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SUMMARY

One of the most expensive and time-consuming components of the debugging

process is locating the errors or faults. To locate faults, developers must identify

statements involved in failures and select suspicious statements that might contain

faults. In practice, this localization is done by developers in a tedious and manual

way, using only a single execution, targeting only one fault, and having a limited

perspective into a large search space.

The thesis of this research is that fault localization can be partially automated

with the use of commonly available dynamic information gathered from test-case

executions in a way that is effective, efficient, tolerant of test cases that pass but also

execute the fault, and scalable to large programs that potentially contain multiple

faults. The overall goal of this research is to develop effective and efficient fault

localization techniques that scale to programs of large size and with multiple faults.

There are three principle steps performed to reach this goal: (1) Develop practical

techniques for locating suspicious regions in a program; (2) Develop techniques to

partition test suites into smaller, specialized test suites to target specific faults; and

(3) Evaluate the usefulness and cost of these techniques.

In this dissertation, the difficulties and limitations of previous work in the area

of fault-localization are investigated. These investigations informed the development

of a new technique, called Tarantula, that addresses some key limitations of prior

work in the area, namely effectiveness, efficiency, and practicality. Empirical evalua-

tion of the Tarantula technique shows that it is efficient and effective for many faults.

The evaluation also demonstrates that the Tarantula technique can loose effectiveness

xv



as the number of faults increases. To address the loss of effectiveness for programs

with multiple faults, supporting techniques have been developed and are presented.

The empirical evaluation of these supporting techniques demonstrates that they can

enable effective fault localization in the presence of multiple faults. A new mode of de-

bugging, called parallel debugging, is developed and empirical evidence demonstrates

that it can provide a savings in terms of both total expense and time to delivery. A

prototype visualization is provided to display the fault-localization results as well as

to provide a method to interact and explore those results. Lastly, a study on the

effects of the composition of test suites on fault-localization is presented.

xvi



CHAPTER I

INTRODUCTION

Software errors significantly impact software productivity and quality, and the prob-

lem is getting worse. According to a study released in June 2002 by the Department

of Commerce’s National Institute of Standards and Technology (NIST), “Software

bugs, or errors, are so prevalent and so detrimental that they cost the U.S. econ-

omy an estimated $59.5 billion annually, or about 0.6 percent of the gross national

product.” [53]

Attempts to reduce the number of delivered faults are estimated to consume be-

tween 50% and 80% of the software development and maintenance effort [19]. One of

the most time-consuming, and thus expensive, tasks required to reduce the number

of delivered faults in a program is debugging—the process by which errors discovered

during testing are located and fixed. Published results of interviews conducted with

experienced programmers [56] and the experience and informed judgement of my re-

search group’s industrial collaborators confirm that the task of locating the faults,1

or fault localization, is the most difficult and time-consuming component of the de-

bugging task (e.g., [73]). Because of this high cost, any improvement in the process

of fault localization can greatly decrease the cost of debugging.

In practice, software developers locate faults in their programs using a highly

involved, manual process. This process usually begins when the developers run the

program with a test case (or test suite) and observe failures in the program. The devel-

opers then choose a particular failed test case to run, and iteratively place breakpoints

using a symbolic debugger, observe the state until an erroneous state is reached, and

1In this document, I use the words “faults” and “bugs” interchangeably.
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backtrack until the faults are found. This process can be quite time-consuming.

There are a number of ways, however, that this approach can be improved. First,

the manual process of identifying the locations of the faults can be very time consum-

ing. A technique that can automate, or partially automate, the process can provide

significant savings. Second, tools based on this approach lead developers to concen-

trate their attention locally instead of providing a global view of the software. An

approach that provides a developer with a global view of the software, while still giv-

ing access to the local view, can provide more useful information. Third, the tools use

results of only one execution of the program instead of using information provided by

many executions of the program. A tool that provides information about many exe-

cutions of the program can help the developer understand more complex relationships

in the system. Also, by utilizing more executions, an approach can allow multiple

faults to be found. This research addresses these limitations.

To reduce the time required to locate faults, and thus the expense of debugging,

researchers have investigated ways of helping to automate this process of searching

for faults. Many papers on debugging and fault-localization have been published in

academic conferences and journals (e.g., [17, 19, 20, 33, 42, 43, 45, 47, 48, 56, 61,

75, 76]). Many of the techniques are based on an analysis, called slicing, developed

by Weiser [75, 76] that, given a program point and a suspicious variable, determines

all statements in the program that might affect the value of that variable at that

point. These slicing-based techniques (e.g., [20, 29, 33, 45, 56]) result in a subset of

the program that may contain the fault.

Although many fault-detection techniques have been developed, these techniques

have limitations that impact their ability to produce results that scale to practical

systems or generalize to fault-localization tasks. The first limitation concerns the

scalability of the techniques themselves to real systems. The techniques compute

a subset of the program statements in which the search for the fault should begin.
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However, this subset can be quite large, and thus, the developer’s inspection of this

subset for the fault can require significant time. Furthermore, in some cases, the

fault may not be contained in this subset. In these cases, the techniques offer no

method for ordering or searching the remaining statements in the program. Finally,

the techniques have not been evaluated on large programs that contain multiple faults.

Thus, improvements to existing techniques or newly developed techniques, along with

empirical evaluation of those techniques, are needed to provide automated fault-

localization techniques that can be used in practice.

1.1 Thesis Statement

The thesis of this research is that fault localization can be partially automated with

the use of commonly available dynamic information gathered from test-case execu-

tions in a way that is effective, efficient, tolerant of test cases that pass but also

execute the fault, and scalable to large programs that potentially contain multiple

faults.

1.2 Contribution

This proposed research will provide the following contributions to the software engi-

neering community:

1. A technique to localize faults using commonly available testing information.

2. Techniques to manage test suites to better enable the fault localization of pro-

grams with multiple faults.

3. A technique to parallelize the debugging effort for programs containing multiple

faults.

4. A cost model to evaluate the effectiveness of a parallelized approach to debug-

ging.
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5. Empirical demonstration of the practical use of these techniques.

6. A visualization that can be applied to fault-localization techniques.
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CHAPTER II

BACKGROUND

This research builds on work in debugging. This section provides background material

and describes previous research on fault localization and debugging.

2.1 Definitions

Throughout this document, certain terminology will be used repeatedly. I present

some definitions here to provide a basis for the following work. IEEE provides a

“standard glossary of software engineering terminology” [39] that can be used to

define a number of terms that will used in this document. IEEE defines the terms

“mistake,” “fault,” “error,” and “failure” as such:

mistake:

A human action that produces an incorrect result.

fault :

(1) A defect in a hardware device or component; for example, a short

circuit or broken wire. (2) An incorrect step, process, or data definition

in a computer program.

error :

The difference between a computed, observed, or measured value or con-

dition and the true, specified, or theoretically correct value or condition.

For example, a difference of 30 meters between a computed result and the

correct result.

failure:
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The inability of a system or component to perform its required functions

within specified performance requirements.

So, a person can make a mistake that can cause a fault in a program. This fault

in the program may produce a failure in the result. The difference between the failure

output and the expected output is the error. In fact, the IEEE standard notes [39]:

The fault tolerance discipline distinguishes between a human action (a

mistake), its manifestation (a hardware or software fault), the result of

the fault (a failure), and the amount by which the result is incorrect (the

error).

A passed test case is one that produces the expected output. A failed test case is

a test case that does not produce the expected output. Furthermore, when a failure,

or failed test case, is noticed, a software developer may attempt to fix the program by

finding and fixing the fault. This process is called debugging. The term “to debug”

is defined as [39]:

To detect, locate, and correct faults in a computer program.

Thus, the debugging process can be decomposed into the process of (1) detecting

faults by observing failures, (2) finding or locating the faults that are causing the

failures, and (3) fixing those faults to eliminate the failures. This work addresses the

second task, which is called fault localization.

2.2 Traditional Debugging Techniques

There are two approaches to finding bugs that are typically used by software devel-

opers.

The first technique is to place print statements in the program to cause the pro-

gram to output additional information to be analyzed. A programmer identifies points

in the program to get a glimpse of the runtime state. A common practice is to place
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print statements to indicate that control has reached that particular point. Another

common practice is to place print statements to output variable values. As the pro-

gram is executed, the program generates the additional debugging output that can

be inspected by the developer. There are a number of limitations of the use of print

statements for debugging. The debugging output can be quite large. The placement

of the print statements and the inspection of the output are both unstructured and

ad hoc. Analysis and placement are typically based on intuition. Typically, the use

of print statements for debugging utilizes only one of the failed test cases instead of

utilizing the other test cases in the test suite.

Another common technique is the use of a symbolic debugger. A symbolic debug-

ger is a computer program that is used to debug other programs. Symbolic debuggers

support features such as breakpointing, single stepping, and state modifying. Break-

pointing allows the programmer to stop the program at a particular program point

to examine the current state. Single stepping allows the program to proceed to the

next instruction after the current breakpoint and set the new breakpoint at that in-

struction. Many debuggers also allow the programmer to not only view the current

state of a variable, but also to change its value and then continue execution. Sym-

bolic debuggers are included with many development environments such as the Gnu

C Compiler Toolkit, Eclipse, and Microsoft Visual Studio.

Typically, a developer will place breakpoints at places in the program that she

feels are suspicious of being the bug. She will then inspect the state at this point.

