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SUMMARY

In this paper a procedure for set-membership identificationof block-structured nonlinear feedback systems

is presented. Nonlinear block parameter bounds are first computed by exploiting steady-state measurements.

Then, given the uncertain description of the nonlinear block, bounds on the unmeasurable inner-signal are

computed. Finally, linear block parameter bounds are evaluated on the basis of output measurements and

computed inner signal bounds. The computation of both the nonlinear block parameters and the inner-signal

bounds is formulated in terms of semialgebraic optimization and solved by means of suitable convex LMI

relaxation techniques. The problem of linear block parameter evaluation is formulated in terms of errors-in-

variables identification problem. Copyrightc© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Extensive studies over the last decades in the identification of linear systemshave provided a well

assessed methodology for the solution of modeling problems in the time or in the frequency domain
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through either recursive or batch scheme [1, 2] which, unfortunately, might not be directly applied

to most real-life problems that are intrinsically nonlinear. A good number of effective techniques for

black-box identification of nonlinear systems can be found in the literature: polynomial NARMAX

models [3], Volterra and Wiener series expansions [4], Wavelets, Neural networks and Fuzzy Logic

[5] are only some examples. Although prior information on the physical structure of the system to be

identified can be exploited in order to constrain the term search and to insertknown nonlinearities in

most of the nonlinear black-box procedures, block structured nonlinear systems provide an effective

alternative to explicitly take into account a priori knowledge on the system structure (see the recent

book [6] for an up-to-date collection of results and algorithms in this context). Such aclass of

systems can be profitably used in order to obtain simple and effective models of a wide class

of nonlinear systems through suitable interconnections of memoryless nonlinear gains and linear

subsystems. Nonlinearities may enter the system in different ways: either atthe input or at the

output end or in the feedback path around a linear model. The configuration we are dealing with

in this work, also referred to as a block-structured nonlinear feedbacksystem, is shown in Figure

1; it consists of a feedback system with the linear dynamic model in the forwardpath and the

static nonlinearity in the feedback path. It must be stressed that in this context only systems which

intrinsically show a nonlinear unaccessible feedback path are considered. This kind of model has

been studied in the context of the well known Lur’e problem [7, 8] for which a number of results

are available as far as stability is concerned. The identification of such a model solely relies on the

measurement of the input and the output signal,ut andyt respectively, while all the internal signals

are not assumed to be accessible.

A number of interesting applications of block-oriented feedback nonlinearmodels can be found in

various engineering fields. This model has been successfully applied in [9] to describe the operation

of dynamic mode atomic force microscopy; atomic force microscope cantileverscan be modeled

as a feedback interconnection of a linear dynamic system and a nonlinear static function; the linear

block describes the free cantilever dynamics while the feedback subsystem accounts for the sample

interaction force, which is a nonlinear function of the tip-sample distance. Inpaper [10], Schoukens
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Figure 1.Block-structured nonlinear feedback system.

et al. study the identification of a block-structured nonlinear Wiener-Hammerstein system that is

captured in the feedforward or the feedback path of a closed-loop system; the proposed method

is applied to the identification of a microwave crystal detector. Ming-Tzu Ho and Jun-Ming Lu

[11] consider the problem of synthesizing proportional-integral-derivative (PID) controllers for a

given block-structured nonlinear feedback system in the presence ofexogenous energy-bounded

disturbance; their synthesis method is used to design a controller for a ball and wheel system

apparatus. In [12], Pearson and Pottmann describes a gray-box identification approach tothree

classes of block-oriented models: Hammerstein models, Wiener models, and thefeedback block-

oriented models and show an application of the presented method to a simple first-principle model

of a distillation columns. The rich diversity of hysteretic phenomena that can be generated by

interconnecting a linear dynamic system with a feedback static nonlinearity, is investigated by Ohet

al. in [13]. On the methodological side, further contributions to the identification of block-structured

nonlinear feedback models can be found in [14, 15, 16] while the class of block-structured systems

that can be represented by a linear fractional transformation (LFT) is considered in [17, 18].

A common assumption in system identification is that the measurement error is statistically

described. However, there are many practical cases where reliable random variable models cannot be

derived, while simple bounds are readily available. Some examples include mechanical tolerances,

quantization errors in analog-to-digital converter, systematic and class errors in measurement

equipments. When uncertainties are assumed to belong to a given set, a set-membership

characterization of measurement errors should be preferred to the stochastic description. In this

context, all parameters consistent with measurements, error bounds and the assumed model

structure, are feasible solutions of the identification problem. The interestedreader can find further
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4 V. CERONEET AL.

details on this approach in a number of survey papers (see, e.g., [19, 20]), in the book edited by

Milaneseet al. [21], and the special issues edited by Norton [22, 23].

