3,439 research outputs found

    MIPGAN -- Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN

    Full text link
    Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.Comment: Revised version. Submitted to IEEE T-BIOM 202

    Deep Composite Face Image Attacks: Generation, Vulnerability and Detection

    Full text link
    Face manipulation attacks have drawn the attention of biometric researchers because of their vulnerability to Face Recognition Systems (FRS). This paper proposes a novel scheme to generate Composite Face Image Attacks (CFIA) based on the Generative Adversarial Networks (GANs). Given the face images from contributory data subjects, the proposed CFIA method will independently generate the segmented facial attributes, then blend them using transparent masks to generate the CFIA samples. { The primary motivation for CFIA is to utilize deep learning to generate facial attribute-based composite attacks, which has been explored relatively less in the current literature.} We generate 1414 different combinations of facial attributes resulting in 1414 unique CFIA samples for each pair of contributory data subjects. Extensive experiments are carried out on our newly generated CFIA dataset consisting of 1000 unique identities with 2000 bona fide samples and 14000 CFIA samples, thus resulting in an overall 16000 face image samples. We perform a sequence of experiments to benchmark the vulnerability of CFIA to automatic FRS (based on both deep-learning and commercial-off-the-shelf (COTS). We introduced a new metric named Generalized Morphing Attack Potential (GMAP) to benchmark the vulnerability effectively. Additional experiments are performed to compute the perceptual quality of the generated CFIA samples. Finally, the CFIA detection performance is presented using three different Face Morphing Attack Detection (MAD) algorithms. The proposed CFIA method indicates good perceptual quality based on the obtained results. Further, { FRS is vulnerable to CFIA} (much higher than SOTA), making it difficult to detect by human observers and automatic detection algorithms. Lastly, we performed experiments to detect the CFIA samples using three different detection techniques automatically

    Generation of High Performing Morph Datasets

    Get PDF
    Facial recognition systems play a vital role in our everyday lives. We rely on this technology from menial tasks to issues as vital as national security. While strides have been made over the past ten years to improve facial recognition systems, morphed face images are a viable threat to the reliability of these systems. Morphed images are generated by combining the face images of two subjects. The resulting morphed face shares the likeness of the contributing subjects, confusing both humans and face verification algorithms. This vulnerability has grave consequences for facial recognition systems used on international borders or for law enforcement purposes. To detect these morph images, high-quality data must be generated to improve deep morph detectors. In this work, high-quality morph images are generated to fool these deep morph detection algorithms. This work creates some of the most challenging large-scale morphed datasets to date. This is done in three ways. First, rather than utilizing typical datasets used for face morphing found in literature, we generate morphed data from underrepresented groups of individuals to further increase the difficulty of morphs. Second, we generate morph subjects using a wavelet decomposition blending technique to generate morph images that may perform better than typical landmark morphs while creating morph images that may appear different to detectors than what is seen in literature. Third, we apply adversarial perturbation to the morph images to further increase their attack capability on morph detectors. Using these techniques, the generated morph datasets are highly successful at fooling facial recognition systems into erroneously classifying a morph as a bona fide subject

    3D Face Morphing Attacks: Generation, Vulnerability and Detection

    Full text link
    Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the {proposed 3D morph-generation scheme against} automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques.Comment: The paper is accepted at IEEE Transactions on Biometrics, Behavior and Identity Scienc

    On the Influence of Ageing on Face Morph Attacks: Vulnerability and Detection

    Full text link
    Face morphing attacks have raised critical concerns as they demonstrate a new vulnerability of Face Recognition Systems (FRS), which are widely deployed in border control applications. The face morphing process uses the images from multiple data subjects and performs an image blending operation to generate a morphed image of high quality. The generated morphed image exhibits similar visual characteristics corresponding to the biometric characteristics of the data subjects that contributed to the composite image and thus making it difficult for both humans and FRS, to detect such attacks. In this paper, we report a systematic investigation on the vulnerability of the Commercial-Off-The-Shelf (COTS) FRS when morphed images under the influence of ageing are presented. To this extent, we have introduced a new morphed face dataset with ageing derived from the publicly available MORPH II face dataset, which we refer to as MorphAge dataset. The dataset has two bins based on age intervals, the first bin - MorphAge-I dataset has 1002 unique data subjects with the age variation of 1 year to 2 years while the MorphAge-II dataset consists of 516 data subjects whose age intervals are from 2 years to 5 years. To effectively evaluate the vulnerability for morphing attacks, we also introduce a new evaluation metric, namely the Fully Mated Morphed Presentation Match Rate (FMMPMR), to quantify the vulnerability effectively in a realistic scenario. Extensive experiments are carried out by using two different COTS FRS (COTS I - Cognitec and COTS II - Neurotechnology) to quantify the vulnerability with ageing. Further, we also evaluate five different Morph Attack Detection (MAD) techniques to benchmark their detection performance with ageing.Comment: Accepted in IJCB 202
    • …
    corecore