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Abstract Visualizing communication logs, like NetFlow records, is extremely useful
for numerous tasks that need to analyze network traffic traces, like network planning,
performance monitoring, and troubleshooting. Communication logs, however, can be
massive, which necessitates designing effective visualization techniques for large data
sets. To address this problem, we introduce a novel network traffic visualization scheme
based on the key ideas of (1) exploiting frequent itemset mining (FIM) to visualize
a succinct set of interesting traffic patterns extracted from large traces of communi-
cation logs; and (2) visualizing extracted patterns as hypergraphs that clearly display
multi-attribute associations. We demonstrate case studies that support the utility of
our visualization scheme and show that it enables the visualization of substantially
larger data sets than existing network traffic visualization schemes based on parallel-
coordinate plots or graphs. For example, we show that our scheme can easily visualize
the patterns of more than 41 million NetFlow records. Previous research has explored
using parallel-coordinate plots for visualizing network traffic flows. However, such
plots do not scale to data sets with thousands of even millions of flows.
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1 Introduction

Computer networks, in contrast to other more established disciplines (e.g. program-
ming languages), are largely lacking efficient techniques to debug network problems.
Because of this, networks are kept working by masters of complexity, who need to
know in detail the infrastructure and configuration of a network, extract useful infor-
mation from diverse and massive monitoring data, and iteratively test and verify their
assumptions about the underlying cause of a problem, while they are steered solely
by their intuition. Effective visualization techniques for network monitoring data can
greatly facilitate slow manual data exploration processes by enabling to absorb large
amounts of data quickly as a good picture is worth a thousand words. Specifically,
visualizing network monitoring data is very useful for identifying changes in traffic
patterns, troubleshooting network performance problems, detecting security incidents,
and planning network growth.

A key challenge in visualizing network monitoring data, like traffic traces, is their
massive volume. For example, a NetFlow collector in ETH Zurich received in 2011
on average 4.55 billion flow records per day from a Swiss national backbone network.
In order to effectively explore large volumes of network data, effective visualization
techniques that reduce the cognitive burden of the analyst are essential.

In this work we introduce a general scheme for visualizing communication logs,
like NetFlow records, based on the novel ideas of (1) exploiting FIM to visualize a
succinct set of interesting traffic patterns extracted from large traces of communication
logs; and (2) visualizing extracted patterns as hypergraphs that clearly display multi-
attribute associations.

FIM is an extensively-studied data mining problem that mines frequent patterns
from input transactions. In our context, a transaction models a communication, which
includes a number of logged or derived attributes, like the IP addresses, port numbers,
and AS numbers of a NetFlow connection record. A frequent pattern is a set, called
itemset, of attributes that occur in a large number of transactions. For example, an
extracted frequent itemset could indicate that a very large number of flow records
share a specific source IP address, destination port, and flow size (which is a pattern
that results from port scanning attacks). Frequent itemsets identify multi-dimensional
heavy hitters, which have been shown to be very useful for profiling network traffic [10]
and for identifying interesting events [5], like scanning and DDoS attacks.

We visualize extracted patterns as hypergraphs, which are a generalization of clas-
sical graphs in which edges can connect to an arbitrary number of vertices. This is very
useful because it enables the visualization of multi-attribute associations. In contrast,
edges in classical graphs as used in existing traffic visualization schemes can only
visualize associations between two attributes.
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Visualizing big network traffic data using frequent pattern mining and hypergraphs 29

Fig. 1 Visualization of 15,000 traffic flows in a parallel-coordinate plot. The visualization becomes cluttered
even with a small number of flow records

Our scheme is general because it can visualize arbitrary types of transactions and
incorporate arbitrary attributes, like performance metrics (packet loss, latency, etc.)
or security indicators (severity and type of IDS alerts) of a communication. A fre-
quent itemset in this context could indicate that a large number of traffic flows are
routed through a specific uplink provider towards a certain port number and experience
poor performance. Discovering such interesting associations among communication
attributes is a key concept at the heart of network measurement research. Our visual-
ization scheme can greatly help in discovering such associations.