She can then single step through the program watching the state change at each

execution of each statement. Examples of such symbolic debuggers are GDB [32],

DBX [71], DDD [77], and those included with integrated development environments

such as Eclipse [25] and Visual Studio [52]. The size of the state at each point in

the program can be significant and there are many instances of statement executions

that can be examined. Similar to the use of print statements, there is no guidance as
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to where to focus the attention. All inspection and analysis is unstructured and ad

hoc, and the analysis is typically based on intuition.

To help alleviate the difficulty of identifying where to place breakpoints, re-

searchers have proposed techniques that provide the ability to be able to step back-

ward in execution using a symbolic debugger. A common problem that developers

face is placing a breakpoint and realizing that the execution had proceeded too far—

the bug had already been executed. Instead of stopping the execution, setting a

new breakpoint earlier, and re-executing, researchers proposed symbolic debuggers

that are capable of backward-stepping (i.e., moving backward to a previous state of

the program at a previous instruction). Balzer first proposed this functionality with

the EXDAMS system for Fortran programs [9]. Agrawal, Demillo, and Spafford [34]

also proposed a technique that allows a developer to move an execution backward

to previous states. Their goal is to allow the developer to set breakpoints and work

backward to determine the conditions that contributed to the failed execution. These

techniques have traditionally suffered from a substantial execution overhead in terms

of either execution time and/or in terms of the storage space needed to save all the

necessary historical states of the program.

2.3 Algorithmic Debugging

Another group of techniques that have been proposed by researchers is called al-

gorithmic debugging. These techniques decompose the problem of finding a bug by

dissecting a complex computation. A complex computation is recursively decomposed

to simpler subcomputations. Each of these subcomputations is checked for correct-

ness. When the developer has determined that a subcomputation is incorrect, the

fault can be localized. For example, if a computation is composed of two subcom-

putations which are both correct, but the parent computation is deemed incorrect,

then it is the parent computation that contains the bug. In other words, it is the

8



composition of the subcomputations that is faulty.

Typically, algorithmic debugging focuses on logical programming languages such

as Prolog. Shapiro [68] proposed the Divide-and-Conquer algorithm for debugging.

The algorithm recursively searches the computation tree to localize the fault. Shapiro

proved that if a computation is correct, then every subcomputation must also be cor-

rect. Consequently, if a program is incorrect, at least one subprogram computation

must be incorrect. Extensions to imperative languages such as Pascal have been pro-

posed by Renner [62]. In their work, subcomputations are mapped to the procedure

level.

One limitation of these algorithmic debugging approaches is that an oracle must

be provided for each computation and subcomputation. Having to provide such an

oracle is often too expensive to be practical. Another limitation of the imperative

approaches is that the precision is limited to the procedure or module level.

2.4 Knowledge-based Debugging

Another area of existing debugging techniques is knowledge-based debugging. These

approaches are based on artificial-intelligence research and knowledge-engineering re-

search. Knowledge-based debugging relies upon training knowledge of the intended

behaviors of a system and knowledge of the usual types of failures. The training is

performed manually by developers. As such, these approaches have been found not

to be scalable to real-world programs and are limited to small example programs.

One knowledge-based technique is called PUDSY (for Program Understanding

and Debugging SYstem) by Lukey[51]. This technique decomposes the program into

a number of code fragments consisting of a small set of statements in the program.

Each of these fragments is then compared against a knowledge base. This knowledge

base is composed of several code fragments and the assertions that can be drawn

from them. This knowledge base is built manually by the developer. Code chunks
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that cannot be associated with a rule from the knowledge base may be symbolically

evaluated. The composition of all of these rules for all of the fragments is evaluated

to determine the overall assertions that can be drawn for the program. These asser-

tions are then checked against the program specification. If the assertions match the

program specification, the program is deemed correct. If the assertions do not match

the program specification, the program is deemed to contain a bug. If this occurs, the

program is then backtraced using the assertions to find the fault. There are a number

of limitations to this approach. First, it is limited in size to very small programs.

Second, the developer must have detailed specifications of the program in the same

syntax as the assertions for the code fragments (or must be transformable to that

syntax). Third, the developer must create a set of rules to put in the knowledge base.

Finally, there is a high complexity of the symbolic evaluation of the program. In the

paper, there is no evaluation of the time overhead required for this approach.

Another example technique is called for FALOSY (for FAult LOcalization SYstem)

by Sedlmeyer and colleagues[67]. Like the PUDSY approach, in this approach the

knowledge base is informed manually by the developer. The knowledge base associates

output failure symptoms with fault-localization hypotheses. The developer identifies

symptoms of erroneous output and associates those with places in the program that

likely cause those types of symptoms. This approach attempts to do what developers

do naturally by inferring from the output the places in the program that may be

responsible for such failures. After a sufficient training period, the knowledge base

should contain enough rules to make some attempts to create automatic hypotheses

of the faults that cause failures. When a failure is found, the output for that failure

is compared against the knowledge base to find the closest matching rule. Using this

rule, a hypothesis is offered to the developer as to the location of the fault that caused

that failure. This technique has some limitations. The developer is responsible for

creating the inference rules from the failure output symptoms to the faults, which
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can be time consuming. Another limitation is that this technique relies upon past

failures’ symptoms and diagnoses to predict future symptoms and diagnoses. There

are no empirical studies that show this to be true in general.

2.5 Slicing-based Techniques

Another class of proposed debugging techniques uses program slices. Weiser proposed

slicing [75, 76] as a way to isolate the part of the program that was responsible for

a value at a particular location in a program. A slice is the set of program loca-

tions that may influence the value of a variable at a specific program location. The

computation of the slice uses static-analysis techniques—control-flow and data-flow.

Typically, a particular output-inducing statement is identified as one that produced

a manifestation of the failure. A variable that is used at this statement is also iden-

tified. The statement and the variable, together, form the slicing criterion. The slice

is calculated for the slicing criterion to determine all statements that could have in-

fluenced that point in any execution. The set of program points that are identified as

the result of the slice is a reduced search space for the fault. Given that the output

statement and variable actually produced an incorrect output, the fault must reside

in the slice.

Researchers have developed extensions to slicing that utilize additional informa-

tion. For example, Korel and Laski present a technique called dynamic slicing [45]

that uses a test case to determine the set of statements that actually affected the

value of the suspicious variable. Several applications and extensions of dynamic

slicing have been proposed for fault localization (e.g., [20, 29, 33, 56]). Pan and

colleagues present a set of dynamic-slice-based heuristics that use set algebra of test

cases’ dynamic slices for similar purposes [55]. These slicing-based techniques result

in a subset of the program that may contain the fault.
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2.5.1 Execution Slice-based Techniques

Realizing that the precise definition of the suspicious variable can be difficult to

determine and that dynamic slices can be expensive to compute, researchers proposed

another set of techniques that makes use of an execution slice—the set of statements

that are executed by a program for a particular test case [2].

Several researchers have used coverage-based information for fault localization.

Collofello and Cousins first presented a technique that uses information that is simi-

lar to execution slices—the statements between any two predicates in a program [18].

Agrawal and colleagues present a technique that computes the set difference of the

statements covered by two test cases—one passed and one failed [3]. A set of state-

ments is obtained by removing the statements executed by the passed test case from

the set of statements executed by the failed test case. This resulting set of statements

is then used as the initial set of suspicious statements when searching for faults.

Some simple and common techniques described in Reference [61] for computing a

subset of all of coverage entities1 to use as a reduced search space for the fault are the

Set-union and Set-intersection techniques. The Set-union technique computes a set

by removing the union of all statements executed by all passed test cases from the set

of statements executed by a single failed test case. That is, given a set of passed test

cases P containing individual passed test cases pi, and a single failed test case f , the

set of coverage entities executed by each p is Ep, and the coverage entities executed

by f is Ef . The union model gives

Einitial = Ef −
⋃
p∈P

Ep (1)

The intuition of the Set-union approach is that the fault is likely in the set of entities

that are executed exclusively by the failed test cases. This intuition implies that every

1Coverage entities are program entities, such as statements, branches, functions, and classes, that
can be instrumented and “covered” (or executed) by a test case.
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time that the fault was executed it caused a failure.

The Set-intersection technique computes the set difference between the set of

statements that are executed by every passed test case and the set of statements that

are executed by a single failed test case. A set of statements is obtained by performing

the intersection of the sets of statements for all passed test cases, and removing the

set of statements executed by the failed test case. Informally, the technique results in

the set of statements that are executed in every passed test case, but not in the failed

execution. Using the same notation as Equation 1, the Set-intersection technique can

be expressed as

Einitial =
⋂
p∈P

Ep − Ef (2)

The intuition of the Set-intersection approach is that the failed test case missed

executing some part of the program, and that this omission may be responsible for

causing its failed status. Although the fault should not be in the omitted section, it

is surmised that the fault may be highly related to it—either in terms of location in

the code listing or in terms of control or data dependencies.

The resulting set Einitial for each of these two techniques defines the entities that

are suspected of being faulty. In searching for the faults, the programmer would first

inspect these entities. To illustrate the Set-union and Set-intersection techniques,

consider their application to program mid() and test suite given in Figure 1.

Program mid() in Figure 1 inputs three integers and outputs the median value.

The program contains a fault on line 7—this line should read “m = x;”. To the right

of each line of code is a set of six test cases: their input is shown at the top of each

column, their coverage is shown by the black dots, and their pass/fail status is shown

at the bottom of the columns.

For this example, both techniques compute an empty initial set of statements.

