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SUMMARY

In this paper a procedure for set-membership identificatidsiock-structured nonlinear feedback systems
is presented. Nonlinear block parameter bounds are firspated by exploiting steady-state measurements.
Then, given the uncertain description of the nonlinear kldounds on the unmeasurable inner-signal are
computed. Finally, linear block parameter bounds are evatlion the basis of output measurements and
computed inner signal bounds. The computation of both tidimemar block parameters and the inner-signal
bounds is formulated in terms of semialgebraic optimizaiod solved by means of suitable convex LMI
relaxation techniques. The problem of linear block par@metaluation is formulated in terms of errors-in-

variables identification problem. Copyrigi@ 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Extensive studies over the last decades in the identification of linear systemgprovided a well

assessed methodology for the solution of modeling problems in the time or in thuefrey domain
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2 V. CERONEET AL

through either recursive or batch scherheZ] which, unfortunately, might not be directly applied
to most real-life problems that are intrinsically nonlinear. A good numbeifet&fe techniques for
black-box identification of nonlinear systems can be found in the literatofgnpmial NARMAX
models B], Volterra and Wiener series expansiodf Wavelets, Neural networks and Fuzzy Logic
[5] are only some examples. Although prior information on the physical streicfithe system to be
identified can be exploited in order to constrain the term search and toknserh nonlinearities in
most of the nonlinear black-box procedures, block structured nomlaystems provide an effective
alternative to explicitly take into account a priori knowledge on the systamtsite (see the recent
book [6] for an up-to-date collection of results and algorithms in this context). Suclass of
systems can be profitably used in order to obtain simple and effective mddalsvine class
of nonlinear systems through suitable interconnections of memoryless reantjams and linear
subsystems. Nonlinearities may enter the system in different ways: eitlilee &put or at the
output end or in the feedback path around a linear model. The configuraticare dealing with
in this work, also referred to as a block-structured nonlinear feedggstiem, is shown in Figure
1; it consists of a feedback system with the linear dynamic model in the forpaitd and the
static nonlinearity in the feedback path. It must be stressed that in this tonigxsystems which
intrinsically show a nonlinear unaccessible feedback path are considéris kind of model has
been studied in the context of the well known Lur’e problemd] for which a number of results
are available as far as stability is concerned. The identification of such el malély relies on the
measurement of the input and the output signaindy; respectively, while all the internal signals
are not assumed to be accessible.

A number of interesting applications of block-oriented feedback nonlimealels can be found in
various engineering fields. This model has been successfully appligitindescribe the operation
of dynamic mode atomic force microscopy; atomic force microscope cantileaerbe modeled
as a feedback interconnection of a linear dynamic system and a nonliagafinction; the linear
block describes the free cantilever dynamics while the feedback sutysgstmunts for the sample

interaction force, which is a nonlinear function of the tip-sample distangeaper [L0], Schoukens
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 3
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Figure 1.Block-structured nonlinear feedback system.

et al. study the identification of a block-structured nonlinear Wiener-Hastaiarsystem that is
captured in the feedforward or the feedback path of a closed-lodprsyshe proposed method
is applied to the identification of a microwave crystal detector. Ming-Tzu Hb Am-Ming Lu
[11] consider the problem of synthesizing proportional-integral-derigafi®D) controllers for a
given block-structured nonlinear feedback system in the presenerogkenous energy-bounded
disturbance; their synthesis method is used to design a controller for arshlivleel system
apparatus. In12], Pearson and Pottmann describes a gray-box identification approahheto
classes of block-oriented models: Hammerstein models, Wiener models, afeddback block-
oriented models and show an application of the presented method to a simpgbeificgite model
of a distillation columns. The rich diversity of hysteretic phenomena that eagemerated by
interconnecting a linear dynamic system with a feedback static nonlinearityestigated by Olet
al. in[13]. On the methodological side, further contributions to the identification okbsbaictured
nonlinear feedback models can be foundlis, [15, 16] while the class of block-structured systems
that can be represented by a linear fractional transformation (LFThsidered in 17, 18].

A common assumption in system identification is that the measurement error is stifyistic
described. However, there are many practical cases where relialennasariable models cannot be
derived, while simple bounds are readily available. Some examples includenieal tolerances,
guantization errors in analog-to-digital converter, systematic and classsén measurement
equipments. When uncertainties are assumed to belong to a given set, andmrsiep
characterization of measurement errors should be preferred to thestiocdescription. In this
context, all parameters consistent with measurements, error bounds erasdshmed model
structure, are feasible solutions of the identification problem. The interesstedr can find further
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4 V. CERONEET AL

details on this approach in a number of survey papers (see, Eg2(), in the book edited by
Milaneseet al.[21], and the special issues edited by Nortag, [23].

