4,282 research outputs found

    On the energy efficiency of IEEE 802.11 WLANs

    Get PDF
    Proceedings of: 2010 European Wireless Conference (EW2010), (April 12-15, 2010), Lucca, ItalyUnderstanding the energy consumption of wireless interfaces is critical to provide guidelines for the design and implementation of new protocols or interfaces. In this work we analyze the energy performance of an IEEE 802.11 WLAN. Our contributions are as follows: i) we present an accurate analytical model that is able to predict the energy consumption, ii) we present an approximate model that sacrifices accuracy for the sake of analytical tractability, iii) based on this simplified analysis, we derive the optimal configuration to maximize energy efficiency of a WLAN, and iv) finally, we also analyze the tradeoff between throughput and energy efficiency that IEEE 802.11 imposes. While most of these results consider a homogeneous WLAN scenario where all stations share the same energy features, we also discuss the case of heterogeneous environments, where different devices show different power consumption characteristics.European Community's Seventh Framework ProgramPartly funded by the Ministry of Science and Innovation of Spain, under the QUARTET project (TIN2009-13992-C02-01)Publicad

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing

    Proportional fairness in wireless powered CSMA/CA based IoT networks

    Get PDF
    This paper considers the deployment of a hybrid wireless data/power access point in an 802.11-based wireless powered IoT network. The proportionally fair allocation of throughputs across IoT nodes is considered under the constraints of energy neutrality and CPU capability for each device. The joint optimization of wireless powering and data communication resources takes the CSMA/CA random channel access features, e.g. the backoff procedure, collisions, protocol overhead into account. Numerical results show that the optimized solution can effectively balance individual throughput across nodes, and meanwhile proportionally maximize the overall sum throughput under energy constraints.Comment: Accepted by Globecom 201

    Fade Depth Prediction Using Human Presence for Real Life WSN Deployment

    Get PDF
    Current problem in real life WSN deployment is determining fade depth in indoor propagation scenario for link power budget analysis using (fade margin parameter). Due to the fact that human presence impacts the performance of wireless networks, this paper proposes a statistical approach for shadow fading prediction using various real life parameters. Considered parameters within this paper include statistically mapped human presence and the number of people through time compared to the received signal strength. This paper proposes an empirical model fade depth prediction model derived from a comprehensive set of measured data in indoor propagation scenario. It is shown that the measured fade depth has high correlations with the number of people in non-line-of-sight condition, giving a solid foundation for the fade depth prediction model. In line-of-sight conditions this correlations is significantly lower. By using the proposed model in real life deployment scenarios of WSNs, the data loss and power consumption can be reduced by the means of intelligently planning and designing Wireless Sensor Network

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Battery Modeling

    Get PDF
    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However, with these models one can only compute lifetimes for specific discharge profiles, and not for workloads in general. In this paper, we give an overview of the different battery models that are available, and evaluate these models in their suitability to combine them with a workload model to create a more powerful battery model. \u
    corecore