Thus, for this example, these techniques would fail to assist in fault localization. To

13



      int x,y,z,m;

     mid() {
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  1:  read("Enter 3 numbers:",x,y,z);

  2:  m = z;

  3:  if (y<z)

  4:     if (x<y)

  5:        m = y;

  6:     else if (x<z)

  7:        m = y;  // *** bug ***

  8:  else

  9:     if (x>y)

  10:       m = y;

  11:    else if (x>z)

  12:       m = x;

  13: print("Middle number is:",m);

     } Pass/Fail Status P

Test Cases

t1 t2 t3 t4 t5 t6

Figure 1: Example program and test suite to demonstrate techniques.
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demonstrate how these techniques could work on a different example, consider the

same program, but with the test suite consisting of test cases 2-6 (i.e., omitting the

first test case in the test suite). When applying the Set-union method, the set of

statements in the union of all passed test cases consists of statements 1, 2, 3, 4, 5, 6,

8, 9, 10, 11, and 13. When the technique removes these statements from the the set of

statements executed by the failed test case, the initial set contains only one program

entity—statement 7. In this case, the Set-union technique would have identified the

fault in the initial set. However, note the sensitivity of this technique to the particular

test cases used—for many test suites, the initial set is either the null set or a set that

fails to include the fault.

If the fault is not found in the initial set of entities computed by the set-based

approaches, there must be a strategy to guide the programmer’s inspection of the rest

of the statements in the program. Renieris and Reiss suggest a technique that provides

an ordering to the entities based on the system dependence graph, or SDG [60, 61].

Under this ranking technique, nodes that correspond to the initial set of entities are

identified; they call these blamed nodes. A breadth-first search is conducted from the

blamed nodes along dependency edges in both forward and backward directions. All

nodes that are at the same distance are grouped together into a single rank. Every

node in a particular rank is assigned a rank number, and this number is the same

for all constituent nodes in the rank. Given a distance d, and a set of nodes at that

distance S(d), the rank number that is assigned to every node in S(d) is the size of

every set of nodes at lesser distances plus the size of S(d).

For example, consider a scenario where an initial set contains three statements.

These three statements correspond to three nodes in the SDG. The programmer

inspects these statements and determines that the fault is not contained in them.

She then inspects all forward and backward control-flow and data-flow dependencies

at a distance of 1. This gives an additional seven nodes. The rank number of all
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nodes in the initial set is 3, and the rank number of all nodes at a distance of 1 is

10 (i.e., (3 + 7)). Using the size of the rank plus the size of every rank at a lesser

distance for the rank number gives the maximum number of nodes that would have

to be examined to find the fault following the order specified by the technique.

Researchers have found [42, 61] that these set-based coverage techniques often

perform poorly. One reason for this is that most faulty statements are executed

by some combination of both passed and failed test cases. However, when using

set operations on coverage-based sets, the faulty statement is often removed from

the resulting set of statements to be considered; the application of the Set-union

technique to our example illustrates this. Researchers recognized these techniques’

ineffectiveness when faults are executed by occasional passed test cases, and this

recognition motivated techniques that allow some tolerance for these cases.

2.5.2 Nearest Neighbor Technique

Renieris and Reiss [61] address the issue of tolerance for an occasional passed test

case executing a fault with their Nearest-Neighbor Queries technique. Rather than

removing the statements executed by all passed test cases from the set of statements

executed by a single failed test case, they selectively choose a single best passed test

case for the set difference. By removing the set of statements executed by a passed

test case from the set of statements executed by a failed test case, their approach

applies the technique of Agrawal and colleagues in [3], but has a specific technique

for specifying which passed test case to use for this set difference. They choose any

single failed test case and then find the passed test case that has coverage that is

most similar to the coverage of the failed test case. Utilizing these two test cases,

they remove the set of statements executed by the passed test case from the set of

statements executed by the failed test case. The resulting set of statements is the

initial set of statements from which the programmer should start her search for the
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fault.

Renieris and Reiss defined two measures for the similarity of the coverage sets

between the passed and failed test cases. They call the first measure binary distancing.

This measure computes the set difference of the set of statements covered by the

chosen failed test case and the set of statements covered by a particular passed test

case. They propose that this measure could be defined as either (1) the cardinality

of the symmetric set difference of the statements executed by each of the passed and

failed test cases, or (2) the cardinality of the asymmetric set difference between the set

of statements executed by the failed test case and the set of statements executed by

the passed test case. They call their second measure permutation distancing. In this

measure, for each test case, a count is associated with each statement or basic block

that records the number of times it was executed by the test case. The statements

are then sorted by the counts of their execution. The permutation distance measure

of two test cases is based on the cost of transforming one permutation to the other.

After an arbitrary failed test case is chosen, the distance value is computed for

every passed test case. The passed test case that has the least distance is chosen.

They then remove the set of statements executed by this passed test case from the

set of statement executed by the failed test case. This resulting set is the initial set

of statements for the programmer to examine to find the fault.

If the fault is not contained in the initial set, they specify using the SDG-ranking

technique (presented in Section 2.5.1) on the remaining nodes starting at the initial

set. The remaining program points should be examined in the order specified by the

ranking technique.

To illustrate how this technique works, consider the example program, mid() and

its test suite presented in Figure 1. In this test suite, only one failed test case exists,

thus the technique chooses it as the base for measuring distances. The distance is

measured for every test case in the suite and the first test case is chosen as the test
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case with the least distance—it covers exactly the same set of statements as the failed

test case. When the technique removes the set of statements executed by the passed

test case from the set of statements executed by the failed test case, the result is

the null set as the initial set of statements to examine. Thus, for this test suite and

program, this technique is ineffective. To demonstrate how this technique could work

on a different example, consider the same program, but with the test suite consisting

of test cases 2-6 (i.e., omitting the first test case in the test suite). The technique

finds that the fifth test case is the passed test case with the least distance. When the

technique removes the set of statements executed by the fifth test case from the set

of statements executed by the failed test case, the set containing only statement 7 is

obtained. In this case, the Nearest-Neighbor Queries technique would have identified

the fault in the initial set. However, notice that this technique is also sensitive to the

particular test cases used.

2.6 Memory Modifying Techniques

Cleve and Zeller’s Cause-Transitions technique [17] performs a binary search of the

memory states of a program between a passed test case and a failed test case; this

technique is part of a suite of techniques defined by Zeller and colleagues called

Delta Debugging. The Cause-Transitions technique defines a method to automate

the process of making hypotheses about how state changes will affect output. In

this technique, the program under test is stopped in a symbolic debugger using a

breakpoint—for both a passed test case and failed test case. Part of the memory

state is swapped between the two runs and then allowed to continue running to

termination. The memory that appears to cause the failure is narrowed down using a

technique much like a binary search with iterative runs of the program in the symbolic

debugger. This narrowing of the state is iteratively performed until the smallest state

change that causes the original failure can be identified. This technique is repeated at
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each program point throughout the execution of the test cases to find the flow of the

differing states causing the failure throughout the lifetime of each run. The program

points that are associated with a transition in the state that caused the failure are

saved. These program points are then used as the initial set of points from which to

search for the fault.

After this set of program points has been defined, they are specified as the initial

set of statements that the programmer uses to search for the faults. If the fault is not

contained in this initial set, they too prescribe the SDG-ranking technique to guide

the programmer’s efforts in finding the fault. They also specify two improvements to

the SDG-ranking technique that can exploit the programmer’s knowledge of whether

particular states are “infected” by a fault, “causes” the fault to be manifest, or are

“irrelevant” to the fault.

There are a number of limitations to such an approach. The main limitation is that

the technique is expensive. For each execution point in the program (every execution

instance of each statement), the program must be run multiple times to cause the

executions to breakpoint there and then recursively narrow the search for the state

that causes the failure. Cleve and Zeller found that the approach required over two

hours to complete for a program of about 300 lines of code. Also, the technique

requires that two test cases—one passed and one failed—be found that have nearly

identical execution paths through the program. Otherwise, the breakpoints cannot

be placed throughout the execution. It may be difficult to find such test cases that

are nearly identical in execution path, but produce different pass/fail statuses.

2.7 Techniques Extending Concepts Presented in Our Work

Since the initial publication of our work, others have proposed extensions to the

concepts that we presented. I will describe some of these techniques in Section 3.6

after describing the fundamentals of our work.
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CHAPTER III

FAULT LOCALIZATION USING TESTING

INFORMATION

This chapter presents our technique that utilizes commonly available testing infor-

mation in a way that is effective, efficient, tolerant of test cases that pass but also

execute the fault, and scalable to large programs. This chapter first introduces the

intuition and overall approach of the technique. The chapter then defines metrics that

are used to support the technique and a ranking technique that is used to evaluate it.

The chapter next provides an analysis of the technique. Finally, the chapter presents

some related work that has extended some of the concepts of our fault-localization

technique since it was first presented.

3.1 General Technique

Software testers often gather large amounts of data about a software system under

test. These data, such as coverage, can be used to demonstrate the exhaustiveness

of the testing, and find areas of the source code not executed by the test suite, thus

prompting the need for additional test cases. Our technique uses information provided

by these data for our fault-localization technique called Tarantula.

Tarantula utilizes information that is readily available from standard testing tools:

the pass/fail information about each test case, the entities that were executed by each

test case (e.g., statements, branches, methods), and the source code for the program

under test. The choice to use information sources that are commonly available in

practice was a deliberate one. Many organizations already use tools that enable

dynamic instrumentation of the program to determine its test suite coverage adequacy.
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In fact many commonplace tools support coverage instrumentation such as the GNU C

compiler (gcc and gcov) [31], jcoverage (Eclipse plug-in) [40], InsECTJ (Eclipse plug-

in) [16], Cobertura [23], Rational PureCoverage [38], and BullseyeCoverage (Visual

Studio plug-in) [15].