In this work, we consider the identification of single-input single-outpu&(y discrete-time
block-structured nonlinear feedback system when the nonlinear blankbe modeled by a
polynomial with finite and known order and the output measurement em@tsoainded. Note that
internal signals;; andv; are not supposed to be measurable. To the authors’ best knowlexlge, n
contribution can be found in the literature on the identification problem askeldga this paper.

The note is organized as follows. Background results on the relaxatiosemialgebraic
optimization problems through the theory of moments is presented in SettiSection3 is
devoted to the formulation of the problem. In Sectibancertainty intervals on the parameters of
the nonlinear static block are derived, through the solution to polynomial opgtiioiz problems
by exploiting steady-state input-output data. Then, in Sechiogiven the estimated uncertain
nonlinearity\" and the output measurements collected by exciting the system with an inpmidyna
signal, bounds on each sample of the inner sigpare computed by solving two semialgebraic
optimization problems. Last, in Sectiénuncertainty intervals on the parameters of the linear block

are evaluated. A simulated example is reported in Segtion

2. NOTATION AND BACKGROUND RESULTS ON CONSTRAINED POLYNOML

OPTIMIZATION

In this section we briefly review some preliminary results on the relaxationarssppolynomial
optimization problems through a hierarchy of semidefinite programming (SDi®lgms. The
interested reader is referred &4 and references therein for further technical details.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 5
2.1. Polynomial representation and theory of moments

Let us denote witlP;” [x] the space of real-valued polynomials of degree at moBst the variable

x = [z1,29,...,2,]" € R™ and leth”, be the canonical basis & [z], i.e.

- T
h:;:[lxl.fCQ xna:%zlxg zlxnxgargxg N e x‘f ;Em] . 1)

Let us define the set”, = {a e Ny : Z? o; < m}, whereq; is thei-th component of the vector
o andNy denotes the set ef-dimensional nonnegative integers vectors. Then, the bsisf the

spacepP;; [z] can be written a&), = {z*},can , Wherez® =z x5? -z,

Let f andg, be in P [z]. We denote the sequente= {f,}acar andd, = {gsa}acar as the

coefficients of the polynomialg andg,, respectively, on the basig,, i.e.

f(x) = Z fa.’l,‘a, gs(l‘) = Z gsoc-ra-

acAn, Q€A

Letp = {pa}acar bethe sequence of moments (up to oragof a probability measurg onRR™,
i.e.po = [2*u(dz) and M,,(p) be the truncated moment matrix associated with the distribution
i, i.e. M, (p) = fhghﬂu(dx). Let us denote with/,,, (gxp) the localizing matrix associated with
the sequence of momenisand with the polynomiad, (z). The interested reader is referred 2&|

for details on the construction of the localizing matrix associated with a polynomial.

Remark 1

n-—+m
Both M, (p) andM,,, (gxp) are square matrixes of sige . [ ]

2.2. LMlI-relaxation for polynomial optimization problems

The LMI-relaxation technique based on the theory of moments and préjpydeasserre ing5] is
briefly reviewed here.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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6 V. CERONEET AL

Let us consider the constrained optimization problem

f* = min f(z), )

€S

wheref € Py [x] andS C R™ is a compact semialgebraic set defined as
S={zeR":gs(x) >0, s=1,...,E}, 3

wherey; is a real-valued polynomial in the variabte R" of degreel, = deg(gs),i.e.gs € Py [z].
Letd € N be such thagd > max{m, maxds} andhy; = {2 }.cay, b€ the canonical basis of the
spacePls[z]. Indeed,f andg, belong toPy;[x].

Now, let us consider the SDP problem

f° = min Z faDa
P aEALs

s.t. Ms(p) = 0, Méfd;(gsp) =0, s=1,...,5; (4)

whered, = (%] , P = {Pa}acay, 1S the sequence of moments up to ordémnf some probability
measureu with support onS, while M;(p) is the moment matrix associated with the moments
andM;_; (gsp) is the localizing matrix associated with the polynomyjal Problem ) is referred
to as LMI-relaxed problem of ordef of the original polynomial problem2j. The solutionf?
to the convex problemdj is a lower bound of the global optimurft of the nhonconvex problem
(2). Besides, under mild conditiong? converges tof* as the relaxation order goes to infinity.
However, exact global optimuryi* can be obtained in practice with a reasonably low relaxation
order (see6] for a collection of test problems solved with relaxation order less or eéquil.
Unfortunately, due to high computational complexity, the discussed LMkadlan is restricted
to polynomial problems with a small number of optimization variables. In the netiosewe
describe the relaxation procedure presented by Lasser@fiin[the spirit of the work of Waki

et al[27]. Such a technique exploits the sparsity in the original polynomial problenwhoulate

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)

Prepared usingncauth.cls DOI: 10.1002/rnc



IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 7

a sparse version of the SDP-relaxation previously described, in trésttend the applicability of

such a methodology to medium and large scale problems.

