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Abstract

A technique for robust identification of nonlinear dynamic systems is developed and

illustrated using both digital simulations and analog experiments. The technique is based

on the Minimum Model Error optimal estimation approach. A detailed literature review

is included in which fundamental differences between the current approach and previous

work is described. The most significant feature of the current work is the ability to

identify nonlinear dynamic systems without prior assumptions regarding the form of the

nonlinearities, in contrast to existing nonlinear identification approaches which usually

require detailed assumptions of the nonlinearities. The example illustrations indicate that

the method is robust with respect to prior ignorance of the model, and with respect to

measurement noise, measurement frequency, and measurement record length.

Introduction

The widespread existence of nonlinear behavior in many dynamic systems is well-

documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook [2]. In particular,

virtually every problem associated with orbit estimation, flight trajectory estimation,

spacecraft dynamics, etc., is known to exhibit nonlinear behavior. Many excellent

methods for analyzing nonlinear system models have been developed. However, a key

practical link is often overlooked, namely: How does one obtain an accurate mathematical

model for the dynamics of a particular complicated nonlinear system?

Accurate dynamic models are necessary for analysis, filter design, and/or control

system design. For example, most filter design assumes white process noise, yet many

nonlinear effects are inherently non-zero mean; e.g., quadratic nonlinearities are always

positive. In order to obtain a model with truly zero mean process noise for filter design
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purposes, all of the quadratic terms (and many other nonlinearities) must be well modeled.

However, the complexity of many real systems precludes the possibility of accurately

constructing a dynamic model purely from analysis using the laws of physics.

Identification is the process of developing an accurate mathematical model for a

system, given a set of output measurements. Much work has been done on identification

of linear systems, resulting in a number of efficient algorithms. The accuracy and ease of

application of these algorithms has given linear identification an enormous popularity. It

is, therefore, a common practice to use linearized models to describe nonlinear systems.

However, linearization does not work in every application, and even when it does provide

a reasonable approximation, the approximation is normally limited to a small region about

the operating point of linearization. Consequently, there is a real need for nonlinear

identification algorithms. If nonlinearities are a predominant part of a system's behavior,

using a linear model to describe such a system leads to inconsistencies ranging from

inaccurate numerical results to misrepresentation of the system's qualitative behavior.

Since nonlinearities are seldomly easily characterized, identification techniques may prove

beneficial in developing accurate mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed

in the past two decades (Natke, Juang and Gawronski [3]). Most methods fall into one

of the following categories:

1. describing the nonlinear system using a linear model

2. the direct equation approach

3. representing the nonlinear system in a series expansion, and obtaining the respective

coefficients either by using a regression estimation technique, by minimizing a cost

functional, by using correlation techniques, or by some other approach

4. obtaining a graphical representation of the nonlinear term(s), then finding an analytical

model for the nonlinearity

With such diversity of nonlinear identification techniques, the choice of an algorithm

may be based on criteria such as: iterations required, robustness in the presence of mea-

surement noise, number of measurements needed, robustness with respect to knowledge

of the inital conditions, and robustness with respect to initial assumptions regarding the

form of the nonlinearity, depending on the needs of the particular application.

Among the methods which linearize the nonlinear system are those presented by

Jedner and Unbehauen [4] and Ibanez [5]. Jedner and Unbehauen [4] represent a nonlinear

system, which may often function at a number of operating points, by an equivalent

number of linear submodels. It is assumed that the system operates at only a few points.

Although the model is good for controller design, the point at which the system is

operating must be known and the linear models apply only within the operating regions.

Ibanez [5] takes a slightly different approach by assuming the system response to be

periodic at the forcing frequency. An approximate transfer function is constructed. The
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tranfer function is dependenton the amplitude as well as on the exciting frequency and

is valid only within the region of exciting frequencies.

The direct equation approach is used by Yasuda, Kawamura and Watanabe [6], [7].

The input and output measurements of a dynamic process are expressed in a Fourier Series

using, for example, an FFF algorithm. The system nonlinearity is represented as a sum of

polynomials with unknown coefficients. Applying the principle of harmonic balance, the

polynomial coefficients as well as the other system parameters are obtained accurately.

Knowledge of the nonlinearity is needed to construct the polynomial. Truncation in the

Fourier Series expansion of the input or output may lead to error.

