq′ . In particular,
process p remains blocked as long as process q is itself blocked.

Now, suppose that rq(t1) ̸= r̂q(t1). As processes p, q are blocked until t1, we have X̂q(t1) =
X̂q(t0) and X̂p(t1) = X̂p(t0), so X̂q(t1) > X̂p(t1), and q is not a local minimum in t1. The
case rq(t1) =∞ thus corresponds to X̂p(t0) being a local maximum at time t1. If rq(t1) <∞,
then rq(t1) = r̂q(t0)+1, and since X̂p(t1) = X̂p(t0) ⩾ 10, we get Xq(t1) = f(X̂q(t0), X̂p(t0)) <

X̂p(t0) by Lemma 19.
Finally, suppose then that q is next activated at time t2, and that p is activated at

time t ⩾ t2.Note that as long as q does not get activated again, p remains blocked, as it did not
see the update on rq. Moreover, as Xq(t1) is not a local maximum, Xq(t2) < X̂p(t1) = X̂p(t0).
Then process p sees X̂p(t0) to be a local maximum, and since it is no longer blocked by q we
have rp(t) =∞. ◀

Proof of Lemma 25. Under the hypotheses of the lemma, processes q1, . . . , qk remain
blocked throughout the time interval [t0, t1− 1], and we have X̂q0(t) > X̂q1(t) > · · · > X̂qk

(t)
whenever t0 ⩽ t < t1. By the same arguments as the ones used in the previous section for es-
tablishing Lemma 10, the sign of aqi

(t) is determined by the sign of the variables aq0 , . . . , aqi−1

throughout the time interval [t0, t]. In particular, the sign of âqi(t) stabilizes after qi has been
activated at most 3 i times, and thus process i itself terminates after having been activated
at most (3i + 1) times. ◀

Proof of Lemma 26. Let t1, t2, . . . be the consecutive steps taken by process p in the inter-
val [t0,∞), that is, for every k ⩾ 1, p is inactive during the whole time (tk, tk+1). Note that,
since r̂q(t0) =∞, we have âq(t) = 0 for all t ⩾ t0, and so âp(t) > 0 for all t ⩾ t2, as process q

will remain a local maximum forever.

DISC 2022

23:22 Fault Tolerant Coloring of the Asynchronous Cycle

Pick k ⩾ 2. If p is not a local minimum at any point in [tk, tk+3], then by Lemma 16 it
terminates in tk+3 at the latest. Conversely, if p is a local minimum throughout the same
interval, then we have repeatedly âp(ti) ∈ { âq′(ti), b̂q′(ti) }, i = k, . . . , k + 3. This implies
that âq′ is positive during that interval, otherwise p and q′ would eventually stop having
conflicts. By the same argument, process q′ terminates in a constant number of activations,
and so do process p. Therefore, for process p not to terminate the relative order of X̂p

and X̂q′ must switch every O(1) steps. Thus, every time p takes O(1) steps and fails to
return, it must be the case that X̂p has decreased. As argued before, this can happen at
most O(log∗ n) times before either Xp ⩽ 10 or Xq′ ⩽ 10, at which point convergence happens
in a bounded number of steps. ◀

Proof of Lemma 27. Since process p is blocked, a direct induction shows that p lies some-
where within a monotone chain of identifiers, as described in Lemma 25. That is, there is a
chain of distinct adjacent processes

q−k−1 ∼ q−k ∼ · · · ∼ q−1 ∼ q0 ∼ q1 ∼ · · · ∼ qℓ,

with q0 = p, and k, ℓ ⩾ 0, where, for every i ∈ [−k, ℓ], r̂qi
(t0) = r̂p(t0) + i, and ei-

ther r̂q−k−1(t0) = ⊥ (in which case k = r̂p(t0)) or r̂q−k−1(t0) = R − k − 1 (in which case
k < r̂p(t0). Moreover, all processes q−k, . . . , qℓ are blocked at time t0, and process q−k−1 is
not blocked at time t0.

We now distinguish two cases, depending on whether k = 0 or not. If k = 0, then, by
Lemma 25, process p terminates after taking 4 steps within the time interval [t0, t1). If k > 0,
then process q−1 is blocked; if process q−1 remains blocked while process p takes 3k + 1 steps,
then, by Lemma 25, p terminates. The same holds if q−1 takes a single non-blocked step. If
process q−1 ever becomes unblocked, and takes another step, then we meet the assumptions
of Lemma 24, and either of Xp or Xq−1 become a local maximum. If Xp becomes a local
maximum, then it terminates in O(1) steps. If Xq−1 becomes a local maximum, then, by
Lemma 26, process p terminates in O(log∗ n) steps. ◀

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Our Results
	1.4 Related Work

	2 Model and Observations
	2.1 Operational Model
	2.2 Schedules and complexity
	2.3 Lower Bounds and Impossibility Results

	3 Asynchronously coloring the cycle in linear time
	3.1 Warm-up: using a palette of 6 colors
	3.2 Saving one color: wait-free 5-coloring the cycle

	4 From Linear Time to Almost Constant Time
	4.1 Reducing identifiers with deterministic coin-tossing
	4.2 5-coloring the cycle in near-constant time

	5 Conclusion and future works
	A Coloring General Graphs
	B Technical proofs
	B.1 Proofs of Section 3
	B.2 Proofs of Section 4