In this work, we consider the identification of single-input single-output (SISO) discrete-time

block-structured nonlinear feedback system when the nonlinear block can be modeled by a

polynomial with finite and known order and the output measurement errors are bounded. Note that

internal signalszt andνt are not supposed to be measurable. To the authors’ best knowledge, no

contribution can be found in the literature on the identification problem addressed in this paper.

The note is organized as follows. Background results on the relaxation ofsemialgebraic

optimization problems through the theory of moments is presented in Section2. Section3 is

devoted to the formulation of the problem. In Section4 uncertainty intervals on the parameters of

the nonlinear static block are derived, through the solution to polynomial optimization problems

by exploiting steady-state input-output data. Then, in Section5, given the estimated uncertain

nonlinearityN and the output measurements collected by exciting the system with an input dynamic

signal, bounds on each sample of the inner signalzt are computed by solving two semialgebraic

optimization problems. Last, in Section6, uncertainty intervals on the parameters of the linear block

are evaluated. A simulated example is reported in Section7.

2. NOTATION AND BACKGROUND RESULTS ON CONSTRAINED POLYNOMIAL

OPTIMIZATION

In this section we briefly review some preliminary results on the relaxation of sparse polynomial

optimization problems through a hierarchy of semidefinite programming (SDP) problems. The

interested reader is referred to [24] and references therein for further technical details.
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 5

2.1. Polynomial representation and theory of moments

Let us denote withPn
m[x] the space of real-valued polynomials of degree at mostm in the variable

x = [x1, x2, . . . , xn]
T ∈ Rn and lethn

m be the canonical basis ofPn
m[x], i.e.

hn
m =

[

1 x1 x2 · · · xn x2
1 x1x2 · · · x1xn x2

2 x2x3 · · · x2
n · · · x3

1 · · ·xm
n

]T
. (1)

Let us define the setAn
m =

{

α ∈ N
n
0 :

∑n

i αi ≤ m
}

, whereαi is thei-th component of the vector

α andNn
0 denotes the set ofn-dimensional nonnegative integers vectors. Then, the basishn

m of the

spacePn
m[x] can be written ashn

m = {xα}α∈An
m

, wherexα = xα1

1 xα2

2 · · ·xαn
n .

Let f and gs be in Pn
m[x]. We denote the sequencef = {fα}α∈An

m
and gs = {gsα}α∈An

m
as the

coefficients of the polynomialsf andgs, respectively, on the basishn
m, i.e.

f(x) =
∑

α∈An
m

fαx
α, gs(x) =

∑

α∈An
m

gsαx
α.

Let p = {pα}α∈An
m

be the sequence of moments (up to orderm) of a probability measureµ onRn,

i.e. pα =
∫

xαµ(dx) andMm(p) be the truncated moment matrix associated with the distribution

µ, i.e.Mm(p) =
∫

hn
mhnT

m µ(dx). Let us denote withMm(gkp) the localizing matrix associated with

the sequence of momentsp and with the polynomialgk(x). The interested reader is referred to [25]

for details on the construction of the localizing matrix associated with a polynomial.

Remark 1

BothMm(p) andMm(gkp) are square matrixes of size







n+m

m






. �

2.2. LMI-relaxation for polynomial optimization problems

The LMI-relaxation technique based on the theory of moments and proposed by Lasserre in [25] is

briefly reviewed here.
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6 V. CERONEET AL.

Let us consider the constrained optimization problem

f⋆ = min
x∈S

f(x), (2)

wheref ∈ Pn
m[x] andS ⊆ R

n is a compact semialgebraic set defined as

S = {x ∈ R
n : gs(x) ≥ 0, s = 1, . . . ,Ξ} , (3)

wheregs is a real-valued polynomial in the variablex ∈ Rn of degreeds = deg(gs), i.e.gs ∈ Pn
ds
[x].

Let δ ∈ N be such that2δ ≥ max{m,max
s

ds} andhn
2δ = {xα}α∈An

2δ
be the canonical basis of the

spacePn
2δ[x]. Indeed,f andgs belong toPn

2δ[x].