2.3. Sparse LMI-relaxation for polynomial optimization problems

Given the optimization problem2] with S as in @), let Z, = {1,...,n} be the union of a
R
collection of R setsZ, C {1,...,n}, thatis{l,...,n} = U Z,. Further, let us partition the index
r=1
setSy = {1,...,E} into R disjoint setsS,.,» = 1,..., R.

Let us construct the partial moment matrixds, (p, Z,.) (respectively the partial localizing matrixes
M, (gsp, Z,)) by retaining only those rows and columns of the moment matkix(p) (respectively
of the localizing matrix\/,,, (gsp)), where the variables, are such thatupp(a) € Z,., with supp(«)
denoting the support of the vectar

Now, for a givens € N such thakd > max{m, maxd}, let us define the SDP problem

ffp = min Z JaPa
P aEALs
s.t. Ms(p,Z,) = 0, M;_ ;. (9sp, L) =0, s€S8,., r=1,....R;

The following result holds.

Theorem 1

If the indexes set$,. andS, are such that:

(i) foreveryr =1,..., Rand for every € S,, the constraing;(z) > 0 definingS in (3), depends

only on the variables(Z,) = {z;|i € Z,.}

(i) the objective functiory can be written as
R
f= Zf,», with f, € P [x(Z,.)], foreveryr =1,...,R,
r=1

then

o < i< f (5)

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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8 V. CERONEET AL

Besides, if there exists a valde> 0 such thaf|z|| , < C forall 2 € S and the set3, are such that

i
I, N | J Z; € Z,, for someg <,
j=1

foreveryr =1,..., R — 1, and hypothesis (i) an (ii) are satisfied, then

: S _ px
515& fsp - f . (6)
[ |
Remark 2
. - . nT + m . -
The size of the square matrix&$,, (p, Z,.) andM,,, (gsp, Z,) iS , with n,. denoting the
m
cardinality of the set,.. [ |

An implementation of the discussed sparse LMI-relaxation can be found Mallab package
SparsePOP2B], which exploits the solver SeDuMi to solve semidefinite programming problems in

polynomial time.

3. PROBLEM FORMULATION

Consider the SISO discrete-time block-structured nonlinear systems shdsigure 1, where the
linear dynamic part is modeled by a discrete-time system which transformgo the noise-free
outputw, according to

wy =G(qg M)z = )Zt, @)

where z; = u; — 14 is the unmeasurable inner signal ad¢) and B(-) are polynomials in the

backward shift operatar—!, (¢~ 'w; = w;_1),

Al =14+aq ' +... +anag ™, (8)
B(g ") =bo+big "+ ...+ bug " ()]
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contrg0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 9

The nonlinear block transforms the noise-free outpyinto »; according to

vy = N(we,y) = inwf, (10)
k=1
wheren,, is the polynomial degree.
In line with the work done by a number of authors, it is assumed that: (i) thdysttate gain of
the linear block is not zera?P, 30|, that is,zg‘io b; # 0; (i) a rough upper bound of the settling

time is available 31].

Lety, be the noise-corrupted measurementsofi.e.
Yp = Wy + 1y (11)

Measurements uncertainty is known to be boundedhy; i.e.,

| ne | < Ang. (12)
Lety € R" andd € R" be the vectors of the unknown parameters, thatis: [v1 72 ...7,]
and 0" =1[a; ... apa by b1 ...bnyy|, With ng = na +nb+ 1. The parametrization of the

structure of Figurel is not unique. As a matter of fact, given a pair of subsystég ', 0),
N(wy,#), any dynamic system of the kind of the one depicted in Figushere G(¢~*,0) =
G(g™,0)/(1 +0G(qg',0)) and N(wy,~) = N(wq,7) — ow,, provides the same input-output
behaviour for any constamt € R. Such an analysis is in agreement wiflb], where a structured
Hammerstein-Nonlinear feedback model is considered. In order to geigaeuparametrization,
in this work we assume, without loss of generality, that the steady-stateg; gdithe linear block
G(q71,0) bel, thatis

b

g=—I - 1. 13
9= Ty o (13)

In this paper we address the problem of deriving bounds on the parameteds.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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10 V. CERONEET AL

N

Figure 2.Steady-state behaviour of the system.

4. BOUNDING THE NONLINEAR STATIC BLOCK PARAMETERS

Here we exploit steady-state operating conditions to bound the paramétbesrmnlinear static
block. Known input and noise corrupted output sequences are callécm the steady-state
response of the system to a set of step inputs with different amplitudesni/assume to have a
rough idea of the system settling time, in order to know when steady-stat#ions@re reached, so
that steady-state data can be collected. Indeed, under condition (i)ist&tection3, by combining
equationsT), (10), (11), (12) and (L3) in steady-state operating conditions we get the input-output

mapping

3

We = Ug — 'ykwf, s=1,..., M; (14)

yszms—"_ﬁsaszlv"'aM; (15)

where M > n., is the number of measurements used in the identification of the nonlinear block,
u' = [Uy,Us...upr] @Ndw' = [wy, ... w,,] are sequences of steady-state values of the known input
signal and the unknown output signal respectivelyandy, are the values of the noise and the
measured output samples collected at some instant after the true systemhastpaached the
steady-state valu@,. A block diagram description of equatiorisdj-(15) is depicted in Figure.

