576 research outputs found

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identifi cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and fl exible, inverter-equipped testing microgrids. To this end, the combination of fl exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    Distributed photovoltaic systems: Utility interface issues and their present status

    Get PDF
    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design

    Impact of distributed generation on protection and voltage regulation of distribution systems : a review

    Get PDF
    During recent decades with the power system restructuring process, centralized energy sources are being replaced with decentralized ones. This phenomenon has resulted in a novel concept in electric power systems, particularly in distribution systems, known as Distributed Generation (DG). On one hand, utilizing DG is important for secure power generation and reducing power losses. On the other hand, widespread use of such technologies introduces new challenges to power systems such as their optimal location, protection devices' settings, voltage regulation, and Power Quality (PQ) issues. Another key point which needs to be considered relates to specific DG technologies based on Renewable Energy Sources (RESs), such as wind and solar, due to their uncertain power generation. In this regard, this paper provides a comprehensive review of different types of DG and investigates the newly emerging challenges arising in the presence of DG in electrical grids.fi=vertaisarvioitu|en=peerReviewed

    Distributed Generation: Issues Concerning a Changing Power Grid Paradigm

    Get PDF
    Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation of distributed generation units; the new generation may result in undesirable operating conditions, or system failure. This paper investigates the primary issues involved with the implementation of distributed generation and maintaining the integrity of the power grid. The issues addressed include power flow, system protections, voltage regulation, intermittency, harmonics, and islanding. A case study is also presented to illustrate how these issues can be addressed when designing distributed generation installation on an existent distribution system. The case study design is performed on the campus distribution system of California Polytechnic State University, San Luis Obispo, with the design goal of implementing renewable energy sources to make the campus a net zero energy consumer

    Protection Considerations of Future Distribution Networks with Large Penetration of Single Phase Residential Rooftop Photovoltaic Systems

    Get PDF
    Solar Photovoltaics now constitute a significant part of electrical power generation for many utilities around the world. This penetration of PVs introduces many technical challenges. This thesis has investigated the impact of high penetration level of single phase rooftop PVs on protection of low voltage and medium voltage and distribution networks and proposed necessary recommendation to improve the performance of protection systems of these networks

    Impact of intergrating teebus hydro power on the unbalanced distribution MV network

    Get PDF
    Small hydro power sources have been identified as one of the renewable energy technologies that the South African government is focusing on in order to generate more electricity from renewable/independent resources. Due to the low carbon output of most renewable energy technologies and the carbon intensive power generation technologies that are currently being used in South Africa e.g. Hydro, coal, gas, and etc. further pressure is increasing to incorporate cleaner forms of generation. In 2002 a study focusing on the hydropower potential was compiled providing an assessment according to conventional and unconventional possibilities for all the provinces. Nowadays, the power electricity demand is growing fast and one of the main tasks for power engineers is to generate electricity from renewable energy sources to overcome this increase in the energy consumption and at the same time reduce environmental impact of power generation. Eskom Distribution Eastern Cape Operating Unit (ECOU) was requested to investigate the feasibility of connecting a small hydro power scheme located in the Teebus area in the Eastern Cape. The Eastern Cape in particular, was identified as potentially the most productive area for small hydroelectric development in South Africa for both the grid connected and off grid applications. These network conditions are in contrast to the South African electricity network where long radial feeders with low X/R ratios and high resistance, spanning large geographic areas, give rise to low voltages on the network. Practical simulation networks have been used to test the conditions set out in the South African Grid Code/NERSA standard and to test the impact of connecting small hydro generation onto the unbalanced distribution network. These networks are representative of various real case scenarios of the South African distribution network. Most of the findings from the simulations were consistent with what was expected when comparing with other literatures. From the simulation results it was seen that the performance of the variable speed generators were superior to that of the fixed speed generators during transient conditions. It was also seen that the weakness of the network had a negative effect on the stability of the system. It is also noted that the stability studies are a necessity when connecting the generators to a network and that each case should be reviewed individually. The fundamental cause of voltage instability is identified as incapability of combined distribution and generation system to meet excessive load demand in either real power or reactive power form

    Distributed photovoltaic systems: Utility interface issues and their present status. Intermediate/three-phase systems

    Get PDF
    The interface issues between the intermediate-size Power Conditioning Subsystem (PCS) and the utility are considered. A literature review yielded facts about the status of identified issues

    Impact Of Distributed Generation On Power System Protection

    Get PDF
    This dissertation describes a simulation study of the impact of distributed generation (DG) interconnection to an existing distribution system of an Iraq system. The increase load demand in many countries pushes the electrical company to use DG technology to meet their load. From the literature review, it was found in spite of many positive effects of DG such as reduce the power losses and reduce voltage drop; the parallel operation of DG with an existing distribution system has many technical problems. One of the most significant issues of parallel operation is the change of fault level and suitability of existing protection system that indeed needs to be maintained within acceptable limits as defined in the international standards. Therefore, this dissertation is performed to investigate the impact of DG based synchronous generator driven by diesel engine on both the fault level and protection system. A small part of the distribution system in Baghdad capital-Iraq which the DG is currently interconnected at 11kV bus has been chosen and modeled using DIgSILENT PowerFactory version 15. The impacts of DG installation at three different locations, i.e. two possible locations which are 33kV and 132kV buses as well as the actual location have been investigated. The dissertation basically includes two investigations which are; examine the change in the fault level without the presence of DG and with DG interconnection at three interconnection locations by executing three-phase fault at each bus of the network as well as investigate the suitability of protection devices through performing single-line-to-ground and three-phase faults at 33kV and 11kV feeders within the distribution system. The results show that after an extensive simulation study, the increase in short circuit level is noticeable at the buses where the DG is interconnected and the protection performance of unidirectional overcurrent relay suffer from blinding and sympathetic tripping as well as the under reach of distance relay, therefore, a series remedy is needed for safety purposes and to reliability of the system
    corecore