Now, let us consider the SDP problem

fδ = min
p

∑

α∈An
2δ

fαpα

s.t. Mδ(p) � 0, Mδ−d̃s
(gsp) � 0, s = 1, . . . ,Ξ; (4)

whered̃s =
⌈

ds

2

⌉

, p = {pα}α∈An
2δ

is the sequence of moments up to order2δ of some probability

measureµ with support onS, while Mδ(p) is the moment matrix associated with the momentsp

andMδ−d̃s
(gsp) is the localizing matrix associated with the polynomialgs. Problem (4) is referred

to as LMI-relaxed problem of orderδ of the original polynomial problem (2). The solutionfδ

to the convex problem (4) is a lower bound of the global optimumf⋆ of the nonconvex problem

(2). Besides, under mild conditions,fδ converges tof⋆ as the relaxation orderδ goes to infinity.

However, exact global optimumf⋆ can be obtained in practice with a reasonably low relaxation

order (see [26] for a collection of test problems solved with relaxation order less or equalto 4).

Unfortunately, due to high computational complexity, the discussed LMI-relaxation is restricted

to polynomial problems with a small number of optimization variables. In the next section we

describe the relaxation procedure presented by Lasserre in [24] in the spirit of the work of Waki

et al [27]. Such a technique exploits the sparsity in the original polynomial problems to formulate
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 7

a sparse version of the SDP-relaxation previously described, in orderto extend the applicability of

such a methodology to medium and large scale problems.

2.3. Sparse LMI-relaxation for polynomial optimization problems

Given the optimization problem (2) with S as in (3), let I0 = {1, . . . , n} be the union of a

collection ofR setsIr ⊂ {1, . . . , n}, that is{1, . . . , n} =

R
⋃

r=1

Ir. Further, let us partition the index

setS0 = {1, . . . ,Ξ} into R disjoint setsSr, r = 1, . . . , R.

Let us construct the partial moment matrixesMm(p, Ir) (respectively the partial localizing matrixes

Mm(gsp, Ir)) by retaining only those rows and columns of the moment matrixMm(p) (respectively

of the localizing matrixMm(gsp)), where the variablespα are such thatsupp(α) ∈ Ir, with supp(α)

denoting the support of the vectorα.

Now, for a givenδ ∈ N such that2δ ≥ max{m,max
s

ds}, let us define the SDP problem

fδ
sp = min

p

∑

α∈An
2δ

fαpα

s.t. Mδ(p, Ir) � 0, Mδ−d̃s
(gsp, Ir) � 0, s ∈ Sr, r = 1, . . . , R;

The following result holds.

Theorem 1

If the indexes setsIr andSr are such that:

(i) for everyr = 1, . . . , R and for everys ∈ Sr, the constraintgs(x) ≥ 0 definingS in (3), depends

only on the variablesx(Ir) = {xi|i ∈ Ir}

(ii) the objective functionf can be written as

f =

R
∑

r=1

fr, with fr ∈ Pnr
m [x(Ir)], for everyr = 1, . . . , R,

then

fδ
sp ≤ fδ+1

sp ≤ f∗. (5)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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8 V. CERONEET AL.

Besides, if there exists a valueC > 0 such that‖x‖
∞

≤ C for all x ∈ S and the setsIr are such that

Ir+1 ∩
r
⋃

j=1

Ij ⊆ Iq, for someq ≤ r,

for everyr = 1, . . . , R− 1, and hypothesis (i) an (ii) are satisfied, then

lim
δ→∞

fδ
sp = f∗. (6)

�

Remark 2

The size of the square matrixesMm(p, Ir) andMm(gsp, Ir) is







nr +m

m






, with nr denoting the

cardinality of the setIr. �

An implementation of the discussed sparse LMI-relaxation can be found in theMatlab package

SparsePOP [28], which exploits the solver SeDuMi to solve semidefinite programming problems in

polynomial time.

3. PROBLEM FORMULATION

Consider the SISO discrete-time block-structured nonlinear systems shownin Figure1, where the

linear dynamic part is modeled by a discrete-time system which transformszt into the noise-free

outputwt according to

wt = G(q−1)zt =
B(q−1)

A(q−1)
zt, (7)

wherezt = ut − νt is the unmeasurable inner signal andA(·) andB(·) are polynomials in the

backward shift operatorq−1, (q−1wt = wt−1),

A(q−1) = 1 + a1q
−1 + . . .+ anaq

−na, (8)

B(q−1) = b0 + b1q
−1 + . . .+ bnbq

−nb. (9)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 9

The nonlinear block transforms the noise-free outputwt into νt according to

νt = N (wt, γ) =

nγ
∑

k=1

γkw
k
t , (10)

wherenγ is the polynomial degree.

