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Abstract
Generation of High Performing Morph Datasets

Kelsey L. O’Haire

Facial recognition systems play a vital role in our everyday lives. We rely on this

technology from menial tasks to issues as vital as national security. While strides have been

made over the past ten years to improve facial recognition systems, morphed face images

are a viable threat to the reliability of these systems. Morphed images are generated by

combining the face images of two subjects. The resulting morphed face shares the likeness

of the contributing subjects, confusing both humans and face verification algorithms. This

vulnerability has grave consequences for facial recognition systems used on international

borders or for law enforcement purposes. To detect these morph images, high-quality data

must be generated to improve deep morph detectors.

In this work, high-quality morph images are generated to fool these deep morph de-

tection algorithms. This work creates some of the most challenging large-scale morphed

datasets to date. This is done in three ways. First, rather than utilizing typical datasets used

for face morphing found in literature, we generate morphed data from underrepresented

groups of individuals to further increase the difficulty of morphs. Second, we generate

morph subjects using a wavelet decomposition blending technique to generate morph im-

ages that may perform better than typical landmark morphs while creating morph images

that may appear different to detectors than what is seen in literature. Third, we apply ad-

versarial perturbation to the morph images to further increase their attack capability on

morph detectors. Using these techniques, the generated morph datasets are highly success-

ful at fooling facial recognition systems into erroneously classifying a morph as a bona fide

subject.
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Chapter 1

Introduction

1.1 Biometric Systems

Biometrics are physical attributes that are used to automatically link a person to their iden-

tity [1]. The four stages of a biometric system are enrollment, template creation, identifica-

tion, and verification [2]. Biometrics act as a key to unlocking the identity of an individual.

Further, biometrics are common at border control checkpoints and are considered a national

security necessity [3]. Specifically, the face as a biometric is commonly used in govern-

ment identification documents [1, 2, 3]. The face is a convenient biometric because it is

non-intrusive and easy to verify in person [3, 4, 5].

Due to the advent of Deep Learning (DL) technology, facial recognition systems (FRS)

have been improved significantly over the past ten years. The first DL based facial recog-

nition model was Facebook’s Deepface [6], which was trained on over four million images

from four thousand subjects [7]. Deepface has an accuracy of 97.35% on the Labeled Faces

in the Wild dataset and has an error rate more than 25% lower than the next-best perform-

ing algorithm at the time [7]. NIST observed that facial recognition technology became

twenty times better at accurately matching individuals between the years of 2014 to 2018,
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with only 0.2% of matches failed in 2018 [8].

As technology improves, it permeates into daily life. We see facial recognition being

used in public spaces like airports, grocery stores, and schools, but we also bring it home

with us in our our cell phones and laptops [7]. Today, 15% to 20% of financial institutions

in the U.S. utilize facial recognition to verify clients. With so much of our daily lives reliant

on the reliability of these systems, it is vital that facial recognition systems be thoroughly

tested for vulnerabilities and short-comings. These vulnerabilities typically manifest from

the improper training of DL models. The accuracy of DL models are constrained to the

data that they are trained on. Without proper training data, facial recognition systems will

fail when they encounter subject data that is not typical with what the system is trained on.

For example, Buolamwini et al. showed that commercial facial recognition systems have

error rates up to 30% higher on subjects with dark skin compared to subjects with light skin

in a gender classification scenario. Clearly, underrepresented scenarios in training data lead

to a drop in facial recognition system performance.

1.2 Motivation

While FRS are a security necessity, they are vulnerable to attacks in the enrollment stage. If

an enrolled passport photo resembles multiple people, the passport can be shared between

the look-alikes. Morphed images are created by combining face images from two or more

individuals, creating a new ambiguous face which possesses similarities between the bona

fide identities. As morphing technology becomes more accessible, anyone can create high-

quality morphed images with little to no technical background, highlighting the need for

more challenging morphed image datasets for training face morph detectors.

Issues arise when bad actors intentionally try to spoof these systems. False positives

in biometric systems allow for bad actors to pass through a the system under the alias of

2



Figure 1.1: (left) Morph generation overview. (right) Perturbation is added to morphed
images to further increase morph detection difficulty.

another person’s identity. False positives occur when two people look alike and the FRS

authenticates the look-alikes as one another. Morph images are faces made with the express

purpose of fooling a FRS into falsely verifying one individual as another.

The goal of this work is to create the most challenging morph datasets to date. We do

this in two ways, first, we leverage edge-cases scenarios of FRS in order to improve the

attack capabilities of our morphs. For example, we generate morphs using both a juvenile

and a twin dataset. Additionally, we adversarially perturb the images in order to make

the attack quality of the images more challenging for FRS. Second, we utilize a new way
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of morphing images in the wavelet domain in order to further improve attack capabilities

and potentially fool morph detectors that are trained to detect specific morphing types. An

example of the morphing pipeline can be seen in Figure 1.1.

Our morphed images are generated with three separate methodologies, landmark [9,

10], Generative Adversarial Network (GAN)-based models [11, 12], and wavelet-based

morphing [13]. For landmark morphing, critical points of the two input subjects are av-

eraged together to create common landmarks. The images are then warped towards these

common landmarks and blended to create the morphed image. The GAN-based approach

uses latent vectors of input images which are then linearly combined, resulting in minimal

artifacts and producing high-quality morphs [12, 14]. Further, we introduce a new morph

generation method utilizing the Discrete Wavelet Transform (DWT), where the input im-

ages are warped and then subsequently blended using their wavelet decomposed sub-bands.

Finally, we apply adversarial perturbation to these morphed image in order to further in-

crease verification difficulty by fooling a classifier into mislabeling the examples into an

erroneous class.

1.3 Contribution of Thesis

In this thesis, we push the bounds of morph generation into creating the most difficult

morph images possible. Morph dataset generation is vital for the improvement of morph

detectors, especially for Deep Learning models that require large amounts of data. Cur-

rently, there is a lack of high-quality morph datasets found in literature. Without this data,

there is an obvious national security concern, with the potential of bad actors to either

sneak under the alias of a morph image, or for human trafficking which would allow for

vulnerable people to be snuck out of a country. Thus, the contribution in this thesis is as

follows:
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• Create a new high-quality morph dataset using the FERET [15] and FRGC [16]

datasets which is free of shadowing using both the landmark and wavelet-based mor-

phing techniques.

• Generate a morph dataset made entirely of juvenile subjects whose ages range from

toddler to late teenager.

• Create a morph dataset using Identical Twins to create the worst case scenario for

morphed images.

• Utilize morph generation method utilizing the Discrete Wavelet Transform (DWT),

where the input images are warped and then subsequently blended using their wavelet

decomposed sub-bands. Our work is the first that leverages the spatial-frequency

wavelet domain to create high quality morphs.

• After morphing, a visually indistinguishable amount of adversarial perturbation is ap-

plied to further increase the difficulty of detecting the morphed face images. The gen-

erated high-quality morphed images have no obvious signs of tampering and show

high similarity to individuals combined in the morphing process.

1.4 Organization of Thesis

This work is comprised of three main sections after this chapter. Chapter 2 discusses the

literature generation process of Landmark, Wavelet, and StyleGAN2 morphs. The bene-

fits and short-comings of these methods are discussed. Additionally, this chapter contains

information regarding the adversarial perturbation procedure utilized, as well as a section

dedicated to morph detection. Chapter 3 discusses the generated datasets with their re-

spective analysis. We discuss three generated datasets, the Baseline Wavelet dataset, Child
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dataset, and the Twin dataset. The Baseline Wavelet dataset is evaluated first, then the Twin

morph dataset, and lastly the Child morph dataset. Data is analyzed in terms of error rates,

classification rates, and MMPMR. Last, in Chapter 4, we will discuss the conclusion and

next steps for the generated morph datasets.

6



Chapter 2

Morph Generation

Ferrara et al. [17] are the first to investigate the dangers of submitting a morphed image

into the enrollment stage of the biometric system pipeline 1. In their work, they created a

small dataset of high quality morphed images by hand using the image editor GIMP. They

show high attack rate morphed images can be generated using the likeness of two or more

look-alike subjects to create an ambiguous face [17].

Morphs pose a serious security problem. If a bad actor is morphed with a look-alike,

the synthesized image can be shared between the two people. Morphed images are com-

monly generated with two separate methodologies, landmark [9, 10, 18] and GAN-based

models [11, 19, 12]. Both of these methodologies have their own strengths and weaknesses

[12].

One of the major pitfalls for landmark-based morphing is the number of ghosting ar-

tifacts in the high-frequency regions. Chaudhary et al. [4, 5] showed the possibility of

detecting morphed images solely in the wavelet domain by analyzing the high-frequency

subbands where artifacts are likely to occur. Using this information, we propound a new

method of morphing using the wavelet subbands to blend the morph image in order to

1Portions of this section are taken from the prior work of [13]
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decrease the likelihood of artifacts in the high frequency regions. In our new morph gener-

ation method utilizing the Discrete Wavelet Transform (DWT), the input images are warped

and then subsequently blended using their wavelet decomposed sub-bands (see Fig. 2.3).

