918 research outputs found

    A consensus-based distributed voltage control for reactive power sharing in microgrids

    Get PDF
    We propose a consensus-based distributed voltage control (DVC), which solves the problem of reactive power sharing in autonomous meshed inverter-based microgrids with inductive power lines. Opposed to other control strategies available thus far, the DVC does guarantee reactive power sharing in steady-state while only requiring distributed communication among inverters, i.e. no central computing nor communication unit is needed. Moreover, we provide a necessary and sufficient condition for local exponential stability. In addition, the performance of the proposed control is compared to the usual voltage droop control [1] in a simulation example based on the CIGRE benchmark medium voltage distribution network

    Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids with Consensus-Based Distributed Voltage Control

    Get PDF
    We propose a consensus-based distributed voltage control (DVC) that solves the problem of reactive power sharing in autonomous inverter-based microgrids with dominantly inductive power lines and arbitrary electrical topology. Opposed to other control strategies available thus far, the control presented here does guarantee a desired reactive power distribution in steady state while only requiring distributed communication among inverters, i.e., no central computing nor communication unit is needed. For inductive impedance loads and under the assumption of small phase angle differences between the output voltages of the inverters, we prove that the choice of the control parameters uniquely determines the corresponding equilibrium point of the closed-loop voltage and reactive power dynamics. In addition, for the case of uniform time constants of the power measurement filters, a necessary and sufficient condition for local exponential stability of that equilibrium point is given. The compatibility of the DVC with the usual frequency droop control for inverters is shown and the performance of the proposed DVC is compared with the usual voltage droop control via simulation of a microgrid based on the Conseil International des Grands RĂ©seaux Electriques (CIGRE) benchmark medium voltage distribution network

    Analysis of the effect of clock drifts on frequency regulation and power sharing in inverter-based islanded microgrids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Local hardware clocks in physically distributed computation devices hardly ever agree because clocks drift apart and the drift can be different for each device. This paper analyses the effect that local clock drifts have in the parallel operation of voltage source inverters (VSIs) in islanded microgrids (MG). The state-of-the-art control policies for frequency regulation and active power sharing in VSIs-based MGs are reviewed and selected prototype policies are then re-formulated in terms of clock drifts. Next, steady-state properties for these policies are analyzed. For each of the policies, analytical expressions are developed to provide an exact quantification of the impact that drifts have on frequency and active power equilibrium points. In addition, a closed-loop model that accommodates all the policies is derived, and the stability of the equilibrium points is characterized in terms of the clock drifts. Finally, the implementation of the analyzed policies in a laboratory MG provides experimental results that confirm the theoretical analysis.Peer ReviewedPostprint (author's final draft

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    Performance evaluation of secondary control policies with respect to digital communications properties in inverter-based islanded microgrids

    Get PDF
    A key challenge for inverted-based microgrids working in islanded mode is to maintain their own frequency and voltage to a certain reference values while regulating the active and reactive power among distributed generators and loads. The implementation of frequency and voltage restoration control policies often requires the use of a digital communication network for real-time data exchange (tertiary control covers the coordi- nated operation of the microgrid and the host grid). Whenever a digital network is placed within the loop, the operation of the secondary control may be affected by the inherent properties of the communication technology. This paper analyses the effect that properties like transmission intervals and message dropouts have for four existing representative approaches to secondary control in a scalable islanded microgrid. The simulated results reveals pros and cons for each approach, and identifies threats that properly avoided or handled in advance can prevent failures that otherwise would occur. Selected experimental results on a low- scale laboratory microgrid corroborate the conclusions extracted from the simulation study.Peer ReviewedPostprint (author's final draft

    Plug-and-play and coordinated control for bus-connected AC islanded microgrids

    Full text link
    This paper presents a distributed control architecture for voltage and frequency stabilization in AC islanded microgrids. In the primary control layer, each generation unit is equipped with a local controller acting on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex optimization. The update of the voltage-control layer, when units plug -in/-out, is therefore automatized and stability of the microgrid is always preserved. Moreover, local control design is based only on the knowledge of parameters of power lines and it does not require to store a global microgrid model. In this work, we focus on bus-connected microgrid topologies and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with balanced, unbalanced and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can be resized over time
    • …
    corecore