In line with the work done by a number of authors, it is assumed that: (i) the steady-state gain of

the linear block is not zero [29, 30], that is,
∑nb

j=0
bj 6= 0; (ii) a rough upper bound of the settling

time is available [31].

Let yt be the noise-corrupted measurements ofwt, i.e.

yt = wt + ηt. (11)

Measurements uncertainty is known to be bounded by∆ηt, i.e.,

| ηt |≤ ∆ηt. (12)

Let γ ∈ Rnγ andθ ∈ Rnθ be the vectors of the unknown parameters, that isγT =
[

γ1 γ2 . . . γnγ

]

and θT = [a1 . . . ana b0 b1 . . . bnb] , with nθ = na+ nb+ 1. The parametrization of the

structure of Figure1 is not unique. As a matter of fact, given a pair of subsystemsG̃(q−1, θ̃),

Ñ (wt, γ̃), any dynamic system of the kind of the one depicted in Figure1 whereG(q−1, θ) =

G̃(q−1, θ̃)/(1 + σG̃(q−1, θ̃)) and N (wt, γ) = Ñ (wt, γ̃)− σwt, provides the same input-output

behaviour for any constantσ ∈ R. Such an analysis is in agreement with [15], where a structured

Hammerstein-Nonlinear feedback model is considered. In order to get a unique parametrization,

in this work we assume, without loss of generality, that the steady-state gaing of the linear block

G(q−1, θ) be1, that is

g =

∑nb

j=0
bj

1 +
∑na

i=1
ai

= 1. (13)

In this paper we address the problem of deriving bounds on the parametersγ andθ.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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Figure 2.Steady-state behaviour of the system.

4. BOUNDING THE NONLINEAR STATIC BLOCK PARAMETERS

Here we exploit steady-state operating conditions to bound the parameters of the nonlinear static

block. Known input and noise corrupted output sequences are collected from the steady-state

response of the system to a set of step inputs with different amplitudes. We only assume to have a

rough idea of the system settling time, in order to know when steady-state conditions are reached, so

that steady-state data can be collected. Indeed, under condition (i) statedin Section3, by combining

equations (7), (10), (11), (12) and (13) in steady-state operating conditions we get the input-output

mapping

ws = us −
n
∑

k=1

γkw
k
s , s = 1, . . . ,M ; (14)

ys = ws + ηs, s = 1, . . . ,M ; (15)

whereM ≥ nγ is the number of measurements used in the identification of the nonlinear block,

uT = [u1, u2...uM ] andwT = [w1, w2...wM ] are sequences of steady-state values of the known input

signal and the unknown output signal respectively;ηs andys are the values of the noise and the

measured output samples collected at some instant after the true system output has reached the

steady-state valuews. A block diagram description of equations (14)-(15) is depicted in Figure2.

The setDγ of all parametersγ of the static nonlinear block and noise samplesη consistent with

the input-output data sequences, the assumed model structure and the error bounds is described by

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 11

(11), (14) and (15), i.e.

Dγ ={(γ, η) ∈ R
nγ+M : (ys − ηs) +

nγ
∑

k=1

γk(ys − ηs)
k = us,

| ηs |≤ ∆ηs; s = 1, . . . ,M},

(16)

whereηT = [η1, η2, ...ηM ].

For all k = 1, . . . , nγ , tight bounds on each parameterγk can be computed by solving the

optimization problems

γ
k

= min
γ,η∈Dγ

γk, (17)

γk = max
γ,η∈Dγ

γk. (18)

The parameter uncertainty interval (PUIγk
) onγk is defined as

PUIγk
=

[

γ
k
; γk

]

. (19)

In order to guarantee well-posedness of the identification problems (17) and (18), we assume that

Dγ is a bounded set. Then, the following condition onγ holds:

‖γ‖
∞

≤ C, (20)

for some constantC > 0 arbitrarily large.

Note that the formulated identification problems (17) and (18) are semialgebraic optimization

problems since the functional is linear and the feasible setDγ is defined by polynomial equalities

and inequalities in the variablesγk andηs. Therefore, approximated solutions of parameter bounds

can be computed through a direct implementation of the dense LMI-relaxation technique described

in Section2.2, guaranteeing monotone converge to the tight boundsγ
k

andγk. In particular, for a

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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12 V. CERONEET AL.

given relaxation orderδ ≥ δ =
⌈

nγ+1

2

⌉

, relaxing (17) and (18) through the dense LMI-relaxation

leads to SDP problems where the number of optimization variables is







nγ +M + 2δ

2δ






and

the feasible region is described by one moment matrix of size







nγ +M + δ

δ






, 2M localizing

matrixes, each one of size







nγ +M + δ − δ

δ − δ






and2M localizing matrixes, each one of size







nγ +M + δ − 1

δ − 1






.