The setD,, of all parametersy of the static nonlinear block and noise sampjesonsistent with

the input-output data sequences, the assumed model structure anethmands is described by

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 11

(11), (14) and (15), i.e.

D’Y :{(7777) € Rn~,+1\4 :(ys - ﬁs) +Z ’Yk(ys - ﬁs)k = Us,
Pt (16)

[, IS AT s=1,..., M},

wheren’ = [y, 7y, ...
For all k=1,...,n,, tight bounds on each parametgf can be computed by solving the

optimization problems

= min , 17
Y ,min (7)
¥, = ma . 18
Ve max Tk (18)

The parameter uncertainty intervadt 7., ) on; is defined as

PUL, = [lk% 74 . (19)

In order to guarantee well-posedness of the identification probléMsabd (L8), we assume that

D, is a bounded set. Then, the following condition-pholds:
Yl <€, (20)

for some constan® > 0 arbitrarily large.

Note that the formulated identification problenis’ and (L8) are semialgebraic optimization
problems since the functional is linear and the feasibleDseis defined by polynomial equalities
and inequalities in the variableg and7,. Therefore, approximated solutions of parameter bounds
can be computed through a direct implementation of the dense LMI-relaxationi¢eie described

in Section2.2, guaranteeing monotone converge to the tight boundsnd, . In particular, for a

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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12 V. CERONEET AL

given relaxation ordef > § = [””T“W relaxing (L7) and (L8) through the dense LMI-relaxation

S . ny + M+ 26
leads to SDP problems where the number of optimization variablgs is and
26
. . . . Ny + M40 .
the feasible region is described by one moment matrix of gize , 2M localizing
5
ny+M+6—4
matrixes, each one of siz and 2M localizing matrixes, each one of size
6—10
ny+M4+6-1

0—1

Due to high computational burden and memory storage requirement, the te=edense LMI-
relaxation technique to relax () and (L8) is limited, in practice, to identification problems with
a small numbe/ of measurements, say roughly not greater than 10. In order to handigea la
number of measurements, the peculiar structure of identification problemarid (L8) will be
analyzed to apply the sparse SDP-relaxation described in S&cHoro this aim, let us rewrite the

feasible seD, as

D, = {(%ﬁ) € R™M

9:(v. 1) = (@, = ,) +Y_ (T, —7,)" — s > 0,
k=1

n

gSJrJW(’%T]) = _(ys - ﬁs) _Z ’Yk(ys —’_ﬁs)]~€ +us >0,
k=1 (21)

gs+2]\4(77ﬁ) = Aﬁs - ﬁs > 07
gs+3M(’Y7ﬁ) = ﬁs + Aﬁs 2 07

s=1,...,M}.

The description ofD, in (21) is straightforwardly obtained from16), by rewriting each

equality constraint(y, —7,) + Y., 7% Us —7,)* =us as two inequality constraints, i.e.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)

Prepared usingncauth.cls DOI: 10.1002/rnc



IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 13

(ys - ﬁs) + Ele 'Vk(gs - ﬁs)k S Us and (ys - T]s) + 22;1 ,Vk(gs - ﬁs)k Z Us -

The inherent structured sparsity of identification problemg @nd (L8) is described in the

following property.

Property 1
Structure of identification problems (17) and (18)

Problems {7) and (L8) enjoy the features:

P11

the objective function depends only on the variahle

P1.2
foralls =1,..., M, the polynomials constraintg > 0 g1 > 0 definingD, in (21) depend only

onn. + 1 variables, i.e. the unknown parametegsand the sample noisg;

P13
foralls =1,..., M, the constraintg,;on > 0 andgssy > 0, definingD,, in (21) depend only on
the variabley,. [ |

Thanks to the inherent structured sparsity of identification problémsand (L8) described in
Propertyl, sparse SDP-relaxed problems fai7Y and (L8) can be formulated as described in the
following.

Let X € R™*M pe the collection of the optimization variables for the identification probleiiis (

and (18), that is:

~y
X = . (22)
n
Let us define the index sefs andsS, as
T, ={1,2,...,ny,ny +s} fors=1,..., M; (23)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contrg0000)
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14 V. CERONEET AL

Se={s,s+M,s+2M,s+3M} fors=1,..., M. (24)

The index setg, andS, are constructed on the basis of the sparse structure of the identification

problems {7) and (8) highlighted by Property.. More precisely, the seff andS; are such that,
for all » € S;, all the polynomial constraintg, > 0 in the definition ofD, depend only on the
variablesX;, with ; € Z,.