Our work is the first that leverages the spatial-frequency wavelet domain to create high

quality morphs [13].

High-quality morph images should be of high perceptual quality and be able to fool

FRS. To create morphs of the highest attack rate, we apply adversarial perturbation to the

morphed images in order to further increase verification difficulty by fooling a classifier

into mislabeling the examples into an erroneous class. The added perturbation should be

unperceivable in the image. After the perturbation is applied, the morph will be realistic

enough to fool a human while having a high attack rate when presented to a FRS.

2.1 Passport Photo Standards

The greatest national security threat morph images pose is the possibility of a bad actor

submitting a morph image as a passport. The U.S. Department of State imposes strict

guidelines that are required of an image to meet these standards [20]. For a morph photo

to be a realistic threat, it must meet the composition and size requirements of a passport

photo. A digital passport photo must meet the following requirements:

• Image must be a square.

• Image size must be no smaller than 600× 600 pixels.

• Image can not have evidence of JPG compression.

• Images can not be scaled up to meet size requirements.

• The head must take up between 50-69% of the height of the image.

8



Figure 2.1: Required composition for a digital U.S. passport photo as outlined by the U.S.
Department of State.

• Eyes of the face must be between 56-69% of the height of the image.

• Subject can wear eyeglasses.

• Subject must be posed in front of a neutral background.

• Subject must be looking directly into the camera with a neutral expression.

In order to meet these requirements, potential datasets used to make morphs must be

properly vetted. Any image of a face must first meet the composition requirements laid out

above. For example, the subjects must be looking directly into the camera with a neutral

background for them to be considered. This requirement eliminates many popular datasets

used in literature that feature people in the wild. Example images of proper vs improper
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Figure 2.2: Example images of proper passport photos.

passport photos can be seen in Figure 2.1. Next, the face in the photo must meet the size

requirements. In many images, it is not possible to properly crop the face of the image

without upscaling the photo to the minimum 600× 600 pixel size.

Once it is decided that a dataset meets the quality requirements of a passport photo, we

run the dataset through a passport cropping tool. We created a custom cropping tool that

automatically checks the face’s composition in the image, and if the face meets the required

size and position requirements, crops the face. All faces that do not pass the requirements

of the cropper are discarded. This step is done to every image prior to morphing. Not

only does cropping the images create passport-style images, it also ensures that we have

a high-quality dataset for morphing. If a face is not looking at the camera or improperly

10



Figure 2.3: Landmark points found on subject.

positioned in the image, it will create morphing artifacts and additional shadowing in the

landmark morphs. Further, because all data being used to generate the morphed images

already meets passport standards, the resulting morph images will as well.

2.2 Landmark Morphing

The landmark-based morphed image generation typically consists of three steps: land-

mark detection, warping, and blending. The landmark points of the two input subjects,

which are critical points on each face, are averaged together to create common landmarks.

The images are then warped towards these common landmarks and blended to create the

morphed image. The morphed images are guaranteed to have visual similarity with both

individuals because features of the individuals are combined by averaging the input images

together. Ferrara [17] morphed their images manually using the open-source image editor

GIMP. While the resulting images showed little artifacts, the pipeline was tedious and in-

convenient to be scaled up for generation of large datasets. Since then, many open-source

repositories have emerged, making it simple to generate large-scale datasets. Sarkar [12]
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generate three morphed datasets utilizing four popular morphing repositories: Facemor-

pher [9], OpenCV [10], WebMorph [18], and StyleGAN2 [14]. Facemorpher, WebMorph,

and OpenCV are typical landmark-based algorithms that rely on a combination of warping

and splicing to generate morphed images. While landmark-based morphing techniques are

fast and effective, they tend to lead to warping artifacts in the high-frequency areas in the

image such as around the iris and outline of the face [21]. To have a successful morphed

attack, there should be no visible artifacts in the image.

When generating images, we consider two look-alike individuals for morphing. The

pair’s faces, u and v, are aligned. 68-element long pixel-coordinates û and v̂ are found on

each subject’s face. An example of these coordinates can be seen in Figure 2.2. The land-

mark coordinates are areas deemed of high importance for morphing. Then, û and v̂ are

used to generate a mesh grid across the image. On an element-wise basis, the coordinates

of û and v̂ are averaged together to create the common landmarks coordinate, m̂. After

warping to the common landmarks, bilinear interpolation is performed in order to correct

color values. An affine transform is used to transmute points from û and v̂ to the m̂ cre-

ating both ûw and v̂w. After warping, ûw and v̂w are averaged together. At this point,

the background of the face regions will have a heavy ghosting effect. The face region is

spliced from the background and placed onto the convex hull of ûw to generate the final

image m. Our algorithm is modified from both Facemorpher [9] and OpenCV [10] at the

stages where the background is warped and where the convex hull is spliced.

When the warped images are blended together, high frequency areas of the images tend

to create a shadowing effect. This occurs when sharp edges in the faces such as around

the areas of the faces are not perfectly aligned and create artifacts. Examples of these

artifacts can be seen in Figure 2.5. The image on the right is a common artifact seen,

where the iris of the two individuals does not warp properly, thus, creating a ”second iris”.

The middle image shows the ghosting effect that occurs when one subject has a mustache
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Figure 2.4: Standard landmark morphing pipeline where the two input images are warped
toward one another and then blended.

and the second subject does not, creating an unnatural looking tint on the skin. Anomalies

like glasses, moustaches, and stray hair can cause these types of artifacts, highlighting

the need for a high-quality dataset that has been thoroughly pre-processed for anomalies

in subjects. In their work, Sarkar et al. selectively pair individuals based on the types

of anamolies the subject poses. Lastly, the image on the right shows another common

issue where the eyebrows of the faces are not properly aligned, creating a double eyebrow

effect. These artifacts make a morphed image easily identifiable. In order to make high-

quality morph images, there should be no obvious artifacts in the morph image. In order

to minimize artifacts in the generated images, the pair of subjects selected for morphing

should naturally look alike. Pair selection is a vital step when morphing faces and can lead

to drastic differences in quality of the morphed image [22, 23]. If the morph is to be passed

between two individuals, the individuals must possess physical similarities. Scherhag [23]

proposed to classify a dataset into soft-biometrics such as hair color, skin color, age, and

gender prior to morphing. Damer [22] explored the different methods of determining look-

alikes and how they affect the quality of the morphs. They find a strong correlation between

morphing similar looking individuals and higher attack rates.
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Figure 2.5: Common blending artifacts found when landmark morphing faces that occur
when features are not properly aligned.

2.3 Wavelet-based Morph Generation

In order to provide greater flexibility and improve the blending stage of the landmark mor-

phing technique we introduce a new approach to fusing the warped images. Our second

method of landmark-based morphing leverages the spatial-frequency decomposition to fuse

the warped images. After warping, we decompose the images into 64 wavelet subbands us-

ing Discrete Wavelet Transform (DWT).

The look alike pair of images are aligned and warped in the same manner as Section ??.

However, after the warping stage, ûw and v̂w are decomposed into 64 sub-bands using a

three-level undecimated wavelet decomposition. Vertical and a horizontal filters are applied

to the warped images, creating the Low-Low, Low-High, High-Low, and High-High sub-

bands. We number the bands from 1, 2, . . . , 64, where the first sub-band represents the

baseband. As presented in Fig. 2.3, the lowest frequency baseband after three-level wavelet

decomposition of the ûw and v̂w are averaged together. This sub-band is selected because

it represents most of the shared information from the original subjects. The remaining 63

sub-bands are combined using the maximum-coefficient at every location in the sub-bands

to capture the most significant information from each subject. If [U1, . . . ,U64] = Φ(ûw)

and [V1, . . . ,V64] = Φ(v̂w) are the undecimated wavelet decompositions of the aligned
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Figure 2.6: Standard landmark morphing pipeline where the two input images are warped
toward one another and then blended.

input images, we define morphed sub-bands as:

M k [i, j] =


mean (Uk [i, j] ,Vk [i.j]) , k = 1

max (Uk [i, j] ,Vk [i.j]) , otherwise.
(2.1)

These morphed wavelet sub-bands are used to reconstruct the blended face image. The

convex hull of the morphed image is spliced onto the background of ûw and v̂w to create

the morphed images. It is hypothesised that by maxing the high frequency areas, it will

help retain sharp edges from a single subject, in order to help eliminate shadowing and by

averaging the low frequency region, color and general shape of the face are retained.

2.4 GAN-based Morph Generation

In addition to landmark-based techniques, we utilize a Generative Adversarial Network

(GAN) to produce morphed images. GAN-based morph generation creates morphs by

combining the latent space representation of two face images. GANs were first introduced

by Goodfellow [24] who introduced the idea of an adversarial network to generate high-

quality images by training two multilevel perceptrons simultaneously minimizing the ob-

jective function of a generator and maximizing the objective function of a discriminator. In
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other words, the generator is trained to synthesize data that fools the discriminator, while

the discriminator is trained to detect artifacts generated by the generator [24]. Since then,

GANs have made strides in terms of quality and accessibility [19].