The regression estimation approach is used by Billings and Voon [8] and Greblick

and Pawlak [9]. Billings and Voon [8] use the NARMAX model (Nonlinear Auto

Regressive Moving Average model with eXogenous inputs) to represent the nonlinear

system. A stepwise regression method determines the significant terms in the NARMAX

model. Then a prediction-error algorithm provides optimal estimates of the final model

parameters. Greblick and Pawlak [9] represent the linear dynamic submodel by an ARMA

model and the nonlinearities by a Borel function. A non-parametric kernel regression

estimation is employed to obtain the final analytical model.

Kortman and Unbehauen [I0] and Distefano and Rath [II] use the minimization

of an error cost function as a means of obtaining the coefficients of the functions used

to represent the nonlinearities. The method presented by Kortrnan and Unbehauen [10]

uses only system input and output information to estimate the polynomial representing

the nonlinearities and the parameters of the linear components. It is robust in the

presence of noise, although iteration is necessary. Distefano and Rath [11] present two

techniques, a non-iterative direct identification and an iterative direct identification. In

the first technique, measurement of all variables is required and the model parameters

are obtained through the minimization of an error function. In the second technique,

iteration is used to minimize a cost function yielding the system parameters in addition

to the state trajectories. In Distefano and Rath [11], the nonlinear model form is also

taken to be known.

In other techniques, as in statistical linearization, a nonlinear relation is replaced by a

linear equivalent gain. Broersen [ 12] extends the technique of statistical linearization by

representing the nonlinearity as a linear combination of a number of arbitrary functions.

Correlation techniques are then used to determine the coefficients of these functions. The

number and type of functions selected depends on the desired accuracy as well as some

knowledge of the system nonlinearity. Reasonable accuracy is obtained in the presence

of noise and no iterations are necessary. Although some of the basic properties of the true

nonlinear output are preserved, it is limited to only random excitation, and knowledge

of all states and forcing terms is required.

In the method of multiple scales (Hanagud, Mayyappa and Craig [13]), a perturbation

solution to the nonlinear equation of motion is obtained. An objective function is built
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employing anintegral leastsquaresapproach.The minimizationof the functionalyields
the unknownparameters.Dataon only one field variableis necessary,and the method
is effective in the presenceof high noise. The methodof multiple scales, however, is

restricted to systems with small damping and slight nonlinearities and, as in most other

methods, the form of the nonlinearity is assumed a priori. The method typically requires

some algebraic manipulations which may be quite involved, and these manipulations are

only valid for a particular assumed nonlinear form. If the assumed nonlinear form is

changed, the algebra must be repeated.

Another popular approach is to describe the nonlinear system using the Volterra or

Wiener kernels. The Volterra series consists of the summation of impulse responses

of increasing dimensionality. The Wiener series is also a set of orthogonal functions

in which the input is white gaussian noise. Marmarelis and Udwadia [ 14], for example,

estimate the first and higher order kernels appearing in the Volterra series using correlation

techniques. Chen, Ishii and Suzumura [15] use cross-correlation functions in addition to

the Volterra and Wiener series to describe nonlinear models and to show the relation

between the system inner structure and the series. Although weakly nonlinear systems

can be described by the first few kernels, for strongly nonlinear systems these series give

accurate numerical results only at the expense of an excessive number of coefficients.

This renders the analytical model impractical for control applications.

Other popular series are orthogonal polynomials such as Legendre (Wang and Chan

[16]), Chebyshev, and Jacobi (Horn and Chou [17]). Horn and Chou [17] expand the

variables of the system into a shifted Jacobi series, reducing the nonlinear state equation

into a linear algebraic matrix equation. The unknown parameters of the nonlinear system

are then estimated using least squares. Even though the algorithm works well in the

presence of noise, the nonlinear form must be known a priori.

Another technique used for the identification of nonlinear systems is the extended

Kalman filter. The extended Kalman filter is the linear Kalman filter applied to nonlinear

systems by linearizing the nonlinear model into a Taylor series expansion about the

estimated state vector. Yun and Shinozuka [18] apply the extended Kalman filter for the

parameter estimation of a quadratic term. The state vector is augmented by including

the unknown parameters in addition to the state variables. Through a series of iterations,

the response, as well as the unknown parameters, are estimated by the Kalman filter.

Among its disavantages are high sensitivity to initial conditions, in particular if the initial

conditions are barely known.

Hammond, Lo and Seager-Smith [19] use an optimal control technique based on

optimal control methods employed for linear system deconvolution. The form of the

linear model is assumed to be known as well as the input and the output. A cost functional

consisting of the weighted sum of the square of the error (between the actual and estimated

output) yields an optimal estimated input. The estimated input and the actual input are
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used to obtain the nonlinearity as a function of the state variables. Although no previous

assumption is made of the nonlinearities, there is no provision to deal with noise.

