24,259 research outputs found

    An experimental investigation of S-duct flow control using arrays of low-profile vortex generators

    Get PDF
    An experimental investigation was undertaken to measure the effect of various configurations of low-profile vortex generator arrays on the flow in a diffusing S-duct. Three parameters that characterize the vortex generator array were systematically varied to determine their effect: (1) the vortex generator height; (2) the streamwise location of the vortex generator array; and (3) the vortex generator spacing. Detailed measurements of total pressure at the duct exit, surface static pressure, and surface flow visualization were gathered for each vortex generator configuration. These results are reported here along with total pressure recovery and distortion coefficients determined from the experimental data. Each array of vortex generators tested improved total pressure recovery. The configuration employing the largest vortex generators was the most effective in reducing total pressure recovery. No configuration of vortex generators completely eliminated the flow separation that naturally occurs in the S-duct, however the extent of the separated flow region was reduced

    Application of a computational model for vortex generators in subsonic internal flows

    Get PDF
    A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vorticity source term is used in a modified form of the Parabolized Navier-Stokes equations to model the shed vortex. Computed results are compared with idealized flow vortex paths, and with experimental data for vortex generators embedded in a thick turbulent boundary layer. The analysis is also compared with experimental data for a separated diffusing S-duct and for a diffusing S-duct with vortex generators. Quantitative comparisons are shown for the latter three cases. Emphasis is placed on verifying the ability of the model to predict global distortions in the flow field

    Experimental study of wing leading-edge devices for improved maneuver performance of a supercritical maneuvering fighter configuration

    Get PDF
    Wind tunnel tests were conducted to examine the use of wing leading-edge devices for improved subsonic and transonic maneuver performance. These devices were tested on a fighter configuration which utilized supercritical-wing technology. The configuration had a leading-edge sweep of 45 deg and an aspect ratio of 3.28. The tests were conducted at Mach numbers of 0.60 and 0.85 with angles of attack from -0.5 deg to 22 deg. At both Mach numbers, sharp leading-edge flaps produced vortices which greatly altered the flow pattern on the wing and resulted in substantial reductions in drag at high lift. Underwing or pylon-type vortex generators also reduced drag at high lift. The vortex generators worked better at a Mach number of 0.60. The vortex generators gave the best overall results with zero toe-in angle and when mounted on either the outboard part of the wing or at both an outboard location and halfway out the semispan. Both the flaps and the vortex generators had a minor effect on the pitching moment. Fluorescent minitufts were found to be useful for flow visualization at transonic maneuver conditions

    On the comparison between compound louvered-vortex generator fins and X-shaped louvered fins

    Get PDF
    A recent evolution in heat exchanger design is the use of compound designs. One of the designs under study is a combination between a louvered fin and vortex generators. Several possible placements of the vortex generators are studied. These compound designs are compared with the X-shaped louvered fin, which maximizes the louvered area. It is shown that the X-shaped louvered fin exhibits the same heat transfer enhancement mechanism as the compound design, with respect to the rectangular louvered fin. The X-shaped louvered fin outperforms all of the compound designs

    Flat-plate drag measurements with vortex generators in turbulent boundary layer

    Get PDF
    Direct drag measurements were obtained on a flat plate with a spanwise row of vortex generators near the leading edge, to produce an array of stream wise vortices within the approaching turbulent boundary layer. The object was to explore the possibility of modifying the large scale structure of the boundary layer through embedded longitudinal vortices with a view to obtaining a reduction in wall shear. Both obstacle and vane type vortex generators were tested at free stream velocities 40 ft/sec to 130 ft/sec corresponding to plate length Reynolds no. 0.3 million to 0.8 million with a nominal boundary layer thickness of approximately 0.6 in. at the leading edge. A few vortex generator configurations were tested both on and off the plate to measure the total drag as well as the plate drag alone. The obstacle type devices reduced the plate drag, indicating that the wake momentum defect predominated even in the presence of streamwise vortices. The vane type vortex generators however always increased the plate drag

    The development of passive flow control vortices

    Get PDF
    Surface flow visualisation and Particle Image Velocimetry (PIV) were used to investigate the flow-field of sub-boundary layer vane vortex generators (VVGs) and steady jet vortex generators (SJVGs) in a separated flow at 20m/s. The vortex generators were mounted on a 2D bump which was situated on the floor of a 350mm by 250mm wind tunnel and had a separation zone on its trailing edge.Surface flow visualisation was used to select VVG spacings and SJVG velocity ratios for effective separation control and investigate surface flow. Instantaneous and mean parameters downstream of the VVG and SJVG were measured non-intrusively using PIV. The instantaneous behaviour of the vortices was assessed using the coherence of a vortex and fluctuations in the location of instantaneous peak vorticity. Coherence is a parameter that was developed in the course of this research and had not been encountered in the literature at the time experiments ceased. The mean behaviour of the vortices was assessed using traditional variables, such as, mean, peak vorticity and its location, diameter and circulation of the vortex. A flat plate VVG study was performed to allow direct comparisons with previous work to be made.It was found that vortices generated by both VVGs and SJVGs were unsteady irrespective of geometry, became incoherent with downstream distance and had an exponential decay in mean peak vorticity. Surface flow visualisation indicated that for multiple VVG configurations the co-rotating configuration with a spacing of 3h effectively minimised separation on the 2D bump. For SJVGs, a velocity ratio of 1.0 was sufficient for separation contro

    Investigation of passive flow control techniques to enhance the stall characteristics of a microlight aircraft

    Get PDF
    This report investigates the enhancement of aerodynamic stall characteristics of a Skyranger microlight aircraft by the use of passive flow control techniques, namely vortex generators and turbulators. Each flow control device is designed and scaled to application conditions. Force balance measurements and surface oil flow visualisation are carried out on a half-model of the microlight to further investigate the nature of the flow on the aircraft with and without the flow control devices. The results indicate a clear advantage to the use of turbulators compared with vortex generators. Turbulators increased the maximum lift coefficient by 2.8%, delayed the onset of stall by increasing the critical angle by 17.6% and reduced the drag penalty at both lower (pre-stall) and higher angles of attack by 8% compared to vortex generators. With vortex generators applied, the results indicated a delayed stall with an increase in the critical angle by 2% and a reduced drag penalty at higher angles of attack

    Performance of vortex generators in a Mach 2.5 low-bleed full scale 45-percent-internal-contraction axisymmetric inlet

    Get PDF
    Steady-state and dynamic flow characteristics associated with two sets of vortex generators having different mixing criteria were determined. The inlet performance with and without these vortex generators is presented. The vortex generators were successful in eliminating separation, increasing area-weighted total pressure recovery, and decreasing distortion. Transmission times obtained from cross-correlations of the wall static pressures and the diffuser exit total pressure showed no effect of the upstream flow characteristics on the diffuser exit pressures when generators were used. Without generators, separation occurred and the upstream pressure characteristics had immediate effects on the diffuser exit pressure characteristics

    Jet vortex generators for turbulent flow separation control

    Get PDF
    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low speed turbulent flow over a two dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed)
    corecore