Today, one of the most common GANs for morph generation in the literature is Style-

GAN2 [14] because of its high-quality results and minimal artifacts. This GAN-based

approach uses latent vectors of input images which are then linearly combined, resulting

in minimal artifacts and producing high-quality morphs [12, 14, 25]. Damer introduced

MorGAN [11] for face morphing. MorGAN utilizes an encoder which is jointly trained

with their discriminator and generator in order to learn the mappings between the encoder

and decoder. The networks are trained to generate high-quality reconstructions from the

bottleneck. Once MorGAN was trained, the latent vectors were linearly combined in or-

der to generate the morph image. GAN-based morphing approaches have issues retaining

identity information, causing morphs to be more heavily weighted toward one subject than

another [12, 21]. However, a morphed face should pass as either input subjects resulting

for an effective morph generation algorithm. MIP-GAN [21] attempts to fix this problem

by creating a loss-function based on perceptual-loss and identity priors in order to retain

similarity to input subjects while creating high-quality morphs. This methodology was

met with success, as the MIPGAN based morphs can fool multiple FRS at a higher rate

than StyleGAN-based morphs. Damer et al. introduced MorGAN [11] for face morph-

ing. They utilize their discriminator and generator in order to learn the mappings for the

encoder and decoder. The networks are trained to generate reconstructions from the infor-

mation bottleneck. Once MorGAN was trained, the latent vectors were linearly combined

to generate the morphed image. We combine the latent code using StyleGAN2 [26] to gen-

erate our morphed images because of the high-visual quality of their output images. While

GAN-based approaches are becoming more popular, literature shows that GAN-generated

morphs struggle to retain the identity of the input subjects [12]. Identity retention is vital
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for morphed images because the morphed face should be able to be verified between both

input subjects.

The same aligned pairs as described in the previous section are used as u and v. They

are warped toward common landmarks in the same manner to result in the warped faces

ûw and v̂w. The face region of both warped images are spliced and pasted onto a black

background. These images are embedded to an 18× 512 latent code. These codes are then

averaged together to construct the morphed image’s latent code. To improve final visual

quality of the morphs, custom noise is added to the convolutional layers of StyleGAN2.

This fused latent vector is reconstructed to generate the morphed convex hull. This face

image is spliced back onto the face region of the input images u to construct the morphed

image m.

2.5 Adversarial Perturbation

Adversarial perturbation is added to the morph images with the intention of fooling a morph

detector into labeling the input as a bona fide class. Typically, the pixel values are con-

strained to an L∞ value which help to preserve the quality of the perturbed image. Ad-

versarial perturbation should not be perceptually visible in the final image. Goodfellow et

al. [27] introduce the fast gradient sign method (FGSM), which perturbs the input of the

model based on the sign of the gradient for a target class. Liao et [28] utilized FGSM with

a masking technique to perturb areas deemed as high importance using spatial information

derived from multiple convolutional layers in a model. Hussain et al. [29] leverage adver-

sarial perturbation for their work on adversarial deepfakes by perturbing frames of a video

labeled as fake by a detector with the intention of all output frames being labeled as real.

We train our model to detect morphed images based on the work from the authors of

[30]. The morph detector is able to detect morphs with near perfect accuracy. We add
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adversarial perturbation to the morphed images in order to further increase difficulty of

their detection. FGSM perturbs an image based on the gradient with every iteration of

backpropagation. Basic Iterative Method (BIM) [31] is a derivation of FGSM, where a

constant step-size is utilized for every applied perturbation and an L∞ constraint is used

as maximum allowed pixel difference. Using our trained morph detector and BIM, images

are perturbed:

madv
N+1 = Clipm,ϵ{madv

N + βsign (∇mLadv)}, (2.2)

where madv
0 = m is the morph and Ladv consists of cross-entropy and Total Variation (TV)

smoothing losses:

Ladv = J
(
madv

N , ytrue
)
− λTV

(
madv

N

)
, (2.3)

where J is the cross-entropy cost function between the adversarial image and the target

class, β is the perturbation step size and ϵ is the L∞ constraint on the pixel difference

values [31]. The term ytrue is equal to 1 and 0 for morph and real images, respectively.

The value of Clipm,ϵ confirms that the pixel values are within ϵ L∞-norm distance from the

original sample. We also clip the adversarial example at each iteration to make sure that all

pixel values reside within the valid input range. Variable λ is the smoothness regularization

parameter. To further improve the visual quality of the image, TV smoothing is applied

to the perturbation image to remove any visible artifacts in the adversarial morphed image

[32, 33]:

TV (madv
N ) =

∑
i,j

((rN [i, j]−rN [i+1, j])2−(rN [i, j]−rN [i, j+1])2)
1
2 , (2.4)

where rN [i, j] is a pixel in the perturbation image rN = madv
N − m. We refer to the

perturbed morph image as m′.
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Figure 2.7: Examples of perturbed images.
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2.6 Morph Detection

There are two main methodologies of morph detection, single and differential. Single

morph detection is effective at determining morph artifacts such as shadowing or artifacts

described in Section 2.2. Differential morph detection detects morphs in a verification

scenario and represents the quality of morph in terms of identity between the bona fide

subjects and the morph image. In order for the morph image to be effective, it must be free

of both artifacts and look like both contributing bona fide identities. A major barrier for

morph detection research is the lack of publicly available high-quality morph datasets.

There are two trains of thought when using classical approaches to morph detection.

The first utilizes methodologies introduced using image forensic techniques to detect tam-

pering in the image. The second train of thought focuses on texture analysis. Typically,

these classical methods segment the image and then deploy feature descriptors with a Sup-

port Vector Machine (SVM) to classify images [4, 5, 34]. Common feature descriptors in-

clude Speeded-Up Robust Features (SURF) [35], Local Binary Patterns (LBP) [36], Scale-

Invarient Feature Transform (SIFT) [37], Binarized Statistical Image Features (BSIF) [38],

and Histogram of Gradients (HOG) [39].

Classical methods of morph detection have been nearly entirely replaced by deep learning-

based algorithms. Chaudhary et al. showed promising results when detecting morph im-

ages decomposed to the wavelet domain in a differential setting [4]. Their results have

EERs of significantly lower than SURF, SIFT, LBP, BSIF, and FaceNet across four datasets

found in literature. Scherhag et al. [23] introduces a hybrid approach to morph detection.

They utilize both classical (texture descriptors, keypoint extractors, gradient estimators)

and a deep learning-based network to extract features, which are sent SVMs and then fused

together to classify the image.
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Chapter 3

Experiments

Three datasets were generated and testing, the Baseline Wavelet dataset, Child dataset, and

Twin dataset. First, we created our Baseline dataset using the FRGC [16] and FERET

[15] datasets. These datasets are compared to the morph images found in literature using

the same datasets generated by Sarkar et al.[12]. We show the effectiveness of our wavelet

morph generation as well as the effects of adversarial perturbation applied to morph images.

Next, in order to create the most difficult morph images possible, we morph identical Twins.

The advantage of morphing twins is two fold, 1) Pairing twins removes ambiguity in morph

pair selection, 2) Identical twins already look alike, leading to less warping compared to

other dataset and thus creating less artifacts. Last, we generate and analyze the Child

dataset. The child morphs take advantage of the fact that FRS are not properly trained on

children, and by generating morphed children, it takes advantage of this gap in algorithm

training. All datasets meet this ICAO standards for passport images [3].
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Figure 3.1: FaceNet L2 distribution (left) and SSIM comparison (right) between input sub-
jects and their respective morphs.

3.1 Wavelet Morph Generation

The first morphed face images were created in order to compare to morphing datasets to

those found in literature [12] 1. We used an adapted version of the Facemorpher [9] method-

ology to morph our images to create wavelet-based morphed images as described in [13].

In order to further improve the morphing capability of the morphed images, we adversari-

ally perturb the images using a morph classifier. We compare our work to the work done by

Sarkar [12], where they generated a Facemorpher generated dataset from the FERET [15],

FRLL [40], and FRGC datasets [16].

We utilize the FERET, FRLL, and FRGC datasets for our morphs [15, 40, 16]. The

datasets contain image sizes of 413 × 531 for FRLL, 1704 × 2272 for FRGC, and 512 ×

768 for FERET. Each dataset depicts passport style images with a neutral face looking

into the camera under ideal lighting conditions. In total, FERET contains 1,199 different

identities, FRLL contains 102 identities, and we used a subset of FRGC which contains

765 identities. We use morphed images from [12] for comparison to our generated morphs.

We refer to these image as the standard morphs for the rest of this paper because they use

1Portions of this section are taken from [13].
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Figure 3.2: SSIM distributions between wavelet morphs and their respective perturbed
wavelet morphs for (left) FRLL, (middle) FERET, and (left) FRGC datasets.

a typical morphing pipeline consisting of an alpha-blending step used to combine warped

images. For pairing our morphs, we use the protocols originally created by Neubert et

al.‘s AMSL dataset for FRLL [40] and Scherhag et al.’s protocol for FERET and FRGC

[34]. In addition, landmarked-based wavelet morphing images described in Section III.A

are referred to as wavelet morphs.