Now, for a given relaxation order> §, let us consider the SDP problems:

) .
= min E r , 25
Yk peDs . kaPo (25)
acA,d
— _
Vi = max > Trabos (26)

where T = {Txa},_ n+v is the vector of the coefficients ofj in the basishy; ™ =
A Aas

{X*} _ ~,+m, Which is the canonical basis of the real-valued polynomials of de2fer the

acA,

variables vectoX defined in £2). The feasible regioﬁ?ﬁ‘y for problems £5) and @6) is a convex
set defined as

D) ={p: Ms(p,Z,) = 0,
(27)

M(;,gr(grp,zs) =0, reSs, s=1,....M }
where M;s(p,Z,) is the moment matrix of ordes associated with the variableX (Z,);
Ms_ g (9-p,Zs) is the localizing matrix associated with the variablE$Z,) and the constraint
gr > 0definingD, in (21), andd, = (%1 , with d,. denoting the degree of the polynomial Indeed,
d, = [ forr = 1,...,2M, whiled, = 1forr = 2M +1,...,4M.

Let us define thé-relaxed uncertainty intervals as

UL = [li? 7;} : (28)

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 15

Property 2
Foreveryk = 1,...,n,, theé-relaxed parameter uncertainty intermlgk satisfies the following

properties.

P21
Guaranteed relaxed uncertainty intervals.For any relaxation order > 4, thej-relaxed parameter

uncertainty intervalPU ng is guaranteed to contain the true parameteio be estimated, i.e.

Y € PUI,. (29)

P22

Monotone convergence to tight uncertainty intervals.For any relaxation ordef > 4, the -
relaxed parameter uncertainty intenl%ll][;sk becomes tighter as the relaxation ordéncreases,
that is

PUI C PUI,. (30)

Besides, the intervdPUIik converges to the tight interv&lU ,, as the LMI relaxation order goes

to infinity, that is:

Jim 5p =7, (31)
d— 00

Proof Index sets, andS, defined in £3) and @4) were carefully constructed in such a way that
the assumptions of Theorehare satisfied. Furthermore, from conditiodg)(and 0), the infinity
norm || X ||~ of the variables vectoX is always bounded. Therefore, by applying the first part of
Theoreml to the identification problemd.{)-(18) and to the corresponding SDP-relaxed problems

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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16 V. CERONEET AL

(25)-(26) we get:

N <nt <y, (33)
T =Mt 2 (34)

Then, from the definition of the intervaBU L, andPUIik and equations3Q)-(34), we get
Y € PUL, C PUIST C PUIY, (35)

as stated in P2.1 and in the first part of P2.2 Besides, from the second part of Theorém

convergence conditions given in the second part of Propegyfollow. [ |

As to the computational complexity, the number of decision variables for the [BbBiflems

ny+ 1426 Ny + 26
(25) and @6) is M - (M -1) , While the feasible regiomg is

26 26

ny+1+06
described by moment matrixes, each one of size ! ; 2M localizing matrixes,

d

. ny+1+06-90 . . . .
each one of siz , associated with théz., + 1)-degree polynomial constraints
)
- . . [ nyto
gs > 0 and gs;ar > 0 defining D,; 2M localizing matrixes, each one of siz ,
§—1
associated with linear constraints, »ns > 0 andgs43a > 0 definingD.,.

5. BOUNDING THE UNMEASURABLE INNER SIGNALz,

In the second stage of our procedure we stimulate the block-structunéidear feedback system
of Figure 1 with a persistently exciting input signal and evaluate bounds on each sample of the
corresponding unmeasurable inner signaFor each input sample, bounds on the corresponding

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 17

inner unmeasurable signal samplecan be evaluated through

Zy = U — Vg, Z¢ = Up — Yy, (36)
where

v, = %lglf ; e (g — m0)" (37)
and

7 = %Xg e (e = 1e)" (38)

The feasible regio®!, for problems §7) and @8) is the cartesian product of the €2¢ and the set

of noise samples, satisfying the a priori hypothesiéZ?) on the error bounds, i.e.

DL, ={(v,m) € R — 7)) D w(@, - 1,)" =1,
k=1 (39)

Since the objective function foB{) and @8) is polynomial and the feasible regidpi, is defined

by polynomial constraints,37) and @8) are semialgebraic optimization problems. Besides, like
(17) and (18), problems 87) and @8) show an inherent structured sparsity. In fact, the objective
function depends only on, + 1 variables, i.e. the unknown nonlinear block parameteasd the
output noisey,, while the linear constraintsy, |< A7, and| n; |< An, defining the feasible region
D!, depend only on the sample disturbangesnds;, respectively. Therefore, guaranteed bounds
on the signal; (and consequently on the inner sigagl can be computed through the same LMI-
relaxation method used in Sectidrfor bounding the nonlinear block parameters. Similar results

presented in Proper®yhold as far as the computation of boundsigandz; is concerned.
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2t ‘ B(q™h) ‘ Wy
A(g™)
oz t + M
e T
zf Yt

Figure 3. Errors-in-variables setup for bounding the patens of the linear system.