In previous papers, the Minimum Model Error algorithm (MME) was explained

in detail (Mook and Junkins [20]), modified for nonlinear identification (Mook [21]),

and shown to accurately identify exotic nonlinearities in higher order systems (Stry and

Mook [22]). In this paper, it is shown how the MME algorithm successfully identifies

nonlinearities using experimental data. An analytical model representing a harmonic

oscillator with quadratic position feedback is studied. First, output data is obtained from

a digital computer simulation of the nonlinear system and the quadratic term is identified

to illustrate the accuracy of the technique on a known system. Second, an attempt is made

to duplicate the nonlinear model using an analog computer. It is shown that despite the

inability of the analog computer to produce a true quadratic term, the Minimum Model

Error algorithm is capable of identifying a nonlinear model which accurately reproduces

the analog output. The Minimum Model Error method produces a numerically stable

identification regardless of the analog data initial conditions or record length.

MME Algorithm

In thissection,we review the MME algorithmand how itisused to identifynonlinear

dynamic systems. A more detailedexplanationmay be found in Mook and Junkins [20],

Mook [21],and Stry and Mook [22].

The MME may be summarized as follows. Suppose there is a nonlinearsystem

whose exact analyticalrepresentationis unknown, but for which output measurements

are available.Using "normal" means (analysis,finiteelements,etc.),a system model is

constructed.As shown in [21]-[22],the MME willwork well even ifthissystem model

ispoor. The MME combines the assumed model with themeasurements todetermine the

correctform of the nonlinearsystem. A con'cctionterm which representstheerrorin the

model is added to the assumed model and a cost functionalisformed. Minimization of

the cost functionalyieldsthe model error.Subsequently,a leastsquaxcs fitisperformed

on the errorterm to determine the correctform of the nonlinearsystem.

Consider a forced nonlineardynamic system which may be modeled in state-space

form by the equation

= +_r(t) (1)

where _(t) is the n x 1 state vector consisting of the system states, A is the n x n state

matrix, __F(t) is an n x 1 vector of known external excitation, and __f(_(t),_(t)) is an

n x 1 vector which includes all of the system nonlinearities. State-observable discrete

time domain measurements are available for this system in the fo.._m..

= + vk, to _<tk _<tI
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where _(t_) is an m x 1 measurement vector at time tk, g-k is the accurate model of

the measurement process, and _ represents measurement noise, v k is assumed to be

a zero-mean, gaussian distributed process of known covariance Rk. The measurement

vector _(tk) may contain one or more of the system states. To implement MME, assume

that a model, which is generally not the true system model because of the difficulties

inherent in obtaining the true system model, is constructed in state-vector form as

_C t) = A-_Ct) + £(0 (3)

Here, we show a linear model because in practice, linearization is the most common

approach to modeling nonlinear systems. MME uses the assumed linear model in (3)

and the noisy measurements in (2) to find the model error.

The model error, which includes the unknown nonlinear term(s) of the system, is

represented by the addition of a correction term to the assumed linear model as

__(t) = a__(t) + _F(t) + el(t) (4)

where tee(t) is the n x 1 correction term (dynamic model error) to be estimated later.

A cost functional, J, that consists of the weighted integral square of the correction

term plus the weighted sum square of the measurement-minus-estimated measurement

residuals, is formed:

M

k=l _

Z2'+ el(T)rwel(,')d," (5)

where M is the number of measurement times, __(tk) is the estimated state vector and

W is a weight matrix to be determined.

J is minimized with respect to the correction term, el(t). The necessary conditions

for the minimization lead to the following two point boundary value problem (TPBVP),

(see Geering [23]),

__(t)= ,4__(t)+ £(t) + d(t)
A(t) = --AT)__(t)

a_CO= -lwAct)

A(t +) = A(t_) + 2HI:R-_X[_I(t_:) - gk(_Ctk), tk)]

(Sa)
(Sb)

(5c)

(Sd)
_9

_(to)=_ or __(to)=0 (5_)
__(tf)=_ s or A(tf)=0 (sf)
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where __(t) is a vector of costates (Lagrange multipliers). Estimates of the states and

of the dynamic model error are produced by the solution of this two-point boundary

value problem. The estimates depend on the particular value of W. The solution is

repeated until a value of W is obtained which produces state estimates which satisfy the

"covariance constraint", explained next.