3.1.1 Similarity Comparison

Morphed images share features from both input subjects; therefore, a quantitative measure

of perceived similarity is needed for comparison. We use two different metrics, a FaceNet

match score [41] and the Structural Similarity metric (SSIM) [42]. Both metrics are se-

lected because they represent a perceived similarity rather than a direct pixel-comparison

to their bona fide subjects. FaceNet is leveraged to quantify look-alikes as deep learning-

based verifier, while SSIM uses classical techniques to quantify perceptual similarity. To

minimize extraneous information from the morphed images, the convex hull region of the

morph is extracted for the comparison and placed on a back background.

FaceNet uses a deep convolutional network architecture to create a compact feature

embedding of its input. FaceNet is trained using triplet loss, where the Euclidean distance

(L2) for embeddings of the same identity are positive examples and differing identities
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Figure 3.3: Differential morph detection: ROC curves for the (left) FRLL, (middle)
FERET, and (right) FRGC datasets.

are considered negative examples [41]. Therefore, there is a correlation between the L2

distance of feature embeddings and perceived similarity. SSIM is a quality metric used to

mimic similarity of two images as perceived by the human eye. SSIM is calculated using

a combination of three independent comparisons: luminance, structure, and contrast [42].

Visible artifacts in an image decreases the SSIM.

Figure 3.1 shows the distributions of the L2 distance between FaceNet embeddings and

SSIM comparison between Sarkar’s standard landmark morphs and our wavelet morph-

ing technique. For both distributions, every morph has two separate comparison values,

for each contributing bona fide identity. For our FaceNet comparison, a smaller L2 value

represents a stronger look-alike. Inversely, a larger SSIM value represents a stronger look-

alike. Both distributions show that our wavelet-based morphing technique is as effective

at creating morphs that look like their input subjects as [12], while retaining the image

quality. The standard and wavelet-based morphs share the same mean of their SSIM dis-

tributions (SSIM of 0.61), resulting in no difference between visual quality of the standard

and wavelet-based morphs.

To test the attack effectiveness of our wavelet morphs versus the landmark morphs, we

use FaceNet as a verifier to perform differential morph detection. The results from FaceNet

are shown in Figure 3.3.
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3.1.2 White-box Detector and Verification

As presented in Figure 3.3, FaceNet can differentiate between morph and genuine images

when compared to a reference photo for both our wavelet morph and Sarkar et al.’s morphs

[12] . The wavelet-based perturbed and standard images are tested on the trained morph

detector and the results are shown in Figure 3.4. In Equation 2.2, we use β = 6 and ϵ = 2

for perturbation. Image perturbations take approximately 2 seconds per image. The AUC

for FRGC is 67%, FERET is 24%, and FRLL is 2%. The results show that the perturbed

images are being erroneously classified as bona fide images at an alarming rate. Figure 3.2

shows the distribution of SSIM values. If the images are too heavily perturbed, they exhibit

signs of degradation. The SSIM score for all datasets show that every perturbed image has

an SSIM of above 0.99, indicating that all images are perceived to be indistinguishable to

the wavelet-based morph. Our perturbed wavelet morphs would bypass a morph detector

in the passport pipeline with a high degree of success.

To determine the morph’s effectiveness on the verification stage, we utilize a pretrained

FaceNet model as a verifier [41]. A reference image of a subject is compared to a second

genuine image of the subject to create a positive comparison, and a negative comparison

is made between the reference image and its respective morph. FaceNet ROC curves are

plotted for each of the datasets as shown in Figure 3.4. The true positive score signifies

a morph correctly labeled as a morph. FaceNet discerns the wavelet morphs at a nearly

identical rate as the standard morphs. The verification stage is the most likely point in the

pipeline for the morph to be detected. Verification is a difficult problem for face morphing

because the morph image must contain features from both input subjects, making it difficult

for the resulting morph to appear more similar to a reference image than to a bona fide

image.
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Figure 3.4: Classification of our morph datasets compared to those used in literature.

3.1.3 Summary

In this section, we provided the prospect of morphing in the spatial frequency wavelet do-

main. We showed that our wavelet-based morphs are as convincing as morphs generated

in prior works, while introducing a new morphing methodology. Wavelet selection offers

additional flexibility when blending images that was not possible before. By adding adver-

sarial perturbation, the wavelet-based morphs are nearly impossible to detect by humans

and deep learning-based detectors. In the future, more sophisticated methods of sub-band

selection can be used to generate morphs in the spatial-frequency domain, creating morphs

that are more difficult to detect. Further, more work must be done to better understand the

transferability of the perturbed images.
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3.2 Twin Morph Generation

Identical twins, also known as monozygotic twins, pose a severe problem to FRS since

they represent the extreme scenario between individuals who naturally look alike [43].

Finding look-alikes is a necessary step when creating high-quality morphs [22] in order

to reduce artifacts and improve verification properties. Paone et al. [43] studied a twins

dataset made up of 126 twin pairs. They found that the Equal Error Rate (EER) for a twins

dataset is significantly high. Five of the seven algorithms tested had an EER at or above

50% for identical twins. Therefore, identical twins are a challenging paradigm for an FRS

because of twins’ inter class similarity which can lead to high false acceptance rates in the

verification stage [4, 43].

Identical twins represent the ideal pairing condition for morphing and remove the am-

biguity of pairing look-alikes. The effectiveness of morphing twins is two-fold. First,

Commercial Off-The-Shelf systems (COTS), as well as human verifiers, are vulnerable to

the high-quality morphing attacks generated from similar face images [44]. Second, twins

naturally looking similar creates ambiguity between individuals, causing an increase of

false acceptance in detectors [4] and creating a very useful dataset for training and testing

morph detectors.

To create an extremely hard scenario for an FRS, we generate a new dataset of identical

twin morphed images. Our morphed faces are generated with three separate methodolo-

gies, landmark-based models [9, 10], Generative Adversarial Network (GAN)-based mod-

els [45, 14], and our wavelet-based morphing. Our Twin dataset provides ideal look-alike

pairs for morphing. Consequently, we observe that the Twin dataset provides better morph

generation capability compared to several other datasets across different morphing method-

ologies [12, 14]. As shown in Figure 3.5, for the same FaceNet [46] distance between the

morph and bona fide, the twin morph dataset looks significantly more similar to its con-
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Figure 3.5: Probability density of the normalized FaceNet L2 distances between the embed-
dings of the morph and their respective bona fide subjects for the Twin, FRGC, and FERET
datasets. Facemorpher morph examples shown are a distance of 0.19 to both contributing
bona fide subjects for the (top) Twins, (middle) FRGC, and (bottom) FERET datasets.

tributing bona fide identities than comparable morph datasets. Finally, we apply adversarial

perturbation to these twin morphed images in order to further increase verification difficulty

by fooling a classifier into mislabeling the morphed face images as bona fides.

Differentiating twins is a hard problem for facial recognition systems due to the high

similarity between the two subjects [47]. In fact, even humans have a difficult time dis-

cerning between twin pairs. Biswas experimented with participants differentiating between

twin pairs and images of the same person [48]. They discovered that humans are only able

to classify twin pairs versus images of the same individual at an average rate of 78.82%.
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Figure 3.6: FaceNet L2 distances between the bona fide faces and their respective morphs
for the Twins, FRGC, and FERET datasets using (left) landmark and (right) StyleGAN2
morphing methods.

There has been limited research on the effects of twins and facial recognition systems.

Paone studied a twins dataset made up of 126 twin pairs. They found that the Equal Error

Rate (EER) for a twins dataset is significantly high [43]. Five of the seven algorithms tested

had an EER at or above 50% for identical twins.

Pair selection is a vital step when morphing faces, and can lead to drastic differences

in quality of the morphed images [22, 23]. If the morph is to be passed between two

individuals, the individuals must possess physical similarities. Scherhag [23] proposed

to classify a dataset into soft-biometrics such as hair color, skin color, age, and gender

prior to morphing. Damer [22] explored different methods of determining look-alikes and

how they affect the quality of the morphs. They find a strong correlation between morphing

similar looking individuals and higher attack rates. Morphing twin pairs represents the ideal

scenario for morphing by removing the ambiguity of pairing look-alikes and guaranteeing

high similarity between bona fide subjects.
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3.2.1 Vulnerability Analysis

To test our datasets, we utilize the International Organization for Standardization (ISO)

[49] standards for reporting the performance, Attack Presentation Classification Error Rate

(APCER) and Bona Fide Presentation Classification Error Rate (BPCER). The ISO de-

scribes APCER as the number of morphs incorrectly classified as bona fide presentations

in a specific scenario. Inversely, BPCER is described as bona fide images incorrectly clas-

sified as presentation attacks [49]. We report APCER and BPCER at the 1%, 5%, and 10%.

In addition, we report the Area Under the Curve (AUC) and EER. We also use the Mated

Morph Presentation Match Rate (MMPMR) as a metric to quantify the similarity between

a generated morph image and its contributing subjects [23] where only morph/bona fide

pairs which have a similarity score above a given threshold are considered:

MMPMR(τ) =
1

M

M∑
m=1

{[
min

n=1,...,Nm

Sn
m

]
> τ

}
, (3.1)

where M is the total number of morphs and Nm is the number of subjects contributing

to a particular morph [23]. Sn
m is the similarity score between the morph m and the nth

corresponding subject and τ is the operational verification threshold [23].