The intuition behind Tarantula is that entities in a program that are primarily

executed by failed test cases are more likely to be faulty than those that are primarily

executed by passed test cases. Unlike most previous techniques that use coverage

information (e.g., [3, 61]), Tarantula permits the fault to be occasionally executed by

passed test cases. We have found that this tolerance often provides for more effective

fault localization.

At a high-level, the technique assigns two metrics to every coverage entity (e.g.,

statements, branches, methods) being monitored, and uses the values of these metrics

for each coverage entity to rank the entities. The software developer is then directed

to focus his or her attention to the highest ranked entities when searching for the

fault. The next section discusses why these metrics need to have a tolerance for

passed test cases that execute the fault. Section 3.3 defines the metrics. Section 3.4

defines how the entities are ranked using these metrics.

3.2 Faults Executed by Passed Test Cases

We found in practice and in our experiments that faults were often executed by a

few passed test cases. Most existing slicing-based techniques would remove the fault

from the area of the program that they deem suspicious of being the fault. The

assumption that these techniques make is that every time a fault is executed, it must

cause a failure. However, we found that this assumption doesn’t hold, and it is a

major source of the ineffectiveness of the existing slicing-based techniques. Renieris

and Reiss report such losses of effectiveness due to removing the true fault from the

set of suspected faulty statements [61, p. 35]. They report:
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While collecting traces, we observed that in some cases, spectra of suc-

cessful and failed runs collided. That is, the spectra of some failed runs

were indistinguishable from the spectra of some successful runs for the

same version of the program.

They found that the entities that were executed by the failed and passed runs were

sometimes the same. Thus, in these cases the fault must have been executed by at

least one passed run.

The observation that faults can occasionally be executed in a passed context has

motivated our approach that has some tolerance for this phenomenon. By relaxing

the condition of suspiciousness from “only executed by failed test cases” to “primarily

executed by failed test cases,” the fault localization becomes much more resilient to

these situations.

3.3 Metrics

The Tarantula technique computes and assigns two metrics to the coverage entities

that are being considered. These metrics are called suspiciousness and confidence.

The suspiciousness metric represents, for its corresponding coverage entity, a level of

suspicion of being a fault that caused the failed test cases in the test suite to fail.

The value of the suspiciousness metric ranges from 0 to 1. A suspiciousness value

of 0 represents an entity that is least suspicious of causing the failed test cases. A

suspiciousness value of 1 represents an entity that is most suspicious of causing the

failed test cases. Between these two extremes is a continuous range of values that

represents relative values of suspicion that can be assigned to the coverage entities.

Given a test suite T , the suspiciousness metric for an entity e is defined as:

suspiciousness(e) =

failed(e)
totalfailed

passed(e)
totalpassed

+ failed(e)
totalfailed

=
%failed(e)

%passed(e) + %failed(e)
(3.3.1)
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In Equation 3.3.1, failed(e) is the number of failed test cases in T that executed

statement s one or more times. Similarly, passed(e) is the number of passed test

cases in T that executed entity e one or more times. totalpassed and totalfailed are

the total number of test cases in T that pass and fail, respectively. For these metrics,

we use a division operator that evaluates to zero if the denominator is zero. Another

way to interpret this equation is to express each the passed and failed ratios as

percentages. Doing so may allow for an easier interpretation. In this representation,

%passed(e) = passed(e)
totalpassed

∗ 100 and %failed(e) = failed(e)
totalfailed

∗ 100.

The confidence metric was defined that expresses the confidence in the suspicious-

ness value that was computed. The intuition is that the more execution information

from either class (pass or fail) that is available, the more confident we can be in

the suspiciousness value that is given. Like the suspiciousness metric, the confidence

ranges from 0 to 1, inclusively. A coverage entity that has a confidence value of 0

is one for which we have no confidence in the suspiciousness value that is assigned

to it. A coverage entity that has a confidence value of 1 is one for which we have a

high level of confidence in the suspiciousness value that is assigned to it. Between

these two extremes is a continuous range of values that represents relative values of

confidence that can be assigned. The confidence metric for an entity e is defined as:

confidence(e) = max

(
passed(e)

totalpassed
,
failed(e)

totalfailed

)
= max

(
%passed(e)

100
,
%failed(e)

100

)
(3.3.2)

In Equation 3.3.2, the variables are the same as those defined above for Equa-

tion 3.3.1.

Both the suspiciousness and the confidence metrics can be applied to various

coverage entities. Some examples of such coverage entities are statements, branches,

definition-use pairs, procedures, procedure calls, and variable-value ranges. Any type

of program entity for which we can instrument to determine whether it was executed or
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not executed by each test case can be used with these metrics. In fact, for a program

that has a mapping from requirements to the source code, the technique can be

applied to the requirements. For illustration, much of the text here will be describing

the technique at the statement level. The statement level is a convenient and practical

level of instrumentation for a number of reasons. First, many developers and testers

already instrument their program at the statement level to determine the level of

testing adequacy for their test suites. Second, many commonplace tools provide

statement-level instrumentation, such as GNU gcc and many versions of Microsoft

Visual Studio. Finally, a program instrumented for statement coverage has relatively

low instrumentation overhead compared to other types of coverage, such as definition-

use pairs or scalar-value-pair invariants.

Figures 2 and 3 present the algorithm that assigns the suspiciousness and confi-

dence metrics. In Figure 2, Lines 2–10 count the numbers of passed and failed test

cases. Lines 11-25 count the numbers of passed and failed test cases that execute each

coverage entity. These lines also compute the suspiciousness and confidence values

for each coverage entity by calling the functions listed in Figure 3. These metrics

were defined in Equations 3.3.1 and 3.3.2.

To illustrate how the Tarantula technique works, consider the example program,

mid(), and test suite given in Figure 4. Program mid(), described in Section 2, inputs

three integers and outputs the median value. Recall that the program contains a

fault on Statement 7—this line should read “m = x;”. To the right of each line of

code is a set of six test cases: their input is shown at the top of each column, their

coverage is shown by the black dots, and their pass/fail status is shown at the bottom

of the columns. To the right of the test case columns are three columns labeled

“suspiciousness,” “confidence,” and “rank.” The suspiciousness column shows the

suspiciousness score that the technique computes for each statement. The confidence

column shows the confidence score for each statement. The last column shows a rank
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Algorithm: AssignMetrics

Input : M [C, T ]: a coverage matrix of boolean values specifying which test
cases in T executed each coverage entity in C, where T is the list of
test cases [T1, T2, ..., Tm] and C is the list of coverage entities
[C1, C2, ..., Cn]
P : a list of boolean values [P1, P2, ..., Pm] specifying whether each
test case in T passed

Output : S: a list of suspiciousness values [S1, S2, ..., Sn] for each coverage
entity in C
F : a list of confidence values [F1, F2, ..., Fn] for each coverage entity in
C

Declare: pA: number of passed test cases in T
fA: number of failed test cases in T
pi: number of passed test cases that executed entity Ci in C
fi: number of failed test cases that executed entity Ci in C

begin1

pA ← 02

fA ← 03

foreach test case Tj in T do4

if Pj then5

pA ← pA + 16

else7

fA ← fA + 18

end9

end10

foreach coverage entity Ci in C do11

pi ← 012

fi ← 013

foreach test case Tj in T do14

if M [Ci, Tj] then15

if Pj then16

pi ← pi + 117

else18

fi ← fi + 119

end20

end21

end22

Si ← Suspiciousness(pA, fA, pi, fi)23

Fi ← Confidence(pA, fA, pi, fi)24

end25

end26

Figure 2: AssignMetrics algorithm used for the Tarantula technique.
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Function: Suspiciousness(pA, fA, pi, fi)

Input : pA: number of passed test cases
fA: number of failed test cases
pi: number of passed test cases that executed the considered entity
fi: number of failed test cases that executed the considered entity

Output : S: suspiciousness value
Declare: Rp: passed ratio

Rf : failed ratio
begin1

Rp ← Safe divide (pi, pA)2

Rf ← Safe divide (fi, fA)3

S ← Safe divide (Rf , Rf +Rp)4

end5

Function: Confidence(pA, fA, pi, fi)

Input : pA: number of passed test cases
fA: number of failed test cases
pi: number of passed test cases that executed the considered entity
fi: number of failed test cases that executed the considered entity

Output : F : confidence value
begin1

F ← max( Safe divide(fi, fA), Safe divide(pi, pA))2

end3

Function: Safe divide(n, d)

Input : n: numerator
d: denominator

Output : r: result of the safe division
begin1

if d = 0 then2

r ← 03

else4

r ← n
d

5

end6

end7

Figure 3: Suspiciousness() and Confidence() functions (along with utility func-
tion Safe divide()) used in the AssignMetrics algorithm.
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for each statement. This column will be discussed in Section 3.4

      int x,y,z,m;

     mid() {
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  1:  read("Enter 3 numbers:",x,y,z);

  2:  m = z;

  3:  if (y<z)

  4:     if (x<y)

  5:        m = y;

  6:     else if (x<z)

  7:        m = y;  // *** bug ***

  8:  else

  9:     if (x>y)

  10:       m = y;

  11:    else if (x>z)

  12:       m = x;

  13: print("Middle number is:",m);
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Figure 4: Example of Tarantula technique.

Consider Statement 1, which is executed by all six test cases and contains both

passed and failed test cases. The Tarantula technique assigns Statement 1 a suspi-

ciousness score of 0.5 because one failed test case out of a total of one failed test

case in the test suite executes it (giving a ratio of 1), and five passed test cases out

of a total of five passed test cases execute it in the test suite (giving a ratio of 1).

Using the suspiciousness equation specified in Equation 3.3.1, the technique gets a

suspiciousness value of 1/(1 + 1), or 0.5. Statement 1 has a confidence score of 1.0

because five of the five passed test cases executed it, and one out of one failed test

cases executed it.

Consider also Statement 7, which is executed by one of the five passed test cases

and by the one failed test case. Statement 7 has a suspiciousness value of 0.83, which
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is more suspicious than Statement 1. Statement 7 is more suspicious than Statement

1 because it is executed primarily by the failed test cases—in this case, 100% of the

failed test cases, but only 20% of the passed test cases.

3.4 Ranking of Program Entities

Using the suspiciousness and confidence scores, the technique sorts the coverage

entities of the program under test. The sorted list of coverage entities gives a ranking

of all entities. Each entity in the ranking has a rank that defines its depth in the

list. The set of entities that have the greatest suspiciousness value is the set of

entities to be considered first by the programmer when looking for the fault, and thus

has the highest rank. If, after examining these statements, the fault is not found,

the remaining statements should be examined in the sorted order of the decreasing

suspiciousness values.

The confidence score is used as a tie-breaker—high-confidence entities are ranked

higher than lower ones. This specifies a ranking of entities in the program. For

evaluation purposes, each set of entities at the same rank is given a rank number

equal to the greatest number of statements that would need to be examined if the

fault were the last statement in that rank to be examined. For example, if the initial

set of entities consists of 10 statements, then every statement in that set is considered

to have a rank of 10.

In Figure 4, the last column shows the rank of each statement according to the

suspiciousness and confidence of the statement. The ranking column shows the max-

imum number of statements that would have to be examined if that statement were

the last statement of that particular suspiciousness level chosen for examination. The

ranking is ordered by the suspiciousness, from the greatest score to the least score.

Any statements that have the same suspiciousness score are further ordered based on

the confidence score.
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When Tarantula orders the statements according to suspiciousness, Statement 7

is the statement with the highest rank; then Statement 6; then Statement 4; then

Statements 1, 2, 3, and 13 (at the same rank number); then Statements 8 and 9; then

Statements 5, 10, and 11; and finally Statement 12 with the lowest rank. Statement

7 is the only statement in the highest rank, and thus, the programmer would inspect

it first. If the fault were not at Statement 7, she would continue her search by looking

at the statements at the next ranks. Note that the faulty statement 7 is ranked

first—this means that programmer would find the fault at the first statement that

she examined.

An evaluation of the Tarantula technique, compared to several other existing

fault-localization techniques, is presented in an empirical study given in Chapter 7.

3.5 Analysis of the Suspiciousness Metric

This section provides a more detailed examination of the suspiciousness metric. First,

the section presents the complexity analysis of the Tarantula fault-localization algo-

rithm. Then, the section shows that the rankings provided by the suspiciousness

metric are not biased toward either the number of passed test cases or the num-

ber of failed test cases that execute a statement—each affects the rankings equally.

The section next describes a way to cast the Tarantula suspiciousness equation as

a set similarity metric. Finally, the section describes a way to cast the use of the

suspiciousness equation as a data-mining approach.

3.5.1 Complexity Analysis

The cost of the Tarantula algorithm is linear in the size of the program and linear in

the size of the test suite. For each coverage entity in the program, the technique must

count the number of test cases that executed it. To query each test case’s coverage of

an entity takes t steps where t is the number of test cases in the test suite. After the

count of the number of passed and failed test cases that executed a coverage entity,
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two calculations are performed to compute the suspiciousness and confidence scores.

These computations are constant time operations—the sum of these constant time

calculations is C. Thus, the time to compute the metrics for a single coverage entity

is t+C. For all coverage entities, where the number of entities is n, the total time is

n(t+ C). The run-time complexity is O(tn).

3.5.2 Impartiality of Suspiciousness Equation

The suspiciousness equation provides a suspiciousness value to each program entity.

These values can be used to assess the relative suspiciousness values for various entities

and to enable a ranking of entities from greatest to least suspicious. The suspicious-

ness metric evaluates a program entity based on the degree to which it was involved

in each category of test cases: passed and failed.

The suspiciousness equation serves as a ranking function to sort the entities. The

suspiciousness equation provides a value ranging from 0 to 1, inclusively. The bound-

ing of the range of values is useful for human comprehension. For example, a given

statement can be said to be “100% suspicious.” Another example of the usefulness of

the bounding of the range is that it is easily mapped to a color space for visualization.

Although the suspiciousness equation bounds the range of suspiciousness values

from 0 to 1, the ranking function that it provides is one that can be expressed in

simpler terms. For the purpose of ranking, the suspiciousness is proportional to the

number of failed test cases that executed that entity and inversely proportional to the

number of passed test cases that executed it. The totalpassed and totalfailed values

are the same for all statements in a program for a given test suite. With regard to

the ordering or ranking of statements, the suspiciousness metric can be simplified to

a simple ratio of failed(s) to passed(s) while still preserving its function as a ranking

function. The suspiciousness equation is not biased for either the existence of failed

or passed test cases.
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We provide a direct proof that the suspiciousness equation computes a ranking

function that is equivalent to the unbiased failed(s)
passed(s)

one by making a series of order-

preserving transformations to the suspiciousness equation. For two arbitrary state-

ments si and sj, where suspiciousness(si) > suspiciousness(sj), We show that this

implies that failed(si)
passed(si)

>
failed(sj)

passed(sj)
.1

Theorem. For two arbitrary statements, si and sj, such that suspiciousness(si) is

greater than suspiciousness(sj), the unbiased ratio of the number of failed test cases

to number of the passed test cases that execute si is always greater than the unbiased

ratio of the number of failed test cases to the number of passed test cases that execute

sj. This can be written as

suspiciousness(si) > suspiciousness(sj) =⇒ failed(si)

passed(si)
>
failed(sj)

passed(sj)
(3.5.1)

Proof. We provide a direct proof of the theorem by deriving the consequent of the

implication from the antecedent.

suspiciousness(si) > suspiciousness(sj) (3.5.2)

Inequality 3.5.2 shows that the suspiciousness value assigned to statement si is greater

than the suspiciousness value assigned to statement sj. By substituting the definition

of the suspiciousness metric, we get

%failed(si)

%passed(si) + %failed(si)
>

%failed(sj)

%passed(sj) + %failed(sj)
(3.5.3)

failed(si)
totalfailed

passed(si)
totalpassed

+ failed(si)
totalfailed

>

failed(sj)

totalfailed

passed(sj)

totalpassed
+

failed(sj)

totalfailed

(3.5.4)

1The logic was inspired by a paper by Briand and colleagues [13].
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We transform the fractions on each side of Inequality 3.5.4 to

failed(si) ∗ totalpassed
passed(si) ∗ totalfailed+ failed(si) ∗ totalpassed

>

failed(sj) ∗ totalpassed
passed(sj) ∗ totalfailed+ failed(sj) ∗ totalpassed

(3.5.5)

We take the reciprocal of both sides of Inequality 3.5.5. Because passed(s), failed(s),

totalpassed, and totalfailed are always non-negative, the direction of the inequality

operator is reversed to get

passed(si) ∗ totalfailed+ failed(si) ∗ totalpassed
failed(si) ∗ totalpassed

<

passed(sj) ∗ totalfailed+ failed(sj) ∗ totalpassed
failed(sj) ∗ totalpassed

(3.5.6)

We simplify both sides of Inequality 3.5.6 to get

1 +
totalfailed

totalpassed
∗ passed(si)

failed(si)
< 1 +

totalfailed

totalpassed
∗ passed(sj)

failed(sj)
(3.5.7)

We simplify Inequality 3.5.7 by adding (−1) to both sides and then multiply-

ing both sides by totalpassed/totalfailed. Because the quantities totalpassed and

totalfailed are always non-negative, the inequality operator remains the same. These

quantities are not dependent on the individual statements, and thus for a given run

of a test suite on a program, these values are constant for all statements. The result

is

passed(si)

failed(si)
<
passed(sj)

failed(sj)
(3.5.8)

By taking the reciprocal of both sides of Inequality 3.5.8, we derive the consequent of

the theorem’s implication. Because the quantities failed(s) and passed(s) are always

non-negative, the inequality operator is switched.
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failed(si)

passed(si)
>
failed(sj)

passed(sj)
(3.5.9)

This series of order-preserving transformations demonstrates Implication 3.5.1.

Thus, for the purposes of providing a ranking function, the unbiased ratio of the

number of failed test cases that execute the entity to the number of passed test cases

that execute the entity is equivalent to the suspiciousness metric.

3.5.3 Suspiciousness as Set-Similarity

Abreu and colleagues [1] propose that the Tarantula technique can be expressed as a

set-similarity metric. They propose that performing fault-localization in a way such

as that of Tarantula—where entity coverage is used to assess each entity’s relative

involvement in passed and failed test cases—is in essence a set-similarity problem.

The insight of their analysis is to consider the set of test cases that execute each

entity: one set per entity. The reference set to which each of these is compared is

the set of test cases that fail. A similarity measure is calculated for each entity in

the program. An entity that has a high similarity has a high suspiciousness of being

a fault. Consequently, an entity that has a low similarity to the reference set has a

low suspiciousness of being a fault that caused the failed test cases.

To demonstrate the key insight of their analysis, consider the example in Fig-

ure 4. The reference set contains only one test case: t6. The set for statement 1

is {t1, t2, t3, t4, t5, t6}. To calculate the suspiciousness of statement 1, the set {t6}

is compared to {t1, t2, t3, t4, t5, t6}. Intuitively, statement 7 has the most similar

membership to the reference set.

In their terminology, p ∈ {0, 1} indicates whether the entity s was executed (1

is executed, 0 is not-executed), q ∈ {0, 1} indicates whether the test case passed or

failed (1 is failed, 0 is passed), and apq represents the number of test cases that match
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these two conditions. For example, a11(s) represents the number of failed test cases

that executed entity s.

Using these definitions, the Tarantula suspiciousness equation can be expressed

as:

suspiciousness(s) =

a11(s)
a11(s)+a01(s)

a11(s)
a11(s)+a01(s)

+ a10(s)
a10(s)+a00(s)

(3.5.10)

We can represent these values terms of the quantities that were defined in Sec-

tion 3.3 as such:

a11(s) = failed(s) (3.5.11)

a10(s) = passed(s) (3.5.12)

a01(s) = totalfailed− failed(s) (3.5.13)

a00(s) = totalpassed− passed(s) (3.5.14)

Other set-similarity metrics could also be used for the purposes of fault localiza-

tion. The Jaccard similarity coefficient and the Ochiai similarity coefficient are two

metrics that are used for comparing the similarity and diversity of sample sets.

The Jaccard equation used in Reference [1] can be represented as:

suspiciousnessJ(s) =
a11(s)

a11(s) + a01(s) + a10(s)

=
failed(s)

totalfailed+ passed(s)
(3.5.15)

The Ochiai equation used in Reference [1] can be represented as:

suspiciousnessO(s) =
a11(s)√

(a11(s) + a01(s)) ∗ (a11(s) + a10(s))

=
failed(s)√

totalfailed ∗ (failed(s) + passed(s))
(3.5.16)
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These other similarity metrics can be used in place of the Tarantula one and also

provide evidence toward my thesis statement.

3.5.4 Suspiciousness as Data-Mining

Denmat and colleagues [21] provided an analysis of the Tarantula technique that

reinterprets the suspiciousness equation as a way to perform data-mining. In data-

mining, association rules are defined among data, and the suspiciousness equation is

one such association rule. Association rules seek to find hidden associations in large

data sets. Agrawal and colleagues [4] describe finding association rules from analyzing

supermarket sales data. They found rules such as “if a customer buys fish and lemon

then he will probably also buy rice.” Data-mining techniques must also be tolerant

of cases where rules generally apply, but occasionally are violated. For example,

there may be an occasional customer that bought fish and lemon, but did not buy

rice. For the purposes of fault localization, the suspiciousness metric can be used

to characterize rules that associate entity coverage with a failed result. Their work

offers a formal justification of this work in a well-established area of computer-science

research.

3.6 Techniques Extending Concepts Presented in Our Work

Since the publication of the Tarantula technique, others have proposed ways to use

test-case coverage information to localize faults in a way that is also tolerant of

passed test cases that execute the fault. This section describes two such techniques:

Statistical Bug Isolation [48] and SOBER [49]. Each of these techniques further

supports my thesis that fault-localization can be performed efficiently using commonly

available testing information.
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3.6.1 Statistical Bug Isolation

Liblit and colleagues [48] proposed a technique, called Statistical Bug Isolation

(SBI)2 for computing the suspiciousness of a predicate P , which they call Failure.

With the assumption that the probability of P ’s being true implies failure, they

compute the Failure of P by

Failure(P ) =
failed(P )

passed(P ) + failed(P )
(3.6.1)

where passed(P ) is the number of passed test cases in which P is observed to be true

and failed(P ) is the number of failed test cases in which P is observed to be true.

The predicate types that they evaluate are: branches in the code, error type return

values from functions, and local scalar variable invariants.

They proposed their technique for use on deployed software. To minimize the

runtime overhead of the instrumentation, they provided a statistical model that se-

lectively and randomly executes the instrumentation probes in the code. Because

they were not able to get full instrumentation information, they provided additional

metrics to help account for the missing information. The other metrics that they

provided were Context and Increase. The Context metric is defined as:

Context(P ) =
failed(P ∨ ¬P )

passed(P ∨ ¬P ) + failed(P ∨ ¬P )
(3.6.2)

and the Increase metric is defined as:

Increase(P ) = Failure(P )− Context(P ) (3.6.3)

These additional metrics try to determine how much does P being true increase

the probability of failure over simply sampling the predicate. All predicates that have

a positive Increase are suspected of being faulty.

2In recent work, the project has been renamed Collaborative Bug Isolation (CBI).
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The main difference of SBI and Tarantula is that SBI targets localization of fault in

deployed software. Liblit and colleagues have specialized the equations for statistical

sampling of the coverage information to reduce the overhead of in-the-field instru-

mentation overhead. Tarantula targets in-house testing where full instrumentation is

performed and complete coverage information can be gathered.

3.6.2 SOBER

Whereas Statistical Bug Isolation extended the Tarantula concepts to deployed soft-

ware, Liu and colleagues extended the ideas to utilize branch profile counts instead

of simple coverage hit vectors [49]. They called their technique SOBER. Liu and

colleagues speculated that the data used for Tarantula and Statistical Bug Isolation

was insufficient to capture the behavior of a test case. Tarantula and Statistical Bug

Isolation only record whether an entity was ever covered during an execution. Liu

and colleagues instead captured the number of times that an entity was executed

for each execution. Using these entity profiles, they built statistical models of the

behavior of both classes of test cases: passed and failed. These statistical models are

used to evaluate each entity to determine if its execution counts discriminate between

passed and failed contexts. Those that are found to be most different in these two

contexts are considered to be the most suspicious.

The main difference of SOBER and Tarantula is that SOBER uses profiling in-

formation instead of coverage information. Their choice to use profiling information

can increase the run-time instrumentation overhead and the fault-localization com-

putation. We chose to use coverage information because it is our view that coverage

information is more commonplace in current testing practice, and the use of com-

monly available dynamic information is a key goal of our research.
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CHAPTER IV

HEURISTIC TECHNIQUE FOR PROGRAMS WITH

MULTIPLE FAULTS

In practice, developers are aware of the number of failed test cases for their pro-

grams, but are unaware of whether a single fault or many faults caused those failures.

Thus, developers usually target one fault at a time in their debugging. Programs that

contain multiple faults present new challenges for fault localization. Most published

fault-localization techniques target the problem of localizing a single fault in a pro-

gram that contains only a single fault. In this chapter, I present our technique that

locates multiple faults for programs that contain an arbitrary number of faults.

This chapter first describes the problem of interference that is caused by the

presence of multiple faults. The chapter then presents two techniques that are used to

solve this problem. The chapter next presents an analysis of each of these techniques.

The chapter then describes two modes of debugging—sequential and parallel—that

can be enabled by these solutions. Finally, the chapter presents related work.

4.1 The Interference of Multiple Faults

Fault-localization techniques, such as those described in Chapter 3, can be less effec-

tive for programs that contain multiple faults than for programs that contain only

single, isolated faults. For example, consider a program and test suite for which a set

of failed test cases, F1, fail due to one fault, f1, and another set of failed test cases,

F2, fail due to another fault, f2. Fault f1 may be executed only by the failed test

cases in F1, and fault f2 may be executed only by the failed test cases in F2. In such

a scenario, each fault is not being primarily executed by all failed test cases. Thus,
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fault-localization techniques that use the approach of identifying regions programs

that are primarily executed by failed test cases may be less effective in such cases.

These fault-localization techniques attempt to find similarities among the failed

test cases and then determine how these features differ from the passed test cases.

In the case of programs that contain multiple faults, finding the similarities among

the failed test cases that fail due to different faults may result in hypothesized fault

locations that are unrelated to any of the faults. Execution traces for test cases that

fail due to different fails may have similarities that do not help to distinguish the

faults in the program—they may be due to chance or main-line code that all test

cases must execute For these reasons, for any particular fault, the other faults create

interference or noise that makes its localization by these types of fault-localization

techniques more difficult. In our experimentation presented in Chapter 7, we provide

evidence to support this claim.

The goal of my approach is to provide effective fault localization in the presence

of multiple faults by the creation and specialization of test suites that target different

faults. The key to this approach is the automatic partitioning of the failed test cases

according to the faults that caused them. The approach creates subsets of the original

test suite T that target individual faults. The approach partitions failed test cases

into disjoint subsets of T . Each subset of failed test cases is called a fault-focusing

cluster, and contains failed test cases that are similar in their execution behavior.

Then, the approach creates specialized test suites by combining the passed test cases

with each fault-focusing cluster. With these specialized test suites, the technique

applies a fault-localization algorithm to automatically find the likely locations of the

faults.

Consider the example shown in Figure 5, which is the same program that was

shown in Figure 4, except that this program contains two faults. Statement 7 contains

a fault: m = y (the correct statement would be m = x). Statement 10 also contains
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a fault: m = z (the correct statement would be m = y). This modified example

contains ten test cases, four of which are failed.

      int x,y,z,m;

     mid() {

  1:  read("Enter 3 numbers:",x,y,z);

  2:  m = z;

  3:  if (y<z)

  4:     if (x<y)

  5:        m = y;

  6:     else if (x<z)

  8:  else

  9:     if (x>y)

  11:    else if (x>z)

  12:       m = x;

  13: print("Middle number is:",m);

     }

  7:        m = y; // fault1. correct: m=x

  10:       m = z; // fault2. correct: m=y
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Figure 5: mid() and all test cases before any faults are located.