Due to high computational burden and memory storage requirement, the use ofthe dense LMI-

relaxation technique to relax (17) and (18) is limited, in practice, to identification problems with

a small numberM of measurements, say roughly not greater than 10. In order to handle a larger

number of measurements, the peculiar structure of identification problems (17) and (18) will be

analyzed to apply the sparse SDP-relaxation described in Section2.3. To this aim, let us rewrite the

feasible setDγ as

Dγ = { (γ, η) ∈ R
n+M :

gs(γ, η) = (ys − ηs) +

n
∑

k=1

γk(ys − ηs)
k − us ≥ 0,

gs+M (γ, η) = −(ys − ηs)−
n
∑

k=1

γk(ys + ηs)
k + us ≥ 0,

gs+2M (γ, η) = ∆ηs − ηs ≥ 0,

gs+3M (γ, η) = ηs +∆ηs ≥ 0,

s = 1, . . . ,M} .

(21)

The description ofDγ in (21) is straightforwardly obtained from (16), by rewriting each

equality constraint (ys − ηs) +
∑nγ

k=1
γk(ys − ηs)

k = us as two inequality constraints, i.e.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 13

(ys − ηs) +
∑nγ

k=1
γk(ys − ηs)

k ≤ us and (ys − ηs) +
∑nγ

k=1
γk(ys − ηs)

k ≥ us.

The inherent structured sparsity of identification problems (17) and (18) is described in the

following property.

Property 1

Structure of identification problems (17) and (18)

Problems (17) and (18) enjoy the features:

P 1.1

the objective function depends only on the variableγk;

P 1.2

for all s = 1, . . . ,M , the polynomials constraintsgs ≥ 0 gs+M ≥ 0 definingDγ in (21) depend only

onnγ + 1 variables, i.e. the unknown parametersγk and the sample noiseηs;

P 1.3

for all s = 1, . . . ,M , the constraintsgs+2N ≥ 0 andgs+3N ≥ 0, definingDγ in (21) depend only on

the variableηs. �

Thanks to the inherent structured sparsity of identification problems (17) and (18) described in

Property1, sparse SDP-relaxed problems for (17) and (18) can be formulated as described in the

following.

Let X ∈ R
nγ+M be the collection of the optimization variables for the identification problems (17)

and (18), that is:

X =







γ

η






. (22)

Let us define the index setsIr andSr as

Is = {1, 2, . . . , nγ , nγ + s} for s = 1, . . . ,M ; (23)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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14 V. CERONEET AL.

Ss = {s, s+M, s+ 2M, s+ 3M} for s = 1, . . . ,M. (24)

The index setsIs andSs are constructed on the basis of the sparse structure of the identification

problems (17) and (18) highlighted by Property1. More precisely, the setsIs andSs are such that,

for all r ∈ Ss, all the polynomial constraintsgr ≥ 0 in the definition ofDγ depend only on the

variablesXi, with i ∈ Is.

Now, for a given relaxation orderδ ≥ δ, let us consider the SDP problems:

γδ

k
= min

p∈Dδ
γ

∑

α∈A
nγ+M

2δ

Γkαpα, (25)

γδ
k = max

p∈Dδ
γ

∑

α∈A
nγ+M

2δ

Γkαpα, (26)

where Γk = {Γkα}α∈A
nγ+M

2δ

is the vector of the coefficients ofγk in the basishnγ+M

2δ =

{Xα}
α∈A

nγ+M

2δ

, which is the canonical basis of the real-valued polynomials of degree2δ in the

variables vectorX defined in (22). The feasible regionDδ
γ for problems (25) and (26) is a convex

set defined as

Dδ
γ = {p : Mδ(p, Is) � 0,

Mδ−d̃r
(grp, Is) � 0, r ∈ Ss, s = 1, . . . ,M }

(27)

where Mδ(p, Is) is the moment matrix of orderδ associated with the variablesX(Is);

Mδ−d̃r
(grp, Is) is the localizing matrix associated with the variablesX(Is) and the constraint

gr ≥ 0 definingDγ in (21), andd̃r = ⌈dr

2
⌉, with dr denoting the degree of the polynomialgr. Indeed,

d̃r = ⌈nγ+1

2
⌉ for r = 1, . . . , 2M , while d̃r = 1 for r = 2M + 1, . . . , 4M .