6. BOUNDING THE PARAMETERS OF THE LINEAR DYNAMIC MODEL

Given bounds, andz, computed in the second stage of the procedure, a compact description of

the inner unmeasurable signalin terms of its central valugf and its perturbationz, is given by

2t = 2y — 0z, (40)
where
Zt +
P="5 (41)
Indeed, the perturbatiofx, is such that
| 62¢ |[< Az, (42)
with
A =2 (43)

Thanks to such a description of the unknown signalwe can formulate the identification of the
linear model in terms of the noisy output sequefigg and the uncertain inner sequencg} as
shown in Figures.

Such a formulation is commonly referred to as a bounded errors-in-lesiéblV) problem, i.e.
a parameter estimation in a linear-in-parameter model where both input and mepsurements
are corrupted by bounded noise.. As a matter of fact, by combining egsifje(i1) and @0) we
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get
na nb
yi=— (i — m-i)ait » (2 — 62 ;)bj+m. (44)
i=1 =0

The feasible parameters sBy for the linear system is then defined by equatidd) (and by

conditions (2), (13) and @2), i.e.

na nb
Dy = {(9’ 77) c Rne-‘rN DYp=— Z(yt,i — ntfi)ai—’_Z(Ztcfj — (5Zt,j)bj+7]t;
i=1 7=0 (45)

g=1|n |[< Ang;| 02z |[< Azst =1,... N},

whereN is the length of the persistently exciting input sequeficg used in the second stage of

the identification procedure. Then, bounds on the linear block parantgteas be computed for

all j =1,...,ng by solving the nonconvex optimization problems
0, = 9711?61% 03 (46)
0, = i 47
; pmax 0 (47)

Guaranteed uncertainty intervalBU Iy, = [Qj; §j] on the parameterg; can be numerically
computed by exploiting the methods described 3] [and in the recent works3[3, 34], where
efficient convex-relaxation procedures are proposed to computelban the parameters of linear
systems in the EIV framework when measured data are affected by bnoide. It must be pointed
out that, if the linear blocki(¢—!) is known to be stable, stability constraints on the linear system
parametera, ..., a,, can be imposed in the definition of the $&t, as described in35], in order

to improve the accuracy in evaluating the uncertainty interizdld,, .

7. A SIMULATED EXAMPLE

In this section we illustrate the discussed parameter bounding procedorgyltha numerical
example. The system considered here is characterize®) b{g) and (L0), with " = [y 72 73] =
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[-1.1 0.8 1.1] and 0" = [a; ag b by] = [~1.3114 0.3679 0.1713 —0.1148]. Two different
simulations are performed. In the first one, a small data set is used dugnwglehtification.

In particular, the length of steady-state and the transient data sequehte-i80 and N = 80,
respectively. In the second simulatiald, = 300 and N = 1000 are chosen. The steady-state input
sequencégu, } belongs to the interval-10, +10], while the transient input sequenge } belongs to
the uniform distributiort/[—10, +10]. The output noises, andn, are random variables belonging
to the uniform distribution®/[— An;, +An:] andU|[—AT7,, +A7,], respectively. Bounds on steady-
state and transient output measurement errors have the same valuyji.e. A7, £ An. The

chosen value oAy is such that the signal to noise ratigv R in the steady-state sequence, defined

as
M _—2
SNR = 10log % (48)

s=1 T]S
is 29 db in both simulations, while the signal to noise r&ig R in the transient sequence, defined
as

N 2
SNR =10log Zt;ilw; (49)
t

t=1"]
is 27 db whenV = 80 and 28 db whemv = 1000.
Bounds on the nonlinear block parametem@re evaluated by solvin@$) and @6) for a relaxation
orders = 3. Itis worth remarking that in the considered example, and for steadyestitesequence
of lengthM = 30, the number of decision variables for the optimization problezal (26) is 3,864
and the feasible region is defined &y moment matrixes of siz&5; 60 localizing matrixes of size
5 and30 localizing matrixes of sizé5. On the other hand, if the sparsity was not taken into account
in the relaxation of {7) and (8), the number of optimization variable for the corresponding SDP-
relaxed problems would be more than 3 million, while the feasible region woul@$erided by a
moment matrix of siz&, 140; 60 localizing matrixes of siz84 and60 localizing matrixes of size
595, leading to an untractable optimization problem.
By exploiting the same LMI-relaxation approach used in the computation ofitertainty intervals

on v, bounds on the inner signats (for t = 1,..., N) are evaluated by relaxing problent¥7)
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and (38) for an LMI-relaxation orders = 3. Finally, uncertainty intervals on the linear block
parameter® are evaluated by solving the formulated error-in-variables probleifisand @7)

with the algorithm proposed in3B] and by enforcing stability constraints on the linear system
G(q~') as in B5. Results on the evaluation of nonlinear and the linear block parameters are
reported, respectively, in Tableandll, which show the obtained parameter bounds, the parameter

uncertainties\? andA#;, together with the central estimategfS ando, defined as

) ) )
Te =7 0; —0.
A~S = “k Ap. =L I
Vi 9 ) J 9
es A 0 +0;