The four failed test cases are caused by the two different faults. The fault at

Statement 10 causes test cases t7 and t8 to fail, and the fault at Statement 7 causes

test cases t9 and t10 to fail. When applying the Tarantula technique to the entire

test suite, all suspiciousness values and confidence values for the faulty statements

are less than they could have been if there were only a single fault. The issue is that

identifying the entities (in this case, statements) that were primarily executed by the

failed test cases is more difficult when there are failures caused by multiple, different

faults.

If we could know which failed test cases were failing due to each individual fault,

we may be able to improve the effectiveness of the technique. However, knowing which
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faults caused each failure would generally require knowledge of the faults. Because

fault localization is an attempt to gather information about the nature of the fault,

this is a recursive problem. Instead, we can group the failed test cases according to

similar execution behavior, or fault-focusing clusters.

Returning to the example in Figure 5, it is clear to see that test cases t7 and t8

have similar execution behavior and t9 and t10 have similar execution behavior—in

this case, the members of each group or cluster has exactly the same coverage vector.

If we cluster these failed test cases into Cluster 1 and Cluster 2 (as shown at the

bottom of the t7-t10 columns), we create two fault-focusing clusters. Combining each

of these fault-focusing clusters with the passed test cases creates two specialized test

suites: {t1, t2, t3, t4, t5, t6, t7, t8} and {t1, t2, t3, t4, t5, t6, t9, t10}. These are shown in

Figures 6 and 7, respectively.

      int x,y,z,m;

     mid() {

  1:  read("Enter 3 numbers:",x,y,z);

  2:  m = z;

  3:  if (y<z)

  4:     if (x<y)

  5:        m = y;

  6:     else if (x<z)

  8:  else

  9:     if (x>y)

  11:    else if (x>z)

  12:       m = x;

  13: print("Middle number is:",m);

     }

  7:        m = y; // fault1. correct: m=x

  10:       m = z; // fault2. correct: m=y

P P

3
,3

,5

1
,2

,3

5
,5

,5

P P

3
,2

,2

P

1
,1

,4

P

5
,3

,4

F

3
,2

,1

5
,4

,2

F

Test Cases
t1 t2 t3 t4 t5 t6 t7 t8

Pass/Fail Status

0.50

0.50

0.50

0.00

0.00

0.00

0.50

su
sp

ic
io

u
sn

es
s

0.00

0.00

0.00

0.75

0.75

0.86

1.0

1.0

1.0

0.67

0.17

0.5

1.0

1.0

1.0

0.33

0.17

1.0

0.0

ra
n

k

7

7

7

12

9

10

3

3

12

13

7

1

8

co
n

fi
d

en
ce

Figure 6: Example mid() with Cluster 1.

Figure 6 shows the results of the Tarantula technique for the specialized test suite
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      int x,y,z,m;

     mid() {

  1:  read("Enter 3 numbers:",x,y,z);

  2:  m = z;

  3:  if (y<z)

  4:     if (x<y)

  5:        m = y;

  6:     else if (x<z)

  8:  else

  9:     if (x>y)

  11:    else if (x>z)

  12:       m = x;

  13: print("Middle number is:",m);

     }

  7:        m = y; // fault1. correct: m=x

  10:       m = z; // fault2. correct: m=y
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Figure 7: Example mid() with Cluster 2.

containing Cluster 1 from Figure 5. Notice how the greatest suspiciousness value is

assigned to the fault on Statement 10. Also, most of the confidence scores are greater

for this specialized test suite than for the entire test suite.

Figure 7 shows the results of the Tarantula technique for the specialized test suite

containing Cluster 2 from Figure 5. Unlike the use of the entire test suite, shown

in Figure 5, and the other specialized test suite, shown in Figure 6, the use of this

specialized test suite causes the fault localization technique to locate the fault on

Statement 7.

4.2 Techniques for Clustering Failures

To achieve the goal of enabling a more effective fault-localization technique in the

presence of multiple faults, we defined a debugging process that incorporates the
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clustering of failed test cases. This process is shown by the dataflow diagram1 in

Figure 8. The program under test, P , is instrumented to produce P̂ . When P̂

is executed, it produces execution information that is recorded, such as branch or

method profiles. Executing P̂ with test suite T results in some of the test cases being

labeled as passed and the rest being labeled as failed. The passed test cases TP and

the failed test cases TF are subsets of T . TF and the execution information are input

to the clustering technique, Cluster, to produce a set of fault-focused clusters C1,

C2, ..., Cn that are disjoint subsets of TF . Each Ci is combined with TP to produce a

specialized test suite that assists in locating a particular fault. Using these test suites,

developers can debug each fault independently—shown as Debugi in the figure. When

they find and fix the faults in the program, the resulting changes, ch1, ch2, ..., chn,

are integrated into the program. This process can be repeated until all test cases

pass.

The novel component of this debugging process, Cluster, is shown in more detail

in Figure 9. We have developed two techniques to Cluster failed test cases. This

section presents details of these techniques.

4.2.1 Clustering Based on Profiles and Fault-localization Results

The first fault-focused clustering technique, shown as Technique 1 in Figure 9, has

three main components. The first component, Behavior Model Clustering, clusters

behavior models of executions of failed test cases, TF , to produce a complete cluster-

ing history (or dendrogram) D (described in Section 4.2.1.1). The second component,

Stopping-Criterion Calculation, uses fault localization information to identify a stop-

ping criterion for D, and produces a preliminary set of clusters, Cp (described in

Section 4.2.1.2). The third component, Refinement, refines Cp by merging those clus-

ters that appear to be focused on the same faults and outputs the final set of clusters,

1Rectangles represent processing components, edges represent the flow of data between the com-
ponents, and labels on the edges represent the data.
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Ci (described in Section 4.2.1.3). The first step is based on instrumentation profiles,

and the second and third steps are based on fault-localization results.

4.2.1.1 Clustering profile-based behavior models

To group the failed test cases according to the likely faults that caused them, we

use a technique for clustering executions based on agglomerative hierarchical clus-

tering developed by Bowring and colleagues [12]. For each test case, this technique

creates a behavior model that is a statistical summary of data collected during pro-

gram execution. The specific models are Discrete-Time Markov Chains (DTMCs),

and clustering occurs iteratively with the two most similar models merged at each

iteration. Every execution is represented by its branching behavior. The branching

profile of an execution is represented by the percentage of times that each branch of

a predicate statement was taken. By using the percentage of times that each branch

was taken, the branch profile is normalized—we call the result a normalized branch

profile. Similarity is measured with a similarity metric—in this research, that metric

is the sum of the absolute difference between matching transition entries in the two

DTMCs being compared. Each pair of executions is assigned a similarity value that

is the sum of the differences of the branch percentage profile. The technique initially

sets the stopping criterion for the clustering to one cluster, so that the clustering

proceeds until one cluster remains.

To illustrate clustering, consider Figure 10, which shows a dendrogram [24] that

depicts an example clustering of ten execution models. A dendrogram is a tree diagram

frequently used to illustrate the arrangement of clusters produced by a clustering

algorithm. A dendrogram has a number of levels, each specifying a form of clustering.

We denote level numbers by the number of clusters in that level. When proceeding

from level n to level n − 1, two clusters from level n are merged into one parent

cluster in n− 1. This clustering process produces one pair of branches between every
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two dendrogram levels. The left side of the figure shows the ten individual failed

test cases represented as f1, ..., f10. At each level of the dendrogram, the process of

clustering the two most similar test cases is shown.2 Initially, at level 10, failed test

cases f1, ..., f10 are placed in clusters c10.1, ..., c10.10, respectively. Then, suppose

the clustering algorithm finds that c10.9 and c10.10 have the most similar behavior

models, and clusters them to get a new cluster, labeled as c9.9. This clustering results

in nine clusters at level 9. Suppose further that, at level 8, the clustering algorithm

finds that c9.1 and c9.2 are grouped to form c8.1. This clustering continues until

there is one cluster, c1.1.
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Figure 10: Dendrogram for 10 failed test cases.

2If multiple pairs are equally “most similar,” one such pair is chosen at random.
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The algorithm for our profile-based clustering technique is presented in Figure 11

with its supporting functions presented in Figures 12 and 13. In Figure 11, the

algorithm ClusterProfile takes an initial set of clusters C as input. Each of these

clusters [C1, C2, ..., Cn] contain only one failed test case. In addition to the list of

test cases that it contains, the cluster data structure has a representative, normalized

execution profile. Line 2 stores the initial size of C in n. Lines 3-6 create the level

of the dendrogram D that contains all singleton-cluster leaf nodes. Line 7 iterates

for every level in the dendrogram being constructed, except the last level that will

contain only one cluster. Line 8 initializes the variable m that records the least

distance between any two clusters in this level. Lines 9-10 iterate over all possible

cluster pairs. Line 11 checks whether the distance mapping δij has been already

computed for the two considered clusters Ci and Cj. If it has not been already

computed, the value of δij will be nil and the distance will be computed and stored

in δ on Line 12. Lines 14-18 compare δij with the least known distance m for this

level. If δij is found to be less than m, m is redefined as δij and the two clusters are

recorded as Mi and Mj. Finally, Line 21 merges the two clusters Mi and Mj, updates

the cluster list C, and augments the dendrogram D with another level including the

new merged cluster.

The algorithm for computing the distance of two clusters is presented in Figure 12.

