138,310 research outputs found

    Incorporating Edge Information in Digital Halftoning

    Get PDF
    Digital halftoning is the process of generating a binary image preserving gray shade information so as to make the binary image appears visually similar to gray image. It was used in printing machines and display devices to produce binary images having gray shades. Ordered dithering and error diffusion methods are two most popular methods to generate halftone image. Generally, in a halftone image, the edges become blurred or loses its sharpness. Edges carry significant information of the foreground objects in an image and increase visual clarity by distinguishing the objects from background. A method is proposed to generate edge sharpened halftone images using a strong unsharp masks. Such edge sharpened halftone images are visually more pleasing and informative as compared with the normal halftone images. The proposed method is found to be better than Xin-Li’s edge-adaptive method of generating halftone images.Keywords: Digital halftoning, edge enhancement, unsharp masking, error diffusion, Sierra’s Filter*Cite as: Yumnam Kirani Singh, “Incorporating Edge Information in Digital Halftoning†ADBU J.Engg Tech., 1(2014) 0011403(6pp

    Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders

    Full text link
    Convolutional autoencoders have emerged as popular methods for unsupervised defect segmentation on image data. Most commonly, this task is performed by thresholding a pixel-wise reconstruction error based on an p\ell^p distance. This procedure, however, leads to large residuals whenever the reconstruction encompasses slight localization inaccuracies around edges. It also fails to reveal defective regions that have been visually altered when intensity values stay roughly consistent. We show that these problems prevent these approaches from being applied to complex real-world scenarios and that it cannot be easily avoided by employing more elaborate architectures such as variational or feature matching autoencoders. We propose to use a perceptual loss function based on structural similarity which examines inter-dependencies between local image regions, taking into account luminance, contrast and structural information, instead of simply comparing single pixel values. It achieves significant performance gains on a challenging real-world dataset of nanofibrous materials and a novel dataset of two woven fabrics over the state of the art approaches for unsupervised defect segmentation that use pixel-wise reconstruction error metrics

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    The nonclassical mereology of olfactory experiences

    Get PDF
    While there is a growing philosophical interest in analysing olfactory experiences, the mereological structure of odours considered in respect of how they are perceptually experienced has not yet been extensively investigated. The paper argues that odours are perceptually experienced as having a mereological structure, but this structure is significantly different from the spatial mereological structure of visually experienced objects. Most importantly, in the case of the olfactory part-structure, the classical weak supplementation principle is not satisfied. This thesis is justified by referring to empirical results in olfactory science concerning the human ability to identify components in complex olfactory stimuli. Further, it is shown how differences between olfactory and visual mereologies may arise from the way in which these modalities represent space

    Regularity scalable image coding based on wavelet singularity detection

    Get PDF
    In this paper, we propose an adaptive algorithm for scalable wavelet image coding, which is based on the general feature, the regularity, of images. In pattern recognition or computer vision, regularity of images is estimated from the oriented wavelet coefficients and quantified by the Lipschitz exponents. To estimate the Lipschitz exponents, evaluating the interscale evolution of the wavelet transform modulus sum (WTMS) over the directional cone of influence was proven to be a better approach than tracing the wavelet transform modulus maxima (WTMM). This is because the irregular sampling nature of the WTMM complicates the reconstruction process. Moreover, examples were found to show that the WTMM representation cannot uniquely characterize a signal. It implies that the reconstruction of signal from its WTMM may not be consistently stable. Furthermore, the WTMM approach requires much more computational effort. Therefore, we use the WTMS approach to estimate the regularity of images from the separable wavelet transformed coefficients. Since we do not concern about the localization issue, we allow the decimation to occur when we evaluate the interscale evolution. After the regularity is estimated, this information is utilized in our proposed adaptive regularity scalable wavelet image coding algorithm. This algorithm can be simply embedded into any wavelet image coders, so it is compatible with the existing scalable coding techniques, such as the resolution scalable and signal-to-noise ratio (SNR) scalable coding techniques, without changing the bitstream format, but provides more scalable levels with higher peak signal-to-noise ratios (PSNRs) and lower bit rates. In comparison to the other feature-based wavelet scalable coding algorithms, the proposed algorithm outperforms them in terms of visual perception, computational complexity and coding efficienc

    A Coloring Algorithm for Disambiguating Graph and Map Drawings

    Full text link
    Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings of real world graphs and maps

    Vision, Action, and Make-Perceive

    Get PDF
    In this paper, I critically assess the enactive account of visual perception recently defended by Alva Noë (2004). I argue inter alia that the enactive account falsely identifies an object’s apparent shape with its 2D perspectival shape; that it mistakenly assimilates visual shape perception and volumetric object recognition; and that it seriously misrepresents the constitutive role of bodily action in visual awareness. I argue further that noticing an object’s perspectival shape involves a hybrid experience combining both perceptual and imaginative elements – an act of what I call ‘make-perceive.
    corecore