35 research outputs found

    Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    Get PDF
    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors

    On Modelling of Nonlinear Systems and Phenomena with the Use of Volterra and Wiener Series

    Full text link
    This is a short tutorial on Volterra and Wiener series applications to modelling of nonlinear systems and phenomena, and also a survey of the recent achievements in this area. In particular, we show here how the philosophies standing behind each of the above theories differ from each other. On the other hand, we discuss also mathematical relationships between Volterra and Wiener kernels and operators. Also, the problem of a best approximation of large-scale nonlinear systems using Volterra operators in weighted Fock spaces is described. Examples of applications considered are the following: Volterra series use in description of nonlinear distortions in satellite systems and their equalization or compensation, exploiting Wiener kernels to modelling of biological systems, the use of both Volterra and Wiener theories in description of ocean waves and in magnetic resonance spectroscopy. Moreover, connections between Volterra series and neural network models, and also input-output descriptions of quantum systems by Volterra series are discussed. Finally, we consider application of Volterra series to solving some nonlinear problems occurring in hydrology, navigation, and transportation

    An experimental study of nonlinear dynamic system identification

    Get PDF
    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length

    Functional Expansions

    Full text link
    Path dependence is omnipresent in social science, engineering, and finance. It reflects the influence of the past on the future, often expressed through functionals. However, non-Markovian problems are often infinite-dimensional, thus challenging from a conceptual and computational perspective. In this work, we shed light on expansions of functionals. First, we treat static expansions made around paths of fixed length and propose a generalization of the Wiener series−-the intrinsic value expansion (IVE). In the dynamic case, we revisit the functional Taylor expansion (FTE). The latter connects the functional It\^o calculus with the signature to quantify the effect in a functional when a "perturbation" path is concatenated with the source path. In particular, the FTE elegantly separates the functional from future trajectories. The notions of real analyticity and radius of convergence are also extended to the path space. We discuss other dynamic expansions arising from Hilbert projections and the Wiener chaos, and finally show financial applications of the FTE to the pricing and hedging of exotic contingent claims.Comment: 39 pages, 7 figure

    Power spectral analysis of voltage-gated channels in neurons

    Full text link
    This article develops a fundamental insight into the behavior of neuronal membranes, focusing on their responses to stimuli measured with power spectra in the frequency domain. It explores the use of linear and nonlinear (quadratic sinusoidal analysis) approaches to characterize neuronal function. It further delves into the random theory of internal noise of biological neurons and the use of stochastic Markov models to investigate these fluctuations. The text also discusses the origin of conductance noise and compares different power spectra for interpreting this noise. Importantly, it introduces a novel sequential chemical state model, named p2, which is more general than the Hodgkin-Huxley formulation, so that the probability for an ion channel to be open does not imply exponentiation. In particular, it is demonstrated that the p2 (without exponentiation) and n4 (with exponentiation) models can produce similar neuronal responses. A striking relationship is also shown between fluctuation and quadratic power spectra, suggesting that voltage-dependent random mechanisms can have a significant impact on deterministic nonlinear responses, themselves known to have a crucial role in the generation of action potentials in biological neural networks

    Bounding the parameters of block-structured nonlinear feedback systems

    Get PDF
    In this paper, a procedure for set-membership identification of block-structured nonlinear feedback systems is presented. Nonlinear block parameter bounds are first computed by exploiting steady-state measurements. Then, given the uncertain description of the nonlinear block, bounds on the unmeasurable inner signal are computed. Finally, linear block parameter bounds are evaluated on the basis of output measurements and computed inner-signal bounds. The computation of both the nonlinear block parameters and the inner-signal bounds is formulated in terms of semialgebraic optimization and solved by means of suitable convex LMI relaxation techniques. The problem of linear block parameter evaluation is formulated in terms of a bounded errors-in-variables identification problem

    Spatial biases and computational constraints on the encoding of complex local image structure

    No full text
    The decomposition of visual scenes into elements described by orientation and spatial frequency is well documented in the early cortical visual system. How such 2nd-order elements are sewn together to create perceptual objects such as corners and intersections remains relatively unexplored. The current study combines information theory with structured deterministic patterns to gain insight into how complex (higher-order) image features are encoded. To more fully probe these mechanisms, many subjects (N = 24) and stimuli were employed. The detection of complex image structure was studied under conditions of learning and attentive versus preattentive visual scrutiny. Strong correlations (R2 > 0.8, P < 0.0001) were found between a particular family of spatially biased measures of image information and human sensitivity to a large range of visual structures. The results point to computational and spatial limitations of such encoding. Of the extremely large set of complex spatial interactions that are possible, the small subset perceivable by humans were found to be dominated by those occurring along sets of one or more narrow parallel lines. Within such spatial domains, the number of pieces of visual information (pixel values) that may be simultaneously considered is limited to a maximum of 10 points. Learning and processes involved in attentive scrutiny do little if anything to increase the dimensionality of this system

    Efficient estimation of the skewness of the response of a wave-excited oscillator

    Full text link
    peer reviewedThe Multiple Timescale Spectral Analysis is a framework relying on the existence of well-separated timescales in the dynamic response of structures to generalize for higher-order statistics the famous background/resonant decomposition, widely applied by the wind engineer- ing community to compute the variance of the response of SDOF structures or of each modal response of MDOF structures. This fast spectral analysis method mainly concerns the statistics of the response of onshore structures subjected to a buffeting wind loading whose characteristic frequency is typically lower than the natural frequencies of the structures concerned. By con- trast, when dealing with wave-loaded floating offshore structures, the roles of the slow and fast timescales are likely to be interchanged and the method is extended further in this paper to com- pute rapidly the variances and the skewnesses of modal responses of such structures responding in the inertial regime as well, since these statistics are necessary to consider the influence of the non-Gaussianity of the loading

    Robust Spectro-Temporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design

    Get PDF
    The spectro-temporal receptive field (STRF) is a functionaldescriptor of the linear processing of time-varying acoustic spectra by theauditory system. By cross-correlating sustained neuronal activity with the"dynamic spectrum" of a spectro-temporally rich stimulus ensemble, oneobtains an estimate of the STRF. In this paper, the relationship betweenthe spectro-temporal structure of any given stimulus and the quality ofthe STRF estimate is explored and exploited. Invoking the Fouriertheorem, arbitrary dynamic spectra are described as sums of basicsinusoidal components, i.e., "moving ripples." Accurate estimation isfound to be especially reliant on the prominence of components whosespectral and temporal characteristics are of relevance to the auditorylocus under study, and is sensitive to the phase relationships betweencomponents with identical temporal signatures.These and otherobservations have guided the development and use of stimuli withdeterministic dynamic spectra composed of the superposition of many"temporally orthogonal" moving ripples having a restricted, relevant rangeof spectral scales and temporal rates. The method, termedsum-of-ripples, is similar in spirit to the "white-noise approach," butenjoys the same practical advantages--which equate to faster and moreaccurate estimation--attributable to the time-domain sum-of-sinusoidsmethod previously employed in vision research. Application of the methodis exemplified with both modeled data and experimental data from ferretprimary auditory cortex (AI)
    corecore