91 research outputs found

    Visualizing big network traffic data using frequent pattern mining and hypergraphs

    Get PDF
    Visualizing communication logs, like NetFlow records, is extremely useful for numerous tasks that need to analyze network traffic traces, like network planning, performance monitoring, and troubleshooting. Communication logs, however, can be massive, which necessitates designing effective visualization techniques for large data sets. To address this problem, we introduce a novel network traffic visualization scheme based on the key ideas of (1) exploiting frequent itemset mining (FIM) to visualize a succinct set of interesting traffic patterns extracted from large traces of communication logs; and (2) visualizing extracted patterns as hypergraphs that clearly display multi-attribute associations. We demonstrate case studies that support the utility of our visualization scheme and show that it enables the visualization of substantially larger data sets than existing network traffic visualization schemes based on parallel-coordinate plots or graphs. For example, we show that our scheme can easily visualize the patterns of more than 41 million NetFlow records. Previous research has explored using parallel-coordinate plots for visualizing network traffic flows. However, such plots do not scale to data sets with thousands of even millions of flows

    Multilevel Visualisation of Topic Dependency Models for Assessment Design and Delivery: A Hypergraph Based Approach

    Full text link
    The effective design and delivery of assessments in a wide variety of evolving educational environments remains a challenging problem. Proposals have included the use of learning dashboards, peer learning environments, and grading support systems; these embrace visualisations to summarise and communicate results. In an on-going project, the investigation of graph based visualisation models for assessment design and delivery has yielded promising results. Here, an alternative graph foundation, a two-weighted hypergraph, is considered to represent the assessment material (e.g., questions) and their explicit mapping to one or more learning objective topics. The visualisation approach considers the hypergraph as a collection of levels; the content of these levels can be customized and presented according to user preferences. A case study on generating hypergraph models using commonly available assessment data and a flexible visualisation approach using historical data from an introductory programming course is presentedComment: Published in the proceedings of the 25th International DMS Conference on Visualization and Visual Language

    Scaling pattern mining through non-overlapping variable partitioning

    Full text link
    Biclustering algorithms play a central role in the biotechnological and biomedical domains. The knowledge extracted supports the extraction of putative regulatory modules, essential to understanding diseases, aiding therapy research, and advancing biological knowledge. However, given the NP-hard nature of the biclustering task, algorithms with optimality guarantees tend to scale poorly in the presence of high-dimensionality data. To this end, we propose a pipeline for clustering-based vertical partitioning that takes into consideration both parallelization and cross-partition pattern merging needs. Given a specific type of pattern coherence, these clusters are built based on the likelihood that variables form those patterns. Subsequently, the extracted patterns per cluster are then merged together into a final set of closed patterns. This approach is evaluated using five published datasets. Results show that in some of the tested data, execution times yield statistically significant improvements when variables are clustered together based on the likelihood to form specific types of patterns, as opposed to partitions based on dissimilarity or randomness. This work offers a departuring step on the efficiency impact of vertical partitioning criteria along the different stages of pattern mining and biclustering algorithms. Availability: All the code is freely available at https://github.com/JupitersMight/pattern_merge under the MIT license

    Cybersecurity knowledge graphs

    Get PDF
    Cybersecurity knowledge graphs, which represent cyber-knowledge with a graph-based data model, provide holistic approaches for processing massive volumes of complex cybersecurity data derived from diverse sources. They can assist security analysts to obtain cyberthreat intelligence, achieve a high level of cyber-situational awareness, discover new cyber-knowledge, visualize networks, data flow, and attack paths, and understand data correlations by aggregating and fusing data. This paper reviews the most prominent graph-based data models used in this domain, along with knowledge organization systems that define concepts and properties utilized in formal cyber-knowledge representation for both background knowledge and specific expert knowledge about an actual system or attack. It is also discussed how cybersecurity knowledge graphs enable machine learning and facilitate automated reasoning over cyber-knowledge

    A combinatorial approach to angiosperm pollen morphology

    Get PDF
    Angiosperms (flowering plants) are strikingly diverse. This is clearly expressed in the morphology of their pollen grains, which are characterized by enormous variety in their shape and patterning. In this paper, I approach angiosperm pollen morphology from the perspective of enumerative combinatorics. This involves generating angiosperm pollen morphotypes by algorithmically combining character states and enumerating the results of these combinations. I use this approach to generate 3 643 200 pollen morphotypes, which I visualize using a parallel-coordinates plot. This represents a raw morphospace. To compare real-world and theoretical morphologies, I map the pollen of 1008 species of Neotropical angiosperms growing on Barro Colorado Island (BCI), Panama, onto this raw morphospace. This highlights that, in addition to their well-documented taxonomic diversity, Neotropical rainforests also represent an enormous reservoir of morphological diversity. Angiosperm pollen morphospace at BCI has been filled mostly by pollen morphotypes that are unique to single plant species. Repetition of pollen morphotypes among higher taxa at BCI reflects both constraint and convergence. This combinatorial approach to morphology addresses the complexity that results from large numbers of discrete character combinations and could be employed in any situation where organismal form can be captured by discrete morphological characters

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres Verständnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstützt. Ziel dieser Arbeit ist es, einen Überblick über die Probleme dieser Visualisierungen zu geben und konkrete Lösungsansätze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingeführt, um den Nutzen der geführten Diskussion für die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization
    corecore