Results in Tables and Il show that, as expected, the true parameters values are included in
the computed uncertainty intervals. Furthermore, the presented precpohides satisfactory
uncertainty intervals on both the linear and the nonlinear block parameters/la¢s a small data

set is used for the identification.

Table I. Nonlinear block— Parameter central estimateg’(s), parameter boundslz, 7%) and parameter
uncertainty boundsw,‘z for relaxation ordew = 3 for steady-state data sequence of length= 30 and

M = 300.
M Parameter True 4 yo° 7 ArS
value
30 Y -1.1000 -1.1270 -0.9989 -0.8708 0.1281

Y2 0.8000 0.7866 0.8236 0.8606 0.0370
73 1.1000 0.9958 1.0642 1.1327 0.0684

300 Y -1.1000 -1.1072 -1.0984 -1.0895 0.0088
Yo 0.8000 0.7959 0.8012 0.8065 0.0053
3 1.1000 1.0957 1.1003 1.1050 0.0046
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Table II. Linear block.— Parameter central estimateg), parameter bounds, 0;) and parameter
uncertainty boundad; for transient data sequence of length= 80 and N = 1000.

N Parameter  True 0, 05 0; Ab;
value
80 01 -1.3114 -1.6986 -1.3414 -0.9842 0.3572
62 0.3679 0.1014 0.4000 0.6986 0.2986
03 0.1713 0.1635 0.1747 0.1860 0.0113
04 -0.1148 -0.1761 -0.1171 -0.0580 0.0591
1000 61 -1.3114 -1.5340 -1.3215 -1.1091 0.2125
02 0.3679 0.1979 0.3793 0.5606 0.1814
03 0.1713 0.1656 0.1718 0.1779 0.0062
0, -0.1148 -0.1453 -0.1133 -0.0813 0.0320

8. CONCLUSIONS

A computationally tractable procedure is presented for parameter boongsutation of block-
structured nonlinear feedback systems. First, the computation of nortileerparameter bounds
is formulated in terms of sparse polynomial optimization problems, whose dpmated solutions
are computed by means of LMI-relaxation techniques. The peculiar steuofuhe formulated
optimization problems is exploited to reduce the computational complexity of thespanding
LMI-relaxed problems. The parameter uncertainty intervals computed lwngothe relaxed
problems are proven to contain the unknown parameters to be estimateceBesich parameter
bounds are proven to monotonically converge to the tight ones as thetiefaxader goes to
infinity. Analogous results also hold for the computation of bounds on the asunable inner
signal. By using the inner signal bounds, the problem of bounding ther Isieek parameters is
formulated in terms of errors-in-variables identification with bounded greond it is solved through
the techniques available in the literature. The numerical example shows tipabffzsed procedure
can be used in medium and large scale identification problems. Anywayastdisf uncertainty
intervals on both the linear and nonlinear block parameters are obtainefbalsemall data set.
REFERENCES

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)

Prepared usingncauth.cls DOI: 10.1002/rnc



1. Ljung L. System Identification, Theory for the UsBrentince Hall: Upper Saddle River, 1999.

2. Yderstdm T, Stoica PSystem IdentificatiorPrentice Hall: Upper Saddle River, 1989.

3. Leonaritis 1J, Billings SA. Input-output parametric modigisnonlinear systemdnternational Journal of Control
1985;41:303-344.

4. Rugh W.Nonlinear System Theory: The Volterra/Wiener Approdatns Hopkins Univ. Press: Baltimore, 1981.

5. Spberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennecj&nkhrsson H, Juditsky A. Nonlinear black-
box modeling in system identification: a unified overvidwtomatical995;31(12):1691-1724.

6. Bai E, Giri F.Block-oriented nonlinear system identificatidrecture notes in Control and Information sciences,
Springer: Berlin, 2010.

7. Vidyasagar MNonlinear Systems AnalysBrentice Hall: Englewood Cliffs, NJ, 1978.

8. Khalil HK. Nonlinear System#rentice Hall: Upper Saddle River, NJ, 2000.

9. Basso M, Materassi D, Salapaka M. Hysteresis models of dynamic naaédorce microscopes: analysis and
identification via harmonic balancHonlinear Dynamic2008;54:297—-306.

10. Schoukens J, GonérL, Moer WV, Rolain Y. Identification of a block-structured mimear feedback system,
applied to a microwave crystal detecttfEE Trans. Instrumentation and Measurem2008;57(8):1734—-1740.