The ProdAvg-MMPMR methodology represents the proportion of accepted attempts

per contributing subject:

ProdAvg-MMPMR(τ) =
1

M

M∑
m=1

Nm∏
n=1

 1

Inm

Inm∑
i=1

{
Sn,i
m > τ

} , (3.2)

where and Inm is the number of samples of subject n within morph m and Sn,i
m is the simi-

larity score between the morph m and the ith sample of its nth corresponding subject.

We use FaceNet [46] and ArcFace [52] as our verifiers and the operational threshold

is set at False Match Rate (FMR) of 0.1% [53]. MMPMR values for our three morphed

datasets are reported in Table 3.10. To calculate the MMPMR(τ ) values in Eq. 3.1, for
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Table 3.1: MMPMR (%) and ProdAvg-MMPMR(%) for twin morphed datasets.

Method Landmark Wavelet StyleGAN2

MMPMR(%)
FaceNet 97.70 98.11 93.01
ArcFace 99.20 99.41 94.54

MMPMR- FaceNet 97.64 97.95 92.97
ProdAvg(%) ArcFace 99.18 99.20 94.43

Table 3.2: MMPMR (%) at false match rate of 0.1%.

Dataset
Twin FRGC [12]

Facemorpher Wavelet StyleGAN2 Facemorpher OpenCV StyleGAN2 MIPGAN-II
FaceNet 97.70 98.11 93.01 5.7 5.9 0.7 92.15
ArcFace 99.20 99.41 94.54 11.2 10.8 0.4 94.21

Dataset
FERET [12] AMSL [50] LMA-DRD [51]

Facemorpher OpenCV StyleGAN2 Facemorpher StyleGAN2 Digital Print+Scan
FaceNet 40.3 40.6 1.3 81.16 61.28 64.12 60.76
ArcFace 34.8 35.2 2.5 84.85 39.17 80.07 77.17

each subject, we randomly chose a face image that is not used to create the morph. In

Eq. 3.2, ProdAvg-MMPMR(τ ) is calculated using all the samples corresponding to each

subject. The twin dataset includes an average number of 3.15 images per subject. We

observe that FaceNet consistently provides lower vulnerability compared to ArcFace and

the proposed wavelet-based morphing method provides comparable vulnerability with the

landmark morphing method and higher vulnerability than StyleGAN2 model.

3.2.2 Dataset Comparison

For an initial observation of the quality of our morphs, we plot the L2 FaceNet distance

between both bona fide subjects and their respective morph faces found in Figure 3.5.

We use the FaceNet distances between the morph and its respective bona fide subjects for

the Twin, FERET and FRGC morph[12] datasets. It is clear that the twin morphs have the
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obvious advantage when morphing against other datasets, with nearly the entire distribution

falling below the spread of both the FRGC and FERET datasets, meaning that the morphs

have high similarity to their bona fide identities.

To further understand the relationship between the morphs and their respective bona

fide subjects, we plot the same values with respect to both subject 1 and subject 2 in Figure

3.6. The x-axis represents the FaceNet L2 distance between subject 1 and the morph,

where the y-axis represents subject 2 to the morph. We compare the FaceNet distances

of the Twins database to the FRGC and FERET morphs. Again, we observe that the twin

morphs consistently having lower FaceNet distances than the FRGC and FERET datasets.

Further, we observe that the twin dataset has a lower variance in distance scores for both the

landmark and StyleGAN2 settings. Meaning that not only do the twin morphs show high

similarity, they retain identity significantly better than the FRGC and FERET morphs. This

anomaly is especially apparent in the StyleGAN2 datasets, where the FRGC and FERET

datasets clearly bias toward one subject.

For the landmark-based datasets in a differential morph detection setting (Table 3.3 and

Table 3.4), our twin morphs preform significantly better than the comparison datasets, with

our Twin Landmark morphs achieving an EER of 36.84% and 34.36% on FaceNet and Arc-

Face, respectively. When comparing to the rest of the datasets, all datasets have EER values

below 21% across both FaceNet and ArcFace. Using FaceNet, five of the seven datasets

(FRGC Facemorpher, FERET OpenCV, AMSL Facemorpher, FERET Facemorpher) have

EER values below 5%. Additionally, both the Twin Landmark and Twin Wavelet morphs

have an AUC of approximately 14% lower than the best performing landmark comparison

dataset using FaceNet (LMA-DRD Digital with AUC of 88.00%). In a differential sce-

nario, it is clear that the twin morphs retain the identity of the bona fide subjects better than

the compared datasets.
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Table 3.3: Differential morph detection across datasets using FaceNet.

Dataset Morph AUC APCER@BPCER BPCER@APCER EERType 1% 5% 10% 1% 5% 10%
FRGC Facemorpher [12]

L
an

dm
ar

k
99.82% 2.11% 0.63% 0.21% 6.55% 1.22% 0.616% 1.63%

FERET OpenCV [12] 99.00% 18.56% 4.92% 3.03% 14.77% 4.166% 4.16% 2.27%
FRGC OpenCV [12] 99.52% 8.40% 1.60% 0.8% 4.56% 1.52% 0.43% 2.61%

AMSL Facemorpher [50] 99.35% 18.41% 3.70% 1.01% 6.81% 3.31% 1.28% 3.68%
FERET Facemorpher [12] 98.91% 19.45% 5.83% 4.28% 16.97% 4.79% 1.10% 4.79%

LMA-DRD Print+Scan [51] 91.22% 75.68% 33.33% 29.63% 68.56% 41.86% 39.8% 16.27%
LMA-DRD Digital[51] 88.00% 80.26% 45.00% 27.50% 72.36% 57.50% 50.00% 20.00%

Twin Wavelet 74.03% 61.48% 57.41% 51.51% 98.744% 85.33% 74.56% 33.71%
Twin Landmark 70.19% 64.73% 58.31% 54.09% 99.10% 90.20% 81.95% 36.84%

FRGC StyleGAN2 [12]

G
A

N

99.65% 0.40% 0.12% 0.00% 0.42% 0.00% 0.00% 0.42%
AMSL StyleGAN2 [50] 99.98% 1.26% 0.00% 0.00% 0.86% 0.00% 0.00% 0.50%

MIPGAN-II [21] 99.85% 1.89% 0.27% 0.00% 5.06% 0.80% 0.26% 2.40%
FERET StyleGAN2 [12] 99.73% 4.29% 1.56% 0.00% 5.14% 1.56% 0.00% 2.94%

Twin StyleGAN2 88.92% 41.83% 33.57% 27.77% 97.09% 62.25% 57.62% 19.95%

Table 3.4: Differential morph detection across datasets using ArcFace.

Dataset Morph AUC APCER@BPCER BPCER@APCER EERType 1% 5% 10% 1% 5% 10%
AMSL Facemorpher [9]

L
an

dm
ar

k

97.87% 16.25% 10.78% 6.29% 30.52% 16.82% 6.12% 8.11%
FRGC OpenCV [9] 96.60% 42.85% 15.81% 9.18% 53.18% 19.89% 9.85% 9.74%

FERET Facemorpher [9] 96.33% 26.46% 14.55% 10.77% 57.46% 26.55% 12.66% 10.68%
FRGC Facemorpher [?] 96.85% 27.55% 15.85% 11.22% 53.06% 17.34% 10.87% 10.71%
FERET OpenCV [12] 96.32% 24.16% 14.93% 10.77% 57.18% 27.88% 12.47% 10.77%

LMA-DRD Print+Scan [51] 90.26% 67.78% 39.54% 31.97% 53.48% 43.64% 30.32% 17.35%
LMA-DRD Digital[51] 88.88% 65.25% 40.75% 29.63% 57.12% 39.31% 35.70% 21.25%

Twin Landmark 71.01% 81.36% 67.44% 57.76% 98.44% 91.77% 84.77% 34.36%
Twin Wavelet 69.98% 84.56% 71.61% 59.93% 99.52% 92.38% 85.27% 34.49%

AMSL StyleGAN2 [50]

G
A

N

99.96% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.97%
FRGC StyleGAN2 [12] 99.85% 0.18% 0.06% 0.00% 0.00% 0.00% 0.00% 1.03%
FERET StyleGAN2 [12] 99.75% 3.59% 0.95% 0.37% 10.20% 1.03% 0.05% 2.55%

MIPGAN-II [21] 99.07% 10.65% 6.35% 2.18% 20.25% 8.07% 1.91% 5.91%
Twin StyleGAN2 93.60% 28.39% 19.90% 15.38% 89.67% 45.67% 22.33% 13.58%
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Figure 3.7: SSIM between original and perturbed images for the landmark, wavelet, and
StyleGAN2 datasets from left to right, respectively.

