11,030 research outputs found

    Network hierarchy evolution and system vulnerability in power grids

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The seldom addressed network hierarchy property and its relationship with vulnerability analysis for power transmission grids from a complex-systems point of view are given in this paper. We analyze and compare the evolution of network hierarchy for the dynamic vulnerability evaluation of four different power transmission grids of real cases. Several meaningful results suggest that the vulnerability of power grids can be assessed by means of a network hierarchy evolution analysis. First, the network hierarchy evolution may be used as a novel measurement to quantify the robustness of power grids. Second, an antipyramidal structure appears in the most robust network when quantifying cascading failures by the proposed hierarchy metric. Furthermore, the analysis results are also validated and proved by empirical reliability data. We show that our proposed hierarchy evolution analysis methodology could be used to assess the vulnerability of power grids or even other networks from a complex-systems point of view.Peer ReviewedPostprint (author's final draft

    Infrastructure network vulnerability

    Get PDF
    The work presented in this paper aims to propose a methodology of analyzing infrastructure network vulnerability in the field of prevention or reduction of the natural disaster consequences. After a state of the art on vulnerability models in the academic literature, the various vulnerability factors are classified and discussed. Eventually, a general model of vulnerability analysis including societal parameters is presented

    Efficiency of Scale-Free Networks: Error and Attack Tolerance

    Full text link
    The concept of network efficiency, recently proposed to characterize the properties of small-world networks, is here used to study the effects of errors and attacks on scale-free networks. Two different kinds of scale-free networks, i.e. networks with power law P(k), are considered: 1) scale-free networks with no local clustering produced by the Barabasi-Albert model and 2) scale-free networks with high clustering properties as in the model by Klemm and Eguiluz, and their properties are compared to the properties of random graphs (exponential graphs). By using as mathematical measures the global and the local efficiency we investigate the effects of errors and attacks both on the global and the local properties of the network. We show that the global efficiency is a better measure than the characteristic path length to describe the response of complex networks to external factors. We find that, at variance with random graphs, scale-free networks display, both on a global and on a local scale, a high degree of error tolerance and an extreme vulnerability to attacks. In fact, the global and the local efficiency are unaffected by the failure of some randomly chosen nodes, though they are extremely sensititive to the removal of the few nodes which play a crucial role in maintaining the network's connectivity.Comment: 23 pages, 10 figure
    • …
    corecore