11. Ho MT, Lu JM.H PID controller design for Lur'e systems and its application tath&nd wheel apparatubnt.

J. of Control2005;78(1):53—-64.

12. Pearson RK, Pottmann M. Gray-box identification of blodkmted nonlinear models. of Process Contrd000;
10:301-315.

13. Oh J, Drincic B, Bernstein DS. Nonlinear feedback modelsysfdresislEEE Control Systems Magazii2009;
29(1):100-119.

14. Billings SA, Fakhouri SY. Identification of systems coniagnlinear dynamic and static nonlinear elements.
Automatical982;18(1):15-26.

15. Pelt THV, Bernstein DS. Nonlinear system identification ggtammerstein and nonlinear feedback models with
piecewise linear static mamt. J. of Control2001;74(18):1807—-1823.

16. Lauwers L, Schoukens J, Pintelon R, Engvist M. A nonlindaclkb structure identification procedure using
frequency response function measurem#&gEE Trans. Instrumentation and Measurem@008;57(10):2257—
2264.

17. HsuK, Poolla K, Vincent T. Identification of structured finear systemdEEE Transaction on Automatic Control
2008;53(11):2497-2513.

18. Pepona E, Paoletti S, Garulli A, Date P. Identificatiopietewise affine LFR models of interconnected systems.
IEEE Transaction on Control System Technol@@y1;19(1):148-155.

19. Milanese M, Vicino A. Optimal estimation theory for dynamic et with set membership uncertainty: an
overview.Automatical991;27(6Y997-1009.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contrg0000)

IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 23

Prepared usingncauth.cls DOI: 10.1002/rnc



24 V. CERONEET AL

20. Walter E, Piet-Lahanier H. Estimation of parameter bounats bounded-error data: a survéathematics and
Computers in simulatioh990;32:449—-468.

21. Milanese M, Norton J, Piet-Lahanier H, Walter E ( (ed8punding approaches to system identificatiBlenum
Press: New York, 1996.

22. Norton (Ed) J. Special issue on bounded-error estimdtitnl. of Adapt. Control & Sign. Proce$994;8(1).

23. Norton (Ed) J. Special issue on bounded-error estimdtitnl. of Adapt. Control & Sign. Proce$995;9(1).

24. Lasserre JB. Convergent semidefinite relaxations in polyroopi@mization with sparsity.SIAM Journal on
Optimization2006;17(1):822—-843.

25. Lasserre JB. Global optimization with polynomials and thélam of momentsSIAM Journal on Optimization
2001;11:796-817.

26. Henrion D, Lasserre JB. Solving nonconvex optimization jerob. IEEE Control Systems Magazirz004;
24(3):72-83.

27. Waki H, Kim S, Kojima M, Muramatsu M. Sums of squares and semidefipiogramming relaxations for
polynomial optimization problems with structured sparssthAM Journal on Optimizatio@006;17(1):218-242.

28. Waki H, Kim S, Kojima M, Muramatsu M, Sugimoto H. SparsePOP: asgpsemidefinite programming relaxation
of polynomial optimization problem@&CM Transaction on Mathematical Softw&@08;35(2):1-13.

29. Lang Z. Controller design oriented model identification hodt for Hammerstein systeriutomatical993;
29(3):767—771.

30. Sun L, Liu W, Sano A. Ildentification of a dynamical system withut nonlinearity.|EE Proc. Part D 1999;
146(1):41-51.

31. Kalafatis A, Wang L, Cluett W. Identification of Wienempe nonlinear systems in a noisy enviroment. J.
Control 1997;66(6):923-941.

32. Cerone V. Parameter bounds for armax models from recortidaitnded errors in variableat. J. Control1993;
57(1):225-235.

33. Cerone V, Piga D, Regruto D. Improved parameters boundseiemembership EIV probleménternational
Journal of Adaptive Control and Signal ProcessR@l1;25(3):208—-227.

34. CeroneV, Piga D, Regruto D. Set-membership EIV identificetiirough LMI relaxation techniqueBroc. of the
American Control Conference 2012010; 2158-2163.

35. Cerone V, Piga D, Regruto D. Bounding the parameters e&fisystems with stability constrainfroc. of the

American Control Conference 2012010; 2152—-2157.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢0000)

Prepared usingncauth.cls DOI: 10.1002/rnc



	1 Introduction
	2 Notation and background results on constrained polynomial optimization
	2.1 Polynomial representation and theory of moments
	2.2 LMI-relaxation for polynomial optimization problems
	2.3 Sparse LMI-relaxation for polynomial optimization problems

	3 Problem formulation
	4 Bounding the nonlinear static block parameters
	5 Bounding the unmeasurable inner signal zt
	6 Bounding the parameters of the linear dynamic model
	7 A simulated example
	8 Conclusions