According to the covariance constraint, the measurement-minus-estimated measure-

ment residual covariance matrix must match the measurement-minus-truth error covari-

ante matrix. This may be written as

_(th) - ,qk(_(tk),tk)]r__(tk) -- £k(_(tk), ti,)] _ Rk (6)

During the minimization, the weight W is varied until the state estimates satisfy the

covariance constraint, i.e., the left hand side of Eq. (6) is approximately equal to

the right hand side. The correction term or model error is, therefore, the minimum

adjustment to the model required for the estimated states to predict the measurements

with approximately the same covariance as the measurement error.

The TPBVP represented by Eqs. (5a) to (5f) contains jumps in the costates and,

consequently, in the correction term. As evident from Eq. (5d), the size of the jump is

directly proportional to the measurement residual at each measurement time. The noisier

the measurements, the larger the jump size. A multiple shooting algorithm, developed

by Mook and Lew [24], converts this jump-discontinuous TPBVP into a set of linear

algebraic equations which may be solved using any linear equation solver. Multiple

shooting also facilitates the analysis of a large number of measurements, by processing

the solution at the end of every set of jumps.

After W has been determined such that the state estimates satisfy the covariance

constraint, the final step in the identification procedure is to use a least squares algorithm

to fit the model error d(t) to the unknown dynamic term(s). The error is expanded into

some combination of linear and nonlinear terms, for example,

 Ct)= ,,-Ct)+ ;3 2Ct) + -r 3C +... (7)

where 6, /3, 7, ..- axe unknown coefficients to be determined by least squares. Pre-

sumably, the least squares fit of Eq. (7) will find zero coefficients for the terms in the

expansion which are not part of the true model, and nonzero coefficients for the actual

model terms. Eq. (7) may be sampled repeatedly to obtain

or, in matrix form,

a(t2)= + ;3 2(t2)+ -rx3(t2)+...

d(tl) = az(tl) +/3z2(tl) + 7z3(ti) + ...

=  t×pt'p×l (8)
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where P = [a B 7 ...]T is the vector of coefficients for the terms in d(t). Since

estimates of d(t) are available continuously throughout the time domain, the parameter

! may be chosen quite large to improve the least squares fit. Generally, because of the

jump discontinuities in the model error estimates at the measurement times, it is desirable

to pick the least squares sampling times in Eq. (8) at points other than the measurement

times. The least squares estimate is found by minimizing the following cost functional

with respect to P:

¢_ -" L_-- M_---]T[ D - MP_.] (9)

The solution is given by

__-- (MTM)-IMTD___ (10)

The multiple shooting algorithm presented by Mook and Lew [24] was used to

obtain the MME solutions used in the tests presented in this paper. It was assumed

in the examples that MME obtained the dynamic error term without knowledge of the

boundary conditions on r,, so some distortion of the correction term at the initial and

final times was expected due to the constraints of Eqs. (5e-50, i.e., by assuming no state

knowledge is available at to or t f, we conslxain :),(to) = 0 and _(tl) = 0. Therefore,

in all test cases, the initial and final ten percent of the correction term data was ignored

in the least squares fit.

Application Examples

Two nonlinear equations of motion were studied, which represent the motion of

an undamped harmonic oscillator with different amounts of quadratic position feedback

(identical equations may arise in other physical systems as well). The equations in state

space form are

(_.): (01 10)(z)+ (_0.5026,2)
(11)

(;) (010)(:.)( 0 (12)
= -1 + -1.137z 2/

where z is position, and the dot indicates differentiation with respect to time. No forcing

was applied.

In the following discussion, Eq. (ll) is denoted Model A and Eq. (12) is denoted

Model B. Different initial conditions were used for each system, for a total of five

different tests. These are shown in Table 1.
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Table 1. List of conditions used for each test

Test #

A1

A2

A3

B1

B2

=(to)
0.00

0.00

0.00

0.00

0.00

0.26

0.52

0.08

0.26

-0.526

-0.526

-1.137

-1.137

To utilize MME, the linear part of Eqs. (11) and (12) was assumed to be known,

rendering the model error equivalent to the nonlinear term, e • z 2. Data for the

MME nonlinear identification was generated from two different sources. First, noiseless

position measurements were gathered from a digital computer simulation for all five tests.

Application of MME to the measurements yielded an accurate estimate of the nonlinear

term in each case. Then, an attempt was made to duplicate each system on an analog

computer. Even though the analog computer did not reliably reproduce the quadratic

term, the position measurements for all five tests were recorded and nonlinear models

identified. MME proved capable of identifying accurate nonlinear models for the analog

output.

Digital computer simulation results

One hundred noiseless position measurements were generated on a VAX 780 for the

five test cases shown in Table 1.. A sampling rate of 4 Hertz was used. Three terms

were employed in the least squares fit: z, _ and z 2. The resulting numerical values

are shown in Table 2.

