3 research outputs found

    Hybrid modelling of time-variant heterogeneous objects.

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve

    Multiscale methods for fabrication design

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 135-146).Modern manufacturing technologies such as 3D printing enable the fabrication of objects with extraordinary complexity. Arranging materials to form functional structures can achieve a much wider range of physical properties than in the constituent materials. Many applications have been demonstrated in the fields of mechanics, acoustics, optics, and electromagnetics. Unfortunately, it is difficult to design objects manually in the large combinatorial space of possible designs. Computational design algorithms have been developed to automatically design objects with specified physical properties. However, many types of physical properties are still very challenging to optimize because predictive and efficient simulations are not available for problems such as high-resolution non-linear elasticity or dynamics with friction and impact. For simpler problems such as linear elasticity, where accurate simulation is available, the simulation resolution handled by desktop workstations is still orders of magnitudes below available printing resolutions. We propose to speed up simulation and inverse design process of fabricable objects by using multiscale methods. Our method computes coarse-scale simulation meshes with data-drive material models. It improves the simulation efficiency while preserving the characteristic deformation and motion of elastic objects. The first step in our method is to construct a library of microstructures with their material properties such as Young's modulus and Poisson's ratio. The range of achievable material properties is called the material property gamut. We developed efficient sampling method to compute the gamut by focusing on finding samples near and outside the currently sampled gamut. Next, with a pre-computed gamut, functional objects can be simulated and designed using microstructures instead of the base materials. This allows us to simulate and optimize complex objects at a much coarser scale to improve simulation efficiency. The speed improvement leads to designs with as many as a trillion voxels to match printer resolutions. It also enables computational design of dynamic properties that can be faithfully reproduced in reality. In addition to efficient design optimization, the gamut representation of the microstructure envelope provides a way to discover templates of microstructures with extremal physical properties. In contrast to work where such templates are constructed by hand, our work enables the first computational method to automatically discovery microstructure templates that arise from voxel representations.by Desai Chen.Ph. D

    Hybrid modelling of time-variant heterogeneous objects

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore