41 research outputs found

    Visualization of test-to-code relations to detect problems of unit tests

    Get PDF
    Visualization of test information can be a means of providing an understanding of test-code relations which, in turn, is essential for other activities in SDLC such as: maintenance, software evolution, refactoring, etc. To our best knowledge, less research have specifically addressed the visualization of test-code relation and its importance in many tasks during software development. This paper is a modest contribution to draw attention to visualization of test-code relations and in particular visualizing of test-to-code traceability links. From the outcome of our investigation it has been demonstrated that visualizing of test-related metrics has been received rather interest of researchers; while in turn, little attention has been paid to visualizing of test to code traceability links. However, several practical questions emerged which can be investigated as the next step of our research , thus further research of visualization of test-to-code traceability links area is highly needed to address these questions

    Visualization of graphs and trees for software analysis

    Get PDF
    A software architecture is an abstraction of a software system, which is indispensable for many software engineering tasks. Unfortunately, in many cases information pertaining to the software architecture is not available, outdated, or inappropriate for the task at hand. The RECONSTRUCTOR project focuses on software architecture reconstruction, i.e., obtaining architectural information from an existing system. Our research, which is part of RECONSTRUCTOR, focuses on interactive visualization and tries to answer the following question: How can users be enabled to understand the large amounts of information relevant for program understanding using visual representations? To answer this question, we have iteratively developed a number of techniques for visualizing software systems. A large number of these cases consists of hierarchically organized data, combined with adjacency relations. Examples are function calls within a hierarchically organized software system and correspondence relations between two different versions of a hierarchically organized software system. Hierarchical Edge Bundles (HEBs) are used to visualize adjacency relations in hierarchically organized data, such as the aforementioned function calls within a software system. HEBs significantly reduce visual clutter by visually bundling relations together. Massive Sequence Views (MSVs) are used in conjunction with HEBs to enable analysis of sequences of relations, such as function-call traces. HEBs are furthermore used to visually compare hierarchically organized data, e.g., two different versions of a software system. HEBs visually emphasize splits, joins, and relocations of subhierarchies and provide for interactive selection of sets of relations. Since HEBs require a hierarchy to perform the bundling, we present Force-Directed Edge Bundles (FDEBs) as an alternative to visually bundle relations together in the absence of a hierarchical component. FDEBs use a self-organizing approach to bundling in which edges are modeled as flexible springs that can attract each other. As a result, visual clutter is reduced and high-level edge patterns are better visible. Finally, in all these methods, a clear depiction of the direction of edges is important. We have therefore performed a separate study in which we evaluated ten representations (including the standard arrow) for depicting directed edges in a controlled user study

    Semi-automatic fault localization

    Get PDF
    One of the most expensive and time-consuming components of the debugging process is locating the errors or faults. To locate faults, developers must identify statements involved in failures and select suspicious statements that might contain faults. In practice, this localization is done by developers in a tedious and manual way, using only a single execution, targeting only one fault, and having a limited perspective into a large search space. The thesis of this research is that fault localization can be partially automated with the use of commonly available dynamic information gathered from test-case executions in a way that is effective, efficient, tolerant of test cases that pass but also execute the fault, and scalable to large programs that potentially contain multiple faults. The overall goal of this research is to develop effective and efficient fault localization techniques that scale to programs of large size and with multiple faults. There are three principle steps performed to reach this goal: (1) Develop practical techniques for locating suspicious regions in a program; (2) Develop techniques to partition test suites into smaller, specialized test suites to target specific faults; and (3) Evaluate the usefulness and cost of these techniques. In this dissertation, the difficulties and limitations of previous work in the area of fault-localization are explored. A technique, called Tarantula, is presented that addresses these difficulties. Empirical evaluation of the Tarantula technique shows that it is efficient and effective for many faults. The evaluation also demonstrates that the Tarantula technique can loose effectiveness as the number of faults increases. To address the loss of effectiveness for programs with multiple faults, supporting techniques have been developed and are presented. The empirical evaluation of these supporting techniques demonstrates that they can enable effective fault localization in the presence of multiple faults. A new mode of debugging, called parallel debugging, is developed and empirical evidence demonstrates that it can provide a savings in terms of both total expense and time to delivery. A prototype visualization is provided to display the fault-localization results as well as to provide a method to interact and explore those results. Finally, a study on the effects of the composition of test suites on fault-localization is presented.Ph.D.Committee Chair: Harrold, Mary Jean; Committee Member: Orso, Alessandro; Committee Member: Pande, Santosh; Committee Member: Reiss, Steven; Committee Member: Rugaber, Spence

    Utilizing static and dynamic software analysis to aid cost estimation, software visualization, and test quality management

    Get PDF
    The main results presented in the thesis are related to the semi- or fully-automated analysis of the software and its development processes. My overall research goal is to provide meaningful insights, methods, and practical tools to help the work of stakeholders during various phases of software development. The thesis statements have been grouped into three major thesis points, namely "Measuring, predicting, and comparing the productivity of developer teams"; "Providing immersive methods for software and unit test visualization"; and "Spotting the structures in the package hierarchy that required attention using test coverage data"

    Measuring Test Case Similarity to Support Test Suite Understanding

    Full text link
    corecore