3.2.3 White Box Adversarial Attack

Using the architecture of Inception-Resnet v1 [54] pretrained on VGGFace2 [55], we fine-

tuned four morph detectors. Our universal detector is trained on all three morph datasets,

while the dedicated detectors are trained on each of our three morph datasets to detect

morph imagery. We refer to these models as the universal and dedicated trained morph

detectors, respectively. We use these detectors to perturb the morph datasets, creating two

separate perturbed datasets called the universal and dedicated perturbed datasets. Using

a β = 6, ϵ = 2, and λ = 0.55, we perturb every morph image until the confidence

score of the detector falls below 50%. Prior to perturbation, the landmark, StyleGAN2,

and landmark wavelet datasets have a classification AUC values of 95.96%, 99.83%, and

99.80%, respectively. After perturbation, the AUC value of all datasets drops significantly

to 46.98%, 56.84%, and 27.87%, respectively for the dedicated datasets. The universal

detector was used to perturb the datasets as well, seeing AUC values of 99.30% perturbed

to 80.53% for StyleGAN2, 97.90% to 57.73% for landmark, and 99.44% to 55.06% for

landmark wavelet to create the universal perturbed dataset. As presented in Fig. 3.8, the

perturbed morphed images maintain their visual quality. All the perturbed morphs have

a Structural Similarity Index Measure (SSIM) above 0.99 with their morph counterparts

which illustrates that the perturbation applied to the morphs is imperceivable.
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Figure 3.8: The columns from left to right represent landmark, wavelet, and StyleGAN
datasets. The top row represents the SSIM score between the 150 randomly selected bona
fide and respective morphs. The second row represents the SSIM score between the bona
fide and perturbed morphs. The last row represents the SSIM score distribution between
the original and perturbed morphs.

3.2.4 Similarity Comparison:

Morphed images contain structural similarities with their bona fide subjects. Our metric

of comparison is the Structural Similarity Index Measure (SSIM) which is based on per-

ceived similarity rather than a pixel-to-pixel comparison. This measure is an image quality

metric that is calculated by finding the similarity of contrast, luminance, and structure of

an image to a reference picture [42]. We compare the SSIM score between the bona fide

identities and their respective morphs, as presented in the first row of Fig. 3.8. The land-
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Figure 3.9: Universal FaceNet classifier DET curves for (left) landmark, (middle) wavelet
landmark, and the (right) StyleGAN datasets.

Table 3.5: Universal FaceNet classifier tested APCER and BPCER values for morph and
perturbed morph images.

Dataset AUC APCER@BPCER BPCER@APCER EER1% 5% 10% 1% 5% 10%
Landmark 63.62 96.86 90.93 80.81 93.38 86.61 76.69 40.56

Landmark Perturbed 56.22 98.48 93.83 85.23 95.80 92.17 84.67 45.56
StyleGAN2 78.79 95.23 74.18 53.13 79.77 69.55 58.22 28.66

StyleGAN2 Perturbed 71.88 94.65 80.46 69.65 86.66 77.33 68.22 34.26
Landmark Wavelet 70.55 96.61 87.56 75.12 87.50 78.67 67.40 34.55

Landmark Wavelet Perturbed 62.75 97.94 91.78 81.15 92.57 85.56 77.52 39.79

mark and landmark wavelet datasets show a clear, linear correlation between the structural

similarities of bona fide identities and the morphed image. While our StyleGAN dataset

has a larger variance, the results still show that the identities have a high degree of similar-

ity between both identities. These results reinforce the known issue of identity loss when

morphing with StyleGAN [12]. We repeat this test with the bona fide images compared

to the perturbed landmark, landmark wavelet, and StyleGAN datasets, as presented in the

second row of Fig. 3.8. There was no significant change in SSIM after perturbation and the

perturbed morphs retain their similarity with the bona fide identities. Finally, we compare

the morphs to their perturbed counterpart in terms of SSIM, as presented on the last row in

Fig. 3.8. All the morphs have an SSIM above 0.99 with their perturbed counterparts. This
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Figure 3.10: Dedicated FaceNet classifiers DET curves for original morph and perturbed
morph datasets. (Left) landmark, (middle) landmark wavelet, and (right) StyleGAN
datasets.

Table 3.6: Dedicated FaceNet classifiers tested APCER and BPCER values for morph and
perturbed morph images.

Dataset AUC APCER@BPCER BPCER@APCER EER1% 5% 10% 1% 5% 10%
Landmark 80.28 90.00 62.55 47.79 86.12 70.48 58.46 26.53

Landmark Perturbed 50.41 98.37 91.27 85.00 99.43 97.17 94.67 49.35
StyleGAN2 92.20 90.00 36.27 21.86 53.55 32.00 21.11 14.66

StyleGAN2 Perturbed 82.77 94.53 65.11 48.02 78.22 57.33 44.00 25.77
Landmark Wavelet 78.63 88.04 74.63 54.95 87.01 68.38 50.73 28.67

Landmark Wavelet Perturbed 59.10 99.26 95.83 92.64 90.77 84.06 75.00 43.52

illustrates that the perturbation applied to the morphs is imperceivable.

Comparing our StyleGAN2 morphs, the Twin dataset performs with an AUC of 88.92%

with FaceNet and 93.00% using ArcFace. The Twin StyleGAN2 images result in the high-

est EER value across both verifiers. In this scenario, we observe the issue GANs have with

retaining identity information, with the EER of all GAN-generated morphs significantly

lower than their respective landmark datasets. For instance, the Twin Landmark dataset,

using FaceNet as a verifier, has an EER value of 33.71% while the StyleGAN2 generated

data has an EER value of 19.95%. This pattern can also be observed in the FRGC Facemor-

pher and FRGC StyleGAN2 dataset, having an EER of 1.63% and 0.42%, respectively.

On the twins datasets, ArcFace is better equipped to differentiate between the morphed im-
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age and bona fide subject. For instance, the Twin StyleGAN2 morphs result in an AUC of

88.92% with EER of 19.95% using FaceNet, compared to 93.60% with 13.58% EER with

ArcFace. In contrast to FaceNet, ArcFace underperformed with the Twin Wavelet dataset

compared to the Twin landmark dataset.

3.2.5 Twin Morph Classification

We extract the FaceNet features and train a two-node binary classifier to classify images

as genuine or morph. We train the model using a combined training subset of our three

datasets. We call this model the universal FaceNet classifier. A testing subset of the uni-

versal perturbed datasets is tested on the universal FaceNet classifier and the results are

presented in Table 3.5 and Figure 3.9. Comparing the experiments conducted on 1) real

and morphed images and 2) real and perturbed morphed images, we see a drop in AUC for

all three morphing algorithms tested: landmark dropping from 63.62% to 56.22%, land-

mark wavelet dropping from 70.55% to 62.75%, and StyleGAN2 dropping from 70.55% to

62.75%. Additionally, we observe an increase in EER and in APCER@BPCER=5% across

all datasets. When ACPER@BPCER increases, the morphs are being labeled as bona fide

at a higher rate. This shows that the quality of the morphing attack is improved after adding

perturbation.

To further understand the effects of perturbation, we train three dataset-dedicated, bi-

nary classifiers on the training subset of each of our three datasets: landmark, wavelet, and

StyleGAN2 datasets. The result is three separate FaceNet classifiers trained to differentiate

between morph and genuine images for specific datasets.

We refer to these classifiers as the dedicated FaceNet classifiers. Using a testing subset

of each dataset, we test the effects of perturbation on the dedicated FaceNet classifiers’

respective datasets. For example, the landmark and landmark perturbed datasets are tested
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Figure 3.11: Cross dataset testing on the dedicated FaceNet classifiers.

Table 3.7: Cross-dataset APCER and BPCER results from dedicated FaceNet classifiers.

Dataset Dedicated FaceNet AUC APCER@BPCER BPCER@APCER EERClassifier 1% 5% 10% 1% 5% 10%
Landmark StyleGAN2 90.39 89.53 51.86 28.48 58.12 35.56 23.71 18.90

Landmark Perturbed StyleGAN2 58.71 97.09 88.13 81.62 97.66 90.96 84.59 43.22
Landmark Wavelet 50.63 99.30 91.04 85.46 97.33 92.17 85.80 44.67

Landmark Perturbed Wavelet 52.07 99.65 93.95 89.88 98.47 92.98 88.46 47.66
Wavelet StyleGAN2 89.65 90.21 51.57 34.54 58.08 37.25 26.22 17.64

Wavelet Perturbed StyleGAN2 58.14 100.00 94.60 89.21 86.21 79.36 74.11 45.71
Wavelet Landmark 77.75 85.38 66.90 56.76 89.95 72.30 62.50 28.67

Wavelet Perturbed Landmark 65.19 99.26 93.62 84.55 87.45 71.76 63.59 39.40
StyleGAN2 Wavelet 58.12 98.60 92.44 86.62 96.44 88.00 80.00 44.20

StyleGAN2 Perturbed Wavelet 52.28 98.95 95.81 90.96 96.88 91.55 85.11 48.70
StyleGAN2 Landmark 72.70 92.44 76.04 64.18 96.00 78.22 66.00 34.66

StyleGAN2 Perturbed Landmark 62.23 95.58 88.37 76.74 98.44 90.00 82.22 41.55

on the landmark dedicated FaceNet classifier as presented in Table 3.6 and Figure 3.10.