The remaining of our paper is structured as follows. In the next section we discuss
related work and then in Sect. 3 we describe in detail our visualization scheme and
software. In Sect. 4 we show how our scheme complements existing approaches by
enabling to visualize larger datasets. In Sect. 5 we present case studies showing how
our visualization enables us to easily pinpoint interesting traffic patterns. Finally, we
conclude our paper in Sect. 6.

2 Related work

Graphs have been extensively used to visualize network traffic data. In particular, a
commonly-used visualization approach uses graphs to display communicating entities.
These graphs are used in traffic visualization tools, like VIAssist [7], NFlowVis [11],
OverFlow [13], TVi [4] and NVisionIP [22], and are also known as traffic dispersion or
activity graphs (TDG or TAG) [18,19]. In this approach edges denote communications
and vertices denote end-hosts, subnets, or organizations.

BLINC [21] and HAPviewer [14] use multipartite graphs to visualize associations
between source and destination IP addresses and port numbers used by individual
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applications or hosts, respectively. In both schemes, vertices denote IP addresses, port
numbers, or the layer-4 protocol and edges indicate associations between adjacent
vertices. Two vertices are linked if they appear in the same traffic connection record.

A slightly different approach to display similar information is to use parallel-
coordinate plots (an example plot is given in Fig. 1). Instead of a multipartite graph,
a parallel-coordinate system is used in which each vertical axis represents a different
attribute (in other words each vertical axis of a parallel-coordinate plot corresponds
to a partition of a multipartite graph) and lines visualize associations between two
coordinates. Parallel-coordinate plots are used by NfSight [2], VisFlowConnect [29],
and PCAV [1] to visualize network traffic.

A main limitation of previous approaches based on graphs or parallel-coordinate
plots is that edges/lines indicate associations between two linked attributes, but they do
not visualize multi-attribute associations. In our visualization scheme, we address this
problem by using two types of vertices. Squares denote communication attributes, e.g.,
IP addresses, port numbers, etc., while circles illustrate multi-attribute associations.
This enables the visualization of much more complex association than possible with
existing schemes. In addition, our scheme introduces the novel idea of using FIM to
mine and visualize the frequent patterns of arbitrarily large data-sets.

Besides, a number of additional network traffic visualization tools exist, includ-
ing Nfsen [16], ntop [23], FlowScan [24], NetPY [6], FloVis [27], NFlowVis [11],
NVisionIP [22], and Fluxoscope [25]. These tools explore alternative visualization
techniques of varying complexity, like histograms, timeseries plots, piecharts, scat-
terplots, heatmaps, heavy hitter lists, hierarchical heavy hitter trees, treemaps, and
hierarchical edge bundles.

AutoFocus [10], in particular, provides a list of multi-dimensional hierarchical
heavy hitters and a simple timeseries visualization of network traffic. Our work intro-
duces a novel scheme that can be used to visualize the list of multi-dimensional heavy
hitters produced by AutoFocus. Compared to the approach used in [10] to find multi-
dimensional heavy hitters, FIM scales better to higher dimensional data. For example,
in Figure 3 we show that by exploiting efficient FIM software we can mine and visu-
alize more than one million input records with 12 attributes (dimensions) each in less
than 50 seconds.

In the data mining community, a number of visualization approaches have been
developed to visualize frequent itemsets. Our work has been inspired by the visual-
ization scheme of the arulesViz package [17] of the R project, which is based on the
techniques of [9] for visualizing association rules. To the best our knowledge, our
work is the first to exploit both FIM and hypergraphs to visualize network traffic data.