Let us define theδ-relaxed uncertainty intervals as

PUIδγk
=

[

γδ

k
; γδ

k

]

. (28)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(0000)
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 15

Property 2

For everyk = 1, . . . , nγ , theδ-relaxed parameter uncertainty intervalPUIδγk
satisfies the following

properties.

P 2.1

Guaranteed relaxed uncertainty intervals.For any relaxation orderδ ≥ δ, theδ-relaxed parameter

uncertainty intervalPUIδγk
is guaranteed to contain the true parameterγk to be estimated, i.e.

γk ∈ PUIδγk
. (29)

P 2.2

Monotone convergence to tight uncertainty intervals.For any relaxation orderδ ≥ δ, the δ-

relaxed parameter uncertainty intervalPUIδγk
becomes tighter as the relaxation orderδ increases,

that is

PUIδ+1
γk

⊆ PUIδγk
. (30)

Besides, the intervalPUIδγk
converges to the tight intervalPUIγk

as the LMI relaxation order goes

to infinity, that is:

lim
δ→∞

γδ

k
= γ

k
(31)

lim
δ→∞

γδ
k = γk. (32)

Proof Index setsIs andSs defined in (23) and (24) were carefully constructed in such a way that

the assumptions of Theorem1 are satisfied. Furthermore, from conditions (12) and (20), the infinity

norm‖X‖∞ of the variables vectorX is always bounded. Therefore, by applying the first part of

Theorem1 to the identification problems (17)-(18) and to the corresponding SDP-relaxed problems
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(25)-(26) we get:

γδ

k
≤ γδ+1

k
≤ γ

k
(33)

γδ
k ≥ γδ+1

k ≥ γk (34)

Then, from the definition of the intervalsPUIγk
andPUIδγk

and equations (33)-(34), we get

γk ∈ PUIγk
⊆ PUIδ+1

γk
⊆ PUIδγk

, (35)

as stated in P.2.1 and in the first part of P.2.2. Besides, from the second part of Theorem1,

convergence conditions given in the second part of Property P.2.2follow. �

As to the computational complexity, the number of decision variables for the SDPproblems

(25) and (26) is M







nγ + 1 + 2δ

2δ






− (M − 1)







nγ + 2δ

2δ






, while the feasible regionDδ

γ is

described by:M moment matrixes, each one of size







nγ + 1 + δ

δ






; 2M localizing matrixes,

each one of size







nγ + 1 + δ − δ

δ − δ






, associated with the(nγ + 1)-degree polynomial constraints

gs ≥ 0 and gs+M ≥ 0 defining Dγ ; 2M localizing matrixes, each one of size







nγ + δ

δ − 1






,

associated with linear constraintsgs+2M ≥ 0 andgs+3M ≥ 0 definingDγ .

5. BOUNDING THE UNMEASURABLE INNER SIGNALzt

In the second stage of our procedure we stimulate the block-structured nonlinear feedback system

of Figure1 with a persistently exciting input signalut and evaluate bounds on each sample of the

corresponding unmeasurable inner signalzt. For each input sampleut, bounds on the corresponding
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IDENTIFICATION OF NONLINEAR FEEDBACK SYSTEMS 17

inner unmeasurable signal samplezt can be evaluated through

zt = ut − νt, zt = ut − νt, (36)

where

νt = min
Dt

γη

nγ
∑

k

γk (yt − ηt)
k
, (37)

and

νt = max
Dt

γη

nγ
∑

k

γk (yt − ηt)
k
. (38)

The feasible regionDt
γη for problems (37) and (38) is the cartesian product of the setDγ and the set

of noise samplesηt satisfying the a priori hypothesis (12) on the error bounds, i.e.

Dt
γη ={(γ, η, ηt) ∈ R

nγ+M+1 : (ys − ηs) +

nγ
∑

k=1

γk(ys − ηs)
k = us,

| ηt |≤ ∆ηt; | ηs |≤ ∆ηs; s = 1, . . . ,M}.

(39)

Since the objective function for (37) and (38) is polynomial and the feasible regionDt
γη is defined

by polynomial constraints, (37) and (38) are semialgebraic optimization problems. Besides, like

(17) and (18), problems (37) and (38) show an inherent structured sparsity. In fact, the objective

function depends only onnγ + 1 variables, i.e. the unknown nonlinear block parametersγ and the

output noiseηt, while the linear constraints| ηs |≤ ∆ηs and| ηt |≤ ∆ηt defining the feasible region

Dt
γη depend only on the sample disturbancesηs andηt, respectively. Therefore, guaranteed bounds

on the signalνt (and consequently on the inner signalzt) can be computed through the same LMI-

relaxation method used in Section4 for bounding the nonlinear block parameters. Similar results

presented in Property2 hold as far as the computation of bounds onνt andzt is concerned.
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�
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+

+

Figure 3. Errors-in-variables setup for bounding the parameters of the linear system.