Table 2. Least Squares estimates of the dynamic model error employing analyt-

ically generated measurements in the MME algorithm.

Test MME MME MME Analytic Analytic Analytic

# z k z 2 z :_ z 2

A1 4.24x10 -4 4.90x10 -4 -0.526 0.0 0.0 -0.526

A2 1.21 x 10 -s -3.00 x 10 -4 -0.527 0.0 0.0 -0.526

A3 2.49x10 -s 2.35x10 -a -0.528 0.0 0.0 -0.526
|l

B1 -2.86x10 -4 -6.39x10 -a -1.138 0.0 0.0 -1.137

B2 -3.46x10 -4 -6.80x10 -a -1.138 0.0 0.0 -1.137

MME identifies the quadratic term with great accuracy in all five tests. A plot of

the estimated, analytical and measured position is shown in Figure (la) for test case A1.
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Figure(Ib)presentsthepredictedmodel errorand the dynamic model errorestimated

by MME fortestcaseA1. MME estimatesthepositionand correctionterm withgreat

accuracy.SimilarresultsarcobtainedfortestsA2, A3, B1, and B2, butarcnotshown.
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(a) (b)

Figure 1 (a) Analytical, measured (A), and MME estimated position
for test A1 using digital computer simulated measurements. The

analytical and MME estimates are essentially identical (solid line).

(b) MME estimate (+) and actual model error.

Analog computer results

Three hundred fifty position measurements were generated on a Comdyna GP-6

analog computer for all five test cases. One hundred measurements with a sampling rate

of 4 Hertz were used in the analysis. The identification procedure yielded the numerical
values shown in Table 3.
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Table 3.

generated by the analog computer.

Least Square estimates of the nonlinear terms using measurements

Test MME MME MME

# = b =2

A1 -0.20 1.04x10 -2 -6.17
i

A2 -5.06x10 -2 -1.89×10 -3 -1.322

A3 -6.44x 10 -s -4.81 x10 -3 -0.689

B1 0.10 -3.78×10 -3 -3.47

B2 2.55 × 10 -2 7.42 x 10 -3 -1.265

The numerical results for the least squares fit of the error term did not match the

analytically predicted coefficients. The reason for the numerical discrepancy was the

analog's failure to produce a dependable quadratic term. Table 4 shows some position

values squared by the analog. The analog consistently produced an error in the quadratic

term. The recorded data,although containingerrorsdue to quadraticterm, is believed

to be practicallynoiseless.

Table 4. Quadratic term produced by the analog computer.

2.00

2.50

3.00

6.25

9.00

Analog

4.30

7.00

9.50

Figures (2)-(6) show the analytical position, analog measurements and position

predicted by the MME analysis for all analog tests. The MME identification produced

good state estimates and a model which matched the measured data much better than the

analytical models in Eqs. (11) and (12).

Note, these results were obtained without knowledge of the initial or final state vector

value. As shown in Eqs. (5e) and (5f), by setting the initial and final costate values to

zero, no knowledge of the initial or end conditions are necessary. Also, the same results

presented in Table 3 were obtained when using all three hundred and fifty measurements

instead of one hundred measurements in the MME algorithm.
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Figure 2 Analytical, measured (_), and MME estimated position
for test A1 using analog computer measurements. The

MME estimates are essentially identical to the measurements
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Figure 3 Analytical, measured (A), and MME estimated position

for test A2 using analog computer measurements. The

MME estimates are essentially identical to the measurements
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Figure 4 Analytical, measured (_), and MME estimated position
for test A3 using analog computer measurements. The

MME estimates are essentially Identical to the measurements
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Figure 5 Analytical, measured (A), and MME estimated position
for test B1 using analog computer measurements. The

MME estimates are essentially identical to the measurements
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Figure 6 Analytical, measured (A), and MME estimated position
for test B2 using analog computer measurements. The

MME estimates are essentially identical to the measurements

Conclusion

In this paper, an MME---based algorithm was used to identify the quadratic term of a
nonlinear harmonic oscillator. For demonstration purposes, data was obtained from two

sources. Output data obtained from a digital computer simulation was used to verify the

accuracy of the method. Then, data from an analog computer was used as a test of the
method on "real" data. It was shown that despite the inability of the analog computer

to reproduce a true quadratic term, the MME algorithm was capable of identifying a

nonlinear model which accurately reproduced the analog output. This result indicates
that the method is robust with respect to (lack of) a priori knowledge of the system

dynamics. The identification was accurate regardless of initial conditions or data record

length, indicating that the method is also robust with respect to those variables.
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