3 Visualization scheme

Our scheme takes as input communication logs, where each communication transac-
tion is associated with a number of attributes. We first apply frequent itemset mining,
as described in Sect. 3.1, to mine a set of frequent itemsets. Then, we visualize the
extracted frequent itemsets using hypergraphs to portray the associations each itemset
encodes (cf. Sect. 3.2).
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3.1 Frequent itemset mining

We first provide background information on FIM. FIM is a classical and one of the most
extensively studied data mining problems. It falls into the category of frequent pattern
mining problems, which mine for different types of patterns like itemsets, sequences
or sub-graphs. It is also the core component of association rule mining, which first
applies FIM to input transactions and then uses the extracted frequent itemsets to build
association rules.

More formally, let I = {i1, ..., in} be a set of n items and D = {t1, ..., tm} be a
set of m transactions. Each transaction contains a subset of the items in I . A frequent
itemset is a subset of the items in I that is also a subset of at least s transactions in D. In
the classical context of market basket analysis, I is the set of all products in a market,
ti is the set of products purchased in a single transaction, and a frequent itemset is a set
of products that are frequently purchased together. In our context, we use transactions
to model communications, like NetFlow records, and items to model communication
attributes, like IP addresses.

Standard FIM can produce a large number of redundant item-sets. This is because
if an itemset of length l is frequent, then by definition all its 2l − 1 subsets are also
frequent. This is a well-known property of FIM and has led to techniques that supress
such redundant itemsets. We use maximal FIM, which supresses all frequent itemsets
that are subset of another frequent itemset. In other words, more specific frequent
itemsets are prefered, while least specific itemsets are discarded.

The threshold s determines the number of frequent itemsets. Alternatively, one
can specify the number of desired itemsets in terms of a top-k parameter using top-
k FIM algorithms [28]. In our experiments, we have found using NetFlow traces
from different networks that when each input transaction corresponds to the standard
NetFlow five-tuple, then a threshold value in the range between 1 and 10% of the total
number of input transactions results in a few dozen of frequent itemsets, which can be
effectively visualized. For the extended input transactions with 12 attributes we use in
Sect. 5, a threshold of 5% results in approximately 7 to 12 frequent itemsets.

The FIM literature has produced many techniques for dealing with different types of
attributes, including hierarchical and numerical attributes. In this context, generalized
FIM [26], which deals with hierarchical attributes, is particularly useful since it enables
us to take into account the prefix structure of IP addresses. This way we can identify
frequent itemsets that involve for example a prefix block, although no single IP address
within the block is part of a frequent item-set.

3.2 Visualization

To reflect the multi-attribute associations encoded in frequent item-sets, we use hyper-
graphs. A hypergraph is a generalization of a classical graph in which edges can con-
nect to multiple vertices. We visualize a hypergraph using two types of vertices as
shown in the example of Fig. 2. Squares vertices denote communication attributes,
e.g., IP addresses, port numbers, AS numbers, and circles denote frequent itemsets.
Edges connect a frequent itemset to its attributes and enable the visualization of multi-
attribute associations. In contrast, previous network traffic visualization schemes use
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Fig. 2 Frequent itemset visualization of top 5 frequent itemsets extracted from 15,000 traffic flows based
on the proposed scheme. IP addresses have been anonymized

graphs to illustrate associations only between two attributes. Our approach visualizes
both how frequent itemsets are composed of different items and which items they
share. Therefore, we can clearly visualize associations between different itemsets and
build a more succint representation of the itemsets than the plain approach of listing
itemsets in a tabular. Arrows point towards the attributes that are linked to a frequent
item-set.

In addition, we vary the size of the circles based on the volume of traffic it captures
and display this volume as an absolute and relative number within a circle. This way we
highlight and can easily identify network traffic heavy hitters. The size of an itemset
can be measured in terms of flows, packets, or bytes. We measure it by default in terms
of flows.