6. BOUNDING THE PARAMETERS OF THE LINEAR DYNAMIC MODEL

Given boundszt andzt computed in the second stage of the procedure, a compact description of

the inner unmeasurable signalzt in terms of its central valuezct and its perturbationδzt is given by

zt = zct − δzt, (40)

where

zct =
zt + zt

2
. (41)

Indeed, the perturbationδzt is such that

| δzt |≤ ∆zt, (42)

with

∆zt =
zt − zt

2
. (43)

Thanks to such a description of the unknown signalzt, we can formulate the identification of the

linear model in terms of the noisy output sequence{yt} and the uncertain inner sequence{zt} as

shown in Figure3.

Such a formulation is commonly referred to as a bounded errors-in-variables (EIV) problem, i.e.

a parameter estimation in a linear-in-parameter model where both input and output measurements

are corrupted by bounded noise.. As a matter of fact, by combining equations (7)-(11) and (40) we
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get

yt=−
na
∑

i=1

(yt−i − ηt−i)ai+

nb
∑

j=0

(zct−j − δzt−j)bj+ηt. (44)

The feasible parameters setDθ for the linear system is then defined by equation (44) and by

conditions (12), (13) and (42), i.e.

Dθ = {(θ, η) ∈ R
nθ+N : yt=−

na
∑

i=1

(yt−i − ηt−i)ai+

nb
∑

j=0

(zct−j − δzt−j)bj+ηt;

g = 1; | ηt |≤ ∆ηt; | δzt |≤ ∆zt; t = 1, . . . , N},

(45)

whereN is the length of the persistently exciting input sequence{ut} used in the second stage of

the identification procedure. Then, bounds on the linear block parametersθj can be computed for

all j = 1, . . . , nθ by solving the nonconvex optimization problems

θj = min
θ,η∈Dθ

θj , (46)

θj = max
θ,η∈Dθ

θj . (47)

Guaranteed uncertainty intervalsPUIθj =
[

θj ; θj
]

on the parametersθj can be numerically

computed by exploiting the methods described in [32] and in the recent works [33, 34], where

efficient convex-relaxation procedures are proposed to compute bounds on the parameters of linear

systems in the EIV framework when measured data are affected by bounded noise. It must be pointed

out that, if the linear blockG(q−1) is known to be stable, stability constraints on the linear system

parametersa1, . . . , ana can be imposed in the definition of the setDθ, as described in [35], in order

to improve the accuracy in evaluating the uncertainty intervalsPUIθj .

7. A SIMULATED EXAMPLE

In this section we illustrate the discussed parameter bounding procedure through a numerical

example. The system considered here is characterized by (8), (9) and (10), with γT = [γ1 γ2 γ3] =
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[−1.1 0.8 1.1] and θT = [a1 a2 b1 b2] = [−1.3114 0.3679 0.1713 − 0.1148]. Two different

simulations are performed. In the first one, a small data set is used during the identification.

In particular, the length of steady-state and the transient data sequence isM = 30 andN = 80,

respectively. In the second simulation,M = 300 andN = 1000 are chosen. The steady-state input

sequence{us} belongs to the interval[−10,+10], while the transient input sequence{ut} belongs to

the uniform distributionU [−10,+10]. The output noisesηs andηt are random variables belonging

to the uniform distributionsU [−∆ηt,+∆ηt] andU [−∆ηs,+∆ηs], respectively. Bounds on steady-

state and transient output measurement errors have the same value, i.e.,∆ηt = ∆ηs , ∆η. The

chosen value of∆η is such that the signal to noise ratioSNR in the steady-state sequence, defined

as

SNR = 10 log

∑M

s=1
w2

s
∑M

s=1
η2s

, (48)

is 29 db in both simulations, while the signal to noise ratioSNR in the transient sequence, defined

as

SNR = 10 log

∑N

t=1
w2

t
∑N

t=1
η2t

, (49)

is 27 db whenN = 80 and 28 db whenN = 1000.