The landmark wavelet dataset has a drop in AUC from 78.63% to 59.10% and an increase

in EER from 28.67% to 43.52%. Additionally, the APCER @ BPCER 1% spikes from

90.00% to 98.37%, Across the datasets we see a spike in APCER @ BPCER, meaning a

significant jump in morph misclassification. Clearly, the perturbation is causing the classi-

fier to erroneously classify the morphed images, leading to a higher rate of morphs being

labeled as genuine and, therefore, an increase in ACPER@BPCER for all thresholds as

well as an increase in EER. The results show that the perturbation applied to the morph

images has a significant effect on morph detectors optimized for a particular morphing
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Figure 3.12: Cross dataset testing on the dedicated morph detectors used as verifiers.

Table 3.8: Cross dataset APCER and BPCER results from dedicated morph detectors used
as verifiers.

Dataset Dedicated AUC (%) APCER@BPCER BPCER@APCER EER (%)Verifier 1% 5% 10% 1% 5% 10%
Landmark StyleGAN2 70.16 88.48 74.50 67.79 95.32 85.56 70.48 34.50

Landmark Perturbed StyleGAN2 61.96 91.40 89.76 84.32 96.61 90.64 79.59 40.56
Landmark Wavelet 68.32 97.09 80.00 71.74 93.22 84.19 75.72 36.61

Landmark Perturbed Wavelet 51.97 99.41 93.25 88.25 97.01 92.33 86.20 48.62
Wavelet StyleGAN2 74.36 87.19 71.13 64.15 94.11 80.63 62.63 32.45

Wavelet Perturbed StyleGAN2 73.36 87.19 76.82 67.98 94.60 80.88 62.99 34.50
Wavelet Landmark 93.60 70.28 36.11 21.93 46.81 24.01 17.15 13.72

Wavelet Perturbed Landmark 91.05 84.42 45.16 33.21 51.96 31.37 22.79 17.15
StyleGAN2 Wavelet 64.54 95.81 86.81 80.58 94.44 84.22 78.22 37.77

StyleGAN2 Perturbed Wavelet 57.67 98.83 91.04 85.93 97.55 88.44 82.22 44.44
StyleGAN2 Landmark 74.58 85.00 73.25 63.13 84.88 71.11 62.00 32.00

StyleGAN2 Perturbed Landmark 60.38 89.50 82.70 74.80 95.11 86.00 79.33 42.66

technique. Further, in Table 3.7 and Figure 3.11, we test the cross-dataset performance on

the dedicated FaceNet classifiers. For every test, we again see a decrease in AUC and an

increase in EER. By testing across the FaceNet classifiers, we show that the added adver-

sarial perturbation is transferable to unseen classifiers. Table 3.7 and Figure 3.11 shows

that the landmark dataset tested across detectors is most greatly affected by perturbation.

To further explore the transferability of the designed adversarial perturbations for the

morphed images, we use our dedicated detectors as verifiers in a differential morph detec-

tion setting. In Table 3.8 and Figure 3.12, the differential morph detection performance

of each dedicated detector is tested against images perturbed on other dedicated detectors.

Across all datasets, AUC drops and the perturbed StyleGAN2 dataset preserves the best
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transferability. Most notably, the AUC of the StyleGAN2 dataset tested on the landmark de-

tector sees a drop in AUC of 14.20%. For all tests, we see an increase in APCER@BPCER

5% of at least 5%, showing a strong increase in attack rates. Again, we show the advantage

of adversarially perturbing morph data to improve the quality of their attack. We also ob-

serve that, considering Tables 3.7 and 3.8, the adversarial perturbation transfers better for

the single morph classification compared to differential morph detection.

3.2.6 Summary

Morphing twins is a significant challenge for FRS that leads to erroneous verification, with

our twin datasets scoring over 10% AUC lower than datasets found in literature. We were

able to show that the twin morphs represent an extremely difficult scenario for FaceNet,

leading to abnormally high error rates. With FaceNet EER values above 30% for all three

twin datasets, the need for more work on extreme cases such as twin morphs is emphasized.

To further improve the attack quality of our morphed images, we explored the effect of

adding adversarial perturbation to our morph datasets. We showed that the perturbation is

transferable across several unseen classifiers. The perturbation gave the already difficult

twin morph dataset even greater capabilities. The generated twin morphed images are one

of the ultimate challenges for an FRS and as such, these images can be used to further test

the accuracy of automated morph detectors.
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Figure 3.13: The bona fide subjects and morphed samples from Clarkson dataset.

3.3 Kid Morph Generation

Facial recognition systems perform lower on children than adults. Michalski et al. show

that commercial-off-the-shelf (COTS) algorithms at an FMR of 0.1% in a verification set-

ting for juveniles result in a false match rate up to six times higher than adults [56]. One

of the major barriers to the improvement of juvenile face recognition is the lack of pub-

licly available datasets dedicated to children [56]. Most FRS common in literature are

trained on large publically-available datasets such as Visual Geometry Group Face2 (VG-

GFace2) [57]. While these datasets contain children’s faces, the proportion of juvenile

subjects is statistically insignificant to create reliable FRS for children. Srinivas et al. [58]

study multiple COTS and government-off-the-shelf (GOTS) algorithms to understand the

bias FRS have against children. They were able to deduce that in both identification and

verification scenarios, children do not perform as well as adult baselines. Similarly, the

Face Recognition Vendor Test (FRVT) [56, 59] has consistently shown lower performance

on child subjects than on adult faces.

Additionally, children are more difficult to verify in person than adult subjects, creating

a challenge for in-person verification which would otherwise come naturally [60]. We

propound this crucial scenario with serious implications for national security and child

trafficking: If a bad actor attempts to cross an international border with a child, the bad

actor can create a morphed image of the child with a look-alike and pass the child through
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Table 3.9: Morph detection performance on our six morphed datasets.

Morph Dataset AUC APCER@BPCER BPCER@APCER EER1% 5% 10% 1% 5% 10%

D
iff

er
en

tia
l

Clarkson StyleGAN2 89.75% 46.55% 36.72% 28.85% 72.86% 55.85% 32.44% 16.73%
Clarkson OpenCV 83.58% 58.57% 51.13% 44.33% 76.32% 67.45% 48.81% 24.74%

Clarkson Facemorpher 83.86% 54.85% 47.76% 40.29% 75.68% 71.13% 52.97% 24.70%
UNCW StyleGAN2 97.32% 27.22% 13.70% 5.05% 42.40% 15.00% 8.51% 9.44%

UNCW OpenCV 92.23% 48.15% 28.97% 18.03% 77.66% 44.97% 30.17% 14.64%
UNCW Facemorpher 89.45% 53.90% 40.75% 30.78% 80.52% 51.45% 37.20% 18.45%

Si
ng

le

Clarkson StyleGAN2 79.68% 86.57% 69.57% 52.47% 97.91% 71.00% 55.39% 27.06%
Clarkson OpenCV 69.89% 93.15% 75.29% 65.60% 99.52% 91.77% 78.48% 36.12%

Clarkson Facemorpher 70.47% 94.52% 74.33% 64.78% 97.76% 92.00% 80.56% 33.54%
UNCW StyleGAN2 92.66% 72.35% 29.39% 21.44% 71.15% 40.94% 26.17% 14.55%

UNCW OpenCV 81.38% 95.34% 76.02% 58.12% 74.07% 59.39% 44.24% 24.77%
UNCW Facemorpher 81.11% 95.59% 73.32% 58.88% 73.25% 60.01% 45.17% 27.29%

border security under the doppelganger’s alias. In 2019, in the United States alone, there

were over 6,000 reported cases of adults crossing a border with a minor fraudulently labeled

as their own [61]. Our work is vital to detecting vulnerable children in these scenarios.

To the best of our knowledge, this is the first attempt to morph juvenile subjects to create

morphed faces. We generate and evaluate 52,686 high-quality morph images utilizing two

landmark-based and one generative adversarial morph method for children of the wide age

range of 4 to 17 years old. Examples of our generated morphs from each of our morphing

techniques can be found in Fig. 3.3. These images present a difficult scenario for face

verification systems and can be utilized to improve FRS models, as well as shed light on

the current dangers of morphing children’s faces. Many deep learning models show a strong

bias against children [59], by morphing children we take advantage of this bias in order to

further fool facial recognition systems.

Two datasets are utilized to create our morphed images, the Clarkson University chil-

dren dataset [62] and UNCW MORPH age-progression dataset [63]. For clarity, we refer to

the two datasets as Clarkson and UNCW for the remainder of the section. The two datasets
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Figure 3.14: SSIM between scores between bona fide and morphed images for the UNCW
(left) and Clarkson (right) datasets. The red line indicates the ideal SSIM scores, where
both subjects equally contribute to their respective morphs.

are utilized in order to generate a range of generated ages, with the Clarkson dataset con-

taining images of children ages 4-11 years old, and a subset of the UNCW dataset con-

taining subjects ranging from 16-17 years old. For both datasets, the subjects are in front

of a neutral background and looking directly into the camera. A four year old has vastly

different facial features than a 17 year old. When morphing, it is vital to morph subjects

who look-alike in order to reduce morphing artifacts. Therefore, we preserve the integrity

of the demographics of each dataset by generating two separate morphed datasets from the

respective bona fide datasets.