Next, we describe the modular architecture of our software and point out the gener-
ality of our scheme. Our software creates graphs from transaction data in five distinct
steps. First, the data is prepared as a text file to meet the expected input format of
the mining software. For the case studies presented in this paper we use a dedicated
program that converts our binary flow archive format to text data. Alternatively, it is
possible to feed our software with transactional data stored in a CSV (comma sepa-
rated values) file. The input data describe one transaction per line and can be of any
kind, i.e., they are not restricted to flow data. In a second step, the transaction attribute
values are linked to their respective attribute type to make the values from a particular
column distinct from those of all neighbouring columns as the miner cannot process
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CSV column headers. We achieve this distinction by prepending the CSV column
name to each value string. As a result we obtain a new text file that contains unique
attribute/value pairs and can be fed to the miner. In a third step, we run the frequent
item set miner. We chose the ‘SaM’ miner programmed by Christian Borgelt [3] due
to its short run time even on massive datasets. We configure the miner for maximal
frequent itemsets and parameterize the support threshold. The output of the frequent
itemset miner is a text file containing those itemsets that exceed the configured support
threshold along with their actual support values. In a fourth step, the itemset result
data is mapped to a graph representation. We make use of the popular graphing soft-
ware GraphViz [8] and, consequently, describe the graph data in the GraphViz DOT
language. Finally, in step five, we render a graph image. For rendering we prefer a
force-directed layout that is supported by the GraphViz tool ‘fdp’ implementing the
Fruchterman and Reingold algorithm [12]. Alternatively, the GraphViz tool ‘neato’
can be used that is based on an approach by Kamada and Kawai [20].

Our software is not restricted to network flow data or network data in general.
Any transactional data can be used as long as it can be provided as a CSV file. This
makes our visualization approach suitable for different application areas. Our software
produces compatible DOT files.

4 Scaling to large data sets

In this section, we show how our scheme complements existing commonly-used
approaches, which visualize every individual connection, but can only scale to small
data sets, by enabling the visualization of frequent patterns of arbitrary large data sets.

For example, in Fig. 1 we illustrate a visualization on a parallel-coordinate plot, like
the ones used by VisFlowConnect [29] and Nfsight [2], of 15,000 NetFlow records
collected from a small enterprise network. For simplicity, we treat every flow record
as an individual transaction and keep four attributes per transaction: the source and
destination IP addresses and port numbers of a flow. This is a small number of NetFlow
records that in large networks correspond to only few seconds of real time. However, an
analyst typically needs to explore much larger data sets spanning longer time intervals.
We observe in Fig. 1 that even with only 15,000 transactions the plot becomes cluttered
making it hard to extract useful information. Similarly, graph-based approaches that
visualize the information of every individual traffic flow produce cluttered results.

Our approach complements such approaches by using FIM to extract and visualize
only the main patterns of large data sets. To illustrate this, in Fig. 2 we visualize the
same data after applying FIM. We show the top 5 frequent itemsets, which capture
42.6% of the flows. We see that the proposed scheme provides a meaningful visu-
alization even if the number of input transactions is very large. In fact, the amount
of visualized information is independent of the volume of the input data, but it only
depends on the number of selected item-sets. In our experiments, we have found that
for input transactions with 4 attributes, hypergraphs can clearly visualize up to 60–80
itemsets.

Frequent itemset mining and its visualization is especially attractive to find interest-
ing patterns hidden in massive datasets. Thus, the scalability is a major concern. Based
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Fig. 3 Run time of our software versus the number of input transactions. Each transaction is a flow record
with 12 different attributes

both on measurements and theoretical analysis we find that our processing scales lin-
early with the flow count. In Fig. 3 we show how the processing time scales with the
number of input transactions. We see that we can mine and visualize more than one
million input records with 12 attributes each in less than 50 s. For 8 million records,
our software requires slightly more than 3 min. These numbers are well within real-
time bounds for the large backbone network from which we are collecting NetFlow
data.

5 Use cases

We use data from the Swiss academic backbone network that serves 46 single-homed
universities and research institutes. For our use cases we collect data in 60 min time
intervals on a randomly chosen weekday (4th of August 2011). For each hour we
prepare two separate data sets containing two-way or one-way traffic, i.e., traffic
connections that do not receive a network reply. The motivation of dissecting two-way
from one-way traffic is that two-way traffic reflects primarily regular communications,
while one-way traffic is the result of failed connections related to malicious activities
and misconfigurations [15]. From each data set we pick one sample hour to demonstrate
the utility of our visualization.

