35,183 research outputs found

    Visualizing and Understanding Sum-Product Networks

    Full text link
    Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.Comment: Machine Learning Journal paper (First Online), 24 page

    Opinion mining and sentiment analysis in marketing communications: a science mapping analysis in Web of Science (1998–2018)

    Get PDF
    Opinion mining and sentiment analysis has become ubiquitous in our society, with applications in online searching, computer vision, image understanding, artificial intelligence and marketing communications (MarCom). Within this context, opinion mining and sentiment analysis in marketing communications (OMSAMC) has a strong role in the development of the field by allowing us to understand whether people are satisfied or dissatisfied with our service or product in order to subsequently analyze the strengths and weaknesses of those consumer experiences. To the best of our knowledge, there is no science mapping analysis covering the research about opinion mining and sentiment analysis in the MarCom ecosystem. In this study, we perform a science mapping analysis on the OMSAMC research, in order to provide an overview of the scientific work during the last two decades in this interdisciplinary area and to show trends that could be the basis for future developments in the field. This study was carried out using VOSviewer, CitNetExplorer and InCites based on results from Web of Science (WoS). The results of this analysis show the evolution of the field, by highlighting the most notable authors, institutions, keywords, publications, countries, categories and journals.The research was funded by Programa Operativo FEDER Andalucía 2014‐2020, grant number “La reputación de las organizaciones en una sociedad digital. Elaboración de una Plataforma Inteligente para la Localización, Identificación y Clasificación de Influenciadores en los Medios Sociales Digitales (UMA18‐ FEDERJA‐148)” and The APC was funded by the same research gran

    Towards better understanding of gradient-based attribution methods for Deep Neural Networks

    Full text link
    Understanding the flow of information in Deep Neural Networks (DNNs) is a challenging problem that has gain increasing attention over the last few years. While several methods have been proposed to explain network predictions, there have been only a few attempts to compare them from a theoretical perspective. What is more, no exhaustive empirical comparison has been performed in the past. In this work, we analyze four gradient-based attribution methods and formally prove conditions of equivalence and approximation between them. By reformulating two of these methods, we construct a unified framework which enables a direct comparison, as well as an easier implementation. Finally, we propose a novel evaluation metric, called Sensitivity-n and test the gradient-based attribution methods alongside with a simple perturbation-based attribution method on several datasets in the domains of image and text classification, using various network architectures.Comment: ICLR 201
    corecore