UNCW dataset: From [63], we extract individuals of age 16-17 years old. The dataset

has a strong gender bias, and our subset includes 499 male and 58 female subjects. The

images are of size 470 × 400. Compared to Clarkson dataset, the subjects in this dataset

have highly distinguishable features, similar to adults. We use the L2 distance between the

FaceNet’s embeddings of length 512 in order to generate a similarity scores [46]. Morphs

are generated within gender groups, and similarity scores are calculated within genders.

As presented in Fig. 3.15, distance threshold is set at the top 5% of the female pairs in

the distribution and pairs below this threshold are considered look-alikes. This threshold is
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Figure 3.15: All-to-all distribution for comparisons of subjects from the UNCW dataset.
Pairs below the distance threshold are considered look-alikes.

also applied to the male distribution. 465 subjects are accounted in the final pairings, and

per morphing method, 7,564 morphs are generated.

Clarkson dataset [62] is made up of children ages 4-11 years old. The original images

are of sizes 5472× 3648 and of good visual quality. We used a subset of the data contain-

ing 165 subjects. The children are so young their faces lack highly distinguishable features,

thus, creating high inter-class similarity between the subjects. Therefore, using FaceNet we

find the top 10,000 look-alike pairs and use them for morphing. We cropp the images to

512 × 512 and morph using the Facemorpher landmark-based, OpenCV landmark-based,

and StyleGAN2 techniques. The resulting images are 512 × 512 and have no visual mor-

phing artifacts.

3.3.1 Vulnerability Analysis

Morphed images contain structural similarities with their bona fide subjects. Structural

Similarity Index Measure (SSIM) [42] is calculated based on perceived similarity between

reference images rather than a pixel-to-pixel comparison. As presented in Fig. 3.3, we

compare the SSIM score between the bona fide identities and their respective morphs. A
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Table 3.10: MMPMR (%) for our six juvenile datasets.

Method Facemorpher OpenCV StyleGAN2

Clarkson
FaceNet 91.31 87.98 73.82
ArcFace 90.02 83.80 62.45

UNCW
FaceNet 99.32 97.87 90.40
ArcFace 97.25 93.13 81.49

higher SSIM score represents greater structural similarity. The datasets show a linear cor-

relation between the structural similarities of bona fide identities and the morphed image.

While the Clarkson dataset’s SSIM scores trend higher than UNCW, it has a higher vari-

ance. Meaning, the Clarkson dataset maintained similarity better than UNCW, but shows

greater bias toward one contributing subject over another. This is due to the greater variable

face shapes in the young children in the Clarkson dataset. Therefore, when the convex hull

is placed onto a contributing subject’s face the SSIM is biased toward the subject used as

the background of the morphed face, i.e., the image with stronger structural similarities.

Again, we use both MMPMR and APCER/BPCER as out metrics of comparison. As

presented in Table 3.10, we use FaceNet [46] and ArcFace [52] as our verifiers with τ as

the operational verification threshold at False Match Rate (FMR) of 0.1% [53]. For our six

juvenile morph datasets, FaceNet is more vulnerable compared to ArcFace. In addition, the

landmark morphing datasets provide higher vulnerability compared to StyleGAN2 datasets.

This observation is consistent with previous studies on landmark- and StyleGAN-based

morph generation [21].

3.3.2 Differential morph detector

We use FaceNet [46] as a verifier for our morphed images as shown in the Table ??. We

consider a positive pair a genuine image of a subject paired with a secondary bona fide

instance of the subject, while a negative pair is a genuine image paired with a subject’s re-
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spective morph. Verification results with a lower Area Under the Curve (AUC) and higher

APCER values indicate that the morphs are successfully fooling the verifier. The morphed

childrens’ faces are able to fool FaceNet, with Equal Error Rate (EER) values over 9%.

Across the three methods of morphing, StyleGAN2 consistently has a higher AUC then the

landmark-based morphs. For example, while the Clarkson StyleGAN2 dataset has an AUC

of 89.75%, the OpenCV and Facemorpher versions of the dataset have AUC 83.58% and

83.86%, respectively. This trend implies that FaceNet is able to differentiate between the

morph and bona fide StyleGAN2 images at a higher rate than the landmark morph datasets.

These results reinforce the known issue that StyleGAN2-generated morphs struggle to re-

tain identity information at the same rate as the landmark-based morphs [12].

The verification results for the landmark morph dataset are significantly lower than

FaceNet’s expected morph detection performance. In [13], adult datasets are verified over

99% AUC using FaceNet. The morphed child datasets results in a significant AUC drop of

approximately 16% when compared to adults. Additionally, there is a significant difference

in performance of the verifier when comparing the older children in the UNCW and the

young children found in the Clarkson dataset especially using the OpenCV method where

the Clarkson OpenCV dataset has an AUC of 83.58% and the UNCW OpenCV dataset with

an AUC of 92.23%.

3.3.3 Single morph Detection

Using FaceNet [46], we train a binary classifier with a two-node output to detect morphs.

The morph detector is trained on approximately 12,000 Facemorpher, OpenCV, and Style-

GAN images of adult datasets. The detector learns the common artifacts of images using

these morphing techniques. Table ?? shows the performance of the classifier on our six ju-

venile datasets. A lower AUC and higher APCER value indicate stronger morphed images
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because the morph images are fooling the classifier. Similar to the differential scenarios,

StyleGAN2 is shown to have a higher AUC in classification than the other datasets, specif-

ically having an AUC of 79.68% for the Clarkson StyleGAN2 dataset and 92.66% AUC

for the UNCW StyleGAN2 dataset, while their respective landmark morphs trend approx-

imately 10% lower. This means that the SyleGAN2 datasets have more artifacts than their

respective landmark-based datasets. The Clarkson landmark morphs and the UNCW land-

mark morphs all have APCER at BPCER=1% values above 93%, meaning that the morphs

are effective at fooling the morph detector. In this scenario, we again observe the effects of

aging in the performance of the classifier. The Clarkson dataset has a higher EER and lower

AUC when across the methodologies. For the OpenCV morphs, Clarkson has an EER of

36.12% while UNCW has an EER of 24.77%. For Facemorpher, the EER for Clarkson is

33.54% and UNCW has an EER of 27.29%. This trend continues with StyleGAN2 having

an EER of 27.06% and 14.55% for Clarkson and UNCW, which illustrates a bias toward

the older children.

3.3.4 Summary

In this paper, we generated high-quality morphed images from juvenile subjects. The mor-

phed images were shown to retain their identity while being convincing enough to fool

both single and differential morph detectors. While all datasets are shown to be effective at

fooling morph detectors, the landmark-based morph images were more effective compared

to StyleGAN2 morphs, which is consistent with adults datasets generated with the same

methodology [12]. Across all morph detectors, morphed children pose a more significant

threat than adult morphed datasets because of inherent bias when training deep learning

models. This illustrated the necessity of further work to bridge the gap between facial

recognition in adults and children as juvenile morphed images remain a threat to national

security and child safety.
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Chapter 4

Conclusion

4.1 Limitations

This work was limited by the both the number of publicly available datasets and morph

generation techniques. There are few datasets used in literature that contain images of

passport quality. Most large-scale datasets are comprised of faces in-the-wild which are

not ideal for morphing. Further, morphing requires intimate knowledge of subject identi-

ties for testing purposes. For example, differential morph detection requires a minimum of

two images per subject. Many large-scale datasets do not contain adequate documentation

of their subjects, normally this is done for privacy reasons. Fortunately, for the majority of

our work we were able to turn to private datasets which includes detailed identity documen-

tation. Further, morph generation is constrained to either Landmark or GAN-based morph

generation techniques. Of these methods, only a handful of algorithms are available to the

public. In order to generate more convincing morphed images, more repositories must be

published in order create greater flexibility in the generation phase.
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4.2 Next Steps

The natural next step of this work is to train morph detectors on the datasets. Because

our morphs are challenging to detect, they are a good training set for morph detection

deep learning models. Further, because our datasets are dedicated to specific groups of

individuals, morph detectors can be trained to specialize in specific groups of morphed

images. For example, for the first time, there is the prospect of training a morph detector to

specialize in detecting morphed images of children.

Outside the scope of morph detection, the generated morphed images can be used to test

the effectiveness of face verifiers. An ideal FRS will be able to differentiate a morph from

a genuine image of a given subject for every instance. The Twin Morph dataset is perfect

for this scenario. FaceNet is an extremely accurate face verifier, and the Twin Dataset

was still able to achieve EERs over 20%. By training a face verifier with twins, it can be

hypothesized that the verifier would be extremely effective.

4.3 Conclusion

In this work we were able to generate high-quality morphed images that successfully fooled

FRS. We took advantage of the lack of under-represented groups of individuals in order to

create the most challenging morphed images possible. We showed that morphed images are

able to successfully fool facial recognition systems into erroneously verifying an individual

as a bona fide subject. Further, we show that when adversarial perturbation is applied to

images, it can be transferred across morph detectors. In a real-world scenario, these morph

images would likely be accepted as genuine. In closing, our high-quality morphed images

are likely to fool both face recognition algorithms and humans alike.
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