Bounds on the nonlinear block parametersγ are evaluated by solving (25) and (26) for a relaxation

orderδ = 3. It is worth remarking that in the considered example, and for steady-statedata sequence

of lengthM = 30, the number of decision variables for the optimization problems (25)-(26) is 3,864

and the feasible region is defined by60 moment matrixes of size35; 60 localizing matrixes of size

5 and30 localizing matrixes of size15. On the other hand, if the sparsity was not taken into account

in the relaxation of (17) and (18), the number of optimization variable for the corresponding SDP-

relaxed problems would be more than 3 million, while the feasible region would be described by a

moment matrix of size7, 140; 60 localizing matrixes of size34 and60 localizing matrixes of size

595, leading to an untractable optimization problem.

By exploiting the same LMI-relaxation approach used in the computation of the uncertainty intervals

on γ, bounds on the inner signalszt (for t = 1, . . . , N ) are evaluated by relaxing problems (37)
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and (38) for an LMI-relaxation orderδ = 3. Finally, uncertainty intervals on the linear block

parametersθ are evaluated by solving the formulated error-in-variables problems (46) and (47)

with the algorithm proposed in [33] and by enforcing stability constraints on the linear system

G(q−1) as in [35]. Results on the evaluation of nonlinear and the linear block parameters are

reported, respectively, in TableI andII , which show the obtained parameter bounds, the parameter

uncertainties∆γδ
k and∆θj , together with the central estimatesγc,δ

k andθcj , defined as

∆γδ
k =

γδ
k − γδ

k

2
, ∆θj =

θj − θj
2

,

γc,δ
k =

γδ
k + γδ

k

2
, θcj =

θj + θj
2

.

Results in TablesI and II show that, as expected, the true parameters values are included in

the computed uncertainty intervals. Furthermore, the presented procedure provides satisfactory

uncertainty intervals on both the linear and the nonlinear block parameters also when a small data

set is used for the identification.

Table I. Nonlinear block.— Parameter central estimates (γ
c,δ
k

), parameter bounds (γδ
k
, γδk) and parameter

uncertainty bounds∆γδk for relaxation orderδ = 3 for steady-state data sequence of lengthM = 30 and
M = 300.

M Parameter True γδ

k
γc,δ
k γδ

k ∆γδ
k

value

30 γ1 -1.1000 -1.1270 -0.9989 -0.8708 0.1281
γ2 0.8000 0.7866 0.8236 0.8606 0.0370
γ3 1.1000 0.9958 1.0642 1.1327 0.0684

300 γ1 -1.1000 -1.1072 -1.0984 -1.0895 0.0088
γ2 0.8000 0.7959 0.8012 0.8065 0.0053
γ3 1.1000 1.0957 1.1003 1.1050 0.0046
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Table II. Linear block.— Parameter central estimates (θcj ), parameter bounds (θj , θj) and parameter
uncertainty bounds∆θj for transient data sequence of lengthN = 80 andN = 1000.

N Parameter True θj θcj θj ∆θj
value

80 θ1 -1.3114 -1.6986 -1.3414 -0.9842 0.3572
θ2 0.3679 0.1014 0.4000 0.6986 0.2986
θ3 0.1713 0.1635 0.1747 0.1860 0.0113
θ4 -0.1148 -0.1761 -0.1171 -0.0580 0.0591

1000 θ1 -1.3114 -1.5340 -1.3215 -1.1091 0.2125
θ2 0.3679 0.1979 0.3793 0.5606 0.1814
θ3 0.1713 0.1656 0.1718 0.1779 0.0062
θ4 -0.1148 -0.1453 -0.1133 -0.0813 0.0320

8. CONCLUSIONS

A computationally tractable procedure is presented for parameter bounds computation of block-

structured nonlinear feedback systems. First, the computation of nonlinearblock parameter bounds

is formulated in terms of sparse polynomial optimization problems, whose approximated solutions

are computed by means of LMI-relaxation techniques. The peculiar structure of the formulated

optimization problems is exploited to reduce the computational complexity of the corresponding

LMI-relaxed problems. The parameter uncertainty intervals computed by solving the relaxed

problems are proven to contain the unknown parameters to be estimated. Besides, such parameter

bounds are proven to monotonically converge to the tight ones as the relaxation order goes to

infinity. Analogous results also hold for the computation of bounds on the unmeasurable inner

signal. By using the inner signal bounds, the problem of bounding the linear block parameters is

formulated in terms of errors-in-variables identification with bounded errors, and it is solved through

the techniques available in the literature. The numerical example shows that theproposed procedure

can be used in medium and large scale identification problems. Anyway, satisfactory uncertainty

intervals on both the linear and nonlinear block parameters are obtained alsofor a small data set.
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