5.1 Use case 1: traffic profiling

We inspect the hour at 7 a.m. UTC exhibiting a total traffic volume of 41,782,797
two-way flows. Mining with a support threshold of 5% yields 13 frequent itemsets
from which we remove five less interesting ones by automatically filtering them out
using a set of rules, such as requiring a minimal itemset size of 3 or removing subnet
information in the presence of a host IP address from a subnet. In Fig. 4 we visualize
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Fig. 4 Frequent itemset visualization of 1 h of traffic involving 41,782,797 successful connections. We
observe 8 frequent patterns describing dominant parts of network usage. IP addresses have been anonymized

the remaining 8 itemsets. We observe a number of interesting traffic patterns. First,
two itemsets that account for 5.5 and 7.4% of all flows are web traffic on port 80/tcp
involving Swiss and US web servers, respectively. In addition, three more itemsets
are associated with DNS traffic flows on port 53/udp composed of 2 packet. They
account for 6.9, 5.6, and 5.0% of all two-way flows and are going to the US, a Swiss
replica of the I root server, and the Swiss top-level domain (TLD) server located in
Zurich, respectively. Finally, we observe 11.3% of all two-way flows involves AS15169
which is assigned to Google Inc. (US) pointing at the outstanding popularity of Google
services.

5.2 Use case 2: attacks and misconfigurations

We look at the hour at 2 a.m. UTC exhibiting a total traffic volume of 14,916,092
one-way flows. We mine 16 frequent itemsets using a support threshold of 5% and
prune 10 less intersting ones. Figure 5 shows a dominant attack pattern towards the
SMB port 445/tcp with flows comprising 2 packets and a size of 96 byte. This attack
exploits vulnerabilities of the Microsoft SMB software that is frequently used to access
remote file servers. The next frequent pattern of 8.7% involves the Swiss TLD server
on port 53/udp that resolves requests to the .ch and .li domains. We observe a total
of 1,293,642 one-packet flows which is surprising considering the fact that during the
same hour only 1,115,955 flows receive a reply. This high count of failed connections
points to a possible problem that needs further investigation. A third pattern (7.7%) is
caused by one particular remote host located in Great Britain that sends not less than
1,115,012 one-packet flows towards port 80/tcp with a size of 48 byte. This might be a
DoS attack asking for closer examination. Two patterns that account for 5.8 and 6.9%
of all flows show that outbound and inbound DNS requests frequently fail. This could
be caused either by misconfiguration or improper use of DNS requests. Finally, we
notice that a particular AS (4134) assigned to Chinas Telecom is the source of a high
count of 836,733 one-packet flows on tcp.
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Fig. 5 Frequent itemset visualization of 1 h traffic involving 14,916,092 failed connections. We observe
several attack misconfiguration patterns. IP addresses have been anonymized

6 Conclusions

Discovering and analyzing interesting associations is a key requirement at the heart of
network measurement research as associations are useful for network troubleshooting,
planning, and forensics investigations among other applications. In this work, we
introduce a novel and general scheme for visualizing connection logs based on the key
ideas of (1) extracting and visualizing frequent patterns of very large data sets using
frequent itemset mining; and (2) visualizing extracted association as hypergraphs.
We show that our scheme enables the visualization of much larger network traffic
datasets than existing approaches. In addition, it requires reasonable computational
overhead. For example, one million input NetFlow records with 12 attributes each can
be processed in less than 50 s. Finally, we demonstrate visualizations of big network
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traffic data, e.g., of more than 41 million records, and that our visualizations are very
useful for profiling traffic patterns and for identifying attacks and misconfigurations
in a real network.

In our on-going work, we investigate how rendered graphs from multiple consec-
utive time bins can be stitched together to form a movie, which illustrates how traffic
patterns evolve over time.
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