The function ProfileDistance takes two clusters Ci and Cj as input. In addition

to the list of test cases that each cluster contains, each contains a representative,

normalized execution profile. Line 2 initializes the distance d between clusters Ci

and Cj to zero. Line 3 iterates over all coverage entities E in the program. For each

coverage entity, the absolute difference a of the profile values for that entity Ex of

the two clusters Ci and Cj is computed on Line 4. Line 5 increases the distance d by

a. After iterating over all entities, the final value of d specifies the distance between

clusters Ci and Cj.
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Algorithm: ClusterProfile

Input : C: a list of clusters [C1, C2, ..., Cn] each containing one failed test
case and each with its normalized execution profile

Output : D: a dendrogram
Declare: δij: distance between cluster Ci and Cj, initialized to nil for all

possible pairs
Mi: cluster to be merged
Mj: cluster to be merged
m: least distance found between any two clusters for a level in the
dendrogram

begin1

n← |C|2

create a new level Ln in D3

foreach cluster Ci in C do4

add Ci to D as a leaf node at level Ln5

end6

for l← n to 2 do7

m←∞8

foreach cluster Ci in C do9

foreach cluster Cj in C where Ci 6= Cj do10

if δij = nil then11

δij ← ProfileDistance(Ci, Cj)12

end13

if δij < m then14

m← δij15

Mi ← Ci16

Mj ← Cj17

end18

end19

end20

Merge(Mi, Mj, C, D, l)21

end22

end23

Figure 11: Profile-based clustering algorithm.
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Function: ProfileDistance

Input : Ci: a cluster of test cases along with a representative normalized
execution profile
Cj: a cluster of test cases along with a representative normalized
execution profile

Output : d: assigned distance between Ci and Cj

Declare: ρix: a profile value for entity Ex and cluster Ci

begin1

d← 02

foreach coverage entity Ex in the program do3

a← |ρix − ρjx|4

d← d+ a5

end6

end7

Figure 12: ProfileDistance function used in the Profile-based clustering algo-
rithm.

The algorithm for merging the two most-similar clusters is presented in Figure 13.

The function Merge takes two clusters Ci and Cj as input. In addition to the list

of test cases that each cluster contains, each cluster also contains a representative,

normalized execution profile. Merge also takes the list of all clusters C as input,

the current state of the dendrogram D, and the current level l in D. Lines 2-5 create

a new cluster Ck and place the union of the test cases in each Ci and Cj in it. Lines

6-8 compute the representative, normalized execution profile for Ck. The profile ρkx

for the coverage entity Ex and the new cluster Ck is computed as the average of

the profiles ρix and ρjx, which are the profiles for the coverage entity Ex for clusters

Ci and Cj, respectively. Line 9 removes clusters Ci and Cj from the active set of

clusters C. Line 10 creates a new level Ll−1 in the dendrogram. Lines 11-14 places

all remaining clusters in C into the new level Ll−1 and connects its corresponding

cluster in level Ll in D. Line 15 places the new cluster Ck in the active set of clusters

C, and Line 16 places Ck in the new level Ll−1 of D. Lines 17-18 connect Ck as the

parent node in level Ll−1 of each Ci and Cj in level Ll in D.
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Function: Merge

Input : Ci: a cluster of test cases along with a representative normalized
execution profile
Cj: a cluster of test cases along with a representative normalized
execution profile
C: a list of active clusters
D: an incomplete dendrogram
l: the current level number in the dendrogram

Output : C: the list of active clusters will be updated
D: the dendrogram will be augmented

Declare: Ck: the new cluster created by merging Ci and Cj

ρix: a profile value for entity Ex and cluster Ci

begin1

Ti ← test cases in cluster Ci2

Tj ← test cases in cluster Cj3

Tk ← Ti ∪ Tj4

create cluster Ck containing test cases Tk5

foreach coverage entity Ex in the program do6

ρkx ← (ρix + ρjx)/27

end8

C ← C − {Ci, Cj}9

create new level Ll−1 in D10

foreach cluster Cr in C do11

include Cr in level Ll−1 of D12

create an edge in D from parent Cr in level Ll−1 to child Cr in level Ll13

end14

C ← C ∪ {Ck}15

include Ck in level Ll−1 of D16

create an edge in D from parent Ck in level Ll−1 to child Ci in level Ll17

create an edge in D from parent Ck in level Ll−1 to child Cj in level Ll18

end19

Figure 13: Merge function used in the Profile-based clustering algorithm.
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To demonstrate the clustering technique, Figure 14 shows control-flow graphs for

one example program for three executions. The labels on the edges show the percent

of times that each branch was taken by that one execution. For example, the first

execution caused predicate P1’s left branch to be taken 90% of the time and its right

branch to be taken the other 10% of the time.
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Figure 14: Three executions on one example program. The control-flow graph for
the program is shown once for each execution. The branch labels show the percentage
(as a probability) that each branch was taken during that execution

Table 1 shows the normalized branch profiles and their pair-wise differences. The

columns marked e1, e2, and e3 show the branch profiles taken from Figure 14. The

next three columns show the pair-wise, absolute differences for each branch. For

example, for P1-l, e1 has a normalized branch profile of 0.9 and e2 has a normalized
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branch profile of 0.75. The absolute difference between these two values is |0.9 −

0.75| = 0.15. The last row shows the sum of all differences. For this example,

executions e1 and e2 are most similar because their total difference was the least of

these three.

Table 1: Example branch profiles from Figure 14 and their pair-wise differences.

e1 e2 e3 |e1− e2| |e2− e3| |e1− e3|
P1-l 0.9 0.75 0.5 0.15 0.25 0.4
P1-r 0.1 0.25 0.5 0.15 0.25 0.4
P2-l 0.6 0.4 1.0 0.2 0.6 0.4
P2-r 0.4 0.6 0.0 0.2 0.6 0.4

Total difference 0.7 1.7 1.6

Because executions e1 and e2 were found to be most similar, they are clustered

together. A new model represents the new cluster. The clustered model for the cluster

containing e1 and e2 is represented by the mean of the normalized branch profiles of

its two constituent members. Thus, for this example, for the branches {P1-l, P1-r,

P2-l, P2-r}, the clustered model would be {0.825, 0.175, 0.5, 0.5}. That cluster would

next be compared against the singleton cluster containing e3. Because there is only

one pair-wise difference, it would be found to be the minimum one and these two

models would be clustered together creating one large composite cluster containing

all e1, e2, and e3.

Conventionally, a good stopping criterion for the clustering, which is difficult

to determine [24], is based on the practitioners’ domain knowledge. Because our

domain is debugging, we have developed a technique that inputs the dendrogram and

computes the stopping criterion based on fault-localization information. We describe

this stopping criterion in the next section.
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4.2.1.2 Using fault localization to stop clustering

We use a fault-localization-based algorithm for this secondary assessment of the clus-

tering. This implementation uses the Tarantula technique to provide a prediction

of the location of the fault for each specialized test suite. A number of other fault-

localization techniques might also be used for this purpose (e.g., [48, 49]).

Figure 10 shows the process of grouping clusters until one cluster remains. Be-

tween these two extremes is where the richness in the representation lies. Unless

there is only one behavior represented by the test cases, at some point during this

clustering two clusters are merged that are not similar. In the context of fault lo-

calization, unless there is only one fault, at some point in the clustering process the

failed test cases that fail due to one fault are merged with failed test cases that fail

due to another fault. The goal of the technique is to stop the clustering process just

before this type of clustering occurs.

The technique identifies the clustering-stopping criterion by leveraging the fault-

localization results. The technique computes the fault-localization ranks (the ranking

of all statements in the program from most suspicious to least suspicious based on

the Tarantula heuristic) for each individual failed test case f (shown at the left side

of Figure 10) using a test suite of all passed test cases TP with that one failed test

case, {f}∪TP . Then, every time a new cluster Ci is created by merging two clusters,

the technique calculates the fault-localization ranks using the members of that cluster

and the passed test cases, (i.e. Ci ∪TP ). Thus, with regard to a dendrogram, such as

Figure 10, the technique computes fault-localization rankings at every merge point of

two clusters.

Using these fault-localization rankings at all merge points in the dendrogram, the

technique uses a similarity measure to identify when the clustering process appears

to lose the ability to find a fault—that is, when it clusters two items that contribute

to find a different suspicious region of the program. To measure the similarity of two
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fault-localization results, we first define the suspicious area of the program as the

set of statements of the program that are deemed “most suspicious” for each of the

results. This process is depicted in Figure 15.
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Figure 15: Similarity of fault-localization results is performed by identifying two
sets of interest Asuspicious and Bsuspicious and performing a set similarity.

To decide whether two fault-localization results identify the same suspicious region

of the program, we must establish the threshold that differentiates the most suspicious

statements from the statements that are not of interest. We call this threshold Most-

Susp. For example, we may assign the value of 20% to MostSusp—this means that

the top 20% of the suspicious statements in the ranking are in the most suspiciousness

set, and that the lower 80% are not of interest.

To compare the two sets of statements, we use a set-similarity metric called Jaccard

set similarity.3 The Jaccard metric computes a real value between 0 (completely

dissimilar) and 1 (completely similar) by evaluating the ratio of the cardinality of the

3We experimented with other similarity metrics including “Ulam’s distance” which considers the
order of the list, but found that the Jaccard metric performed as well as, and often better, than the
others, while being more efficient to compute.
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intersection of these sets to the cardinality of the union of these sets. The similarity

of two sets, A and B, is computed by the following equation:

similarity(A,B) =
|A ∩B|
|A ∪B|

(4.2.1)

To determine whether the two sets are similar or dissimilar, we establish the

threshold for the similarity metric. We call this threshold Sim. For example, we may

assign the value of 0.7 to Sim—this means that two sets of suspicious statements

will be in the same cluster if their similarity value is at or above 0.7. We envision

that in practice these thresholds, MostSusp and Sim, would be determined during

a training phase that shadows the debugging process.

To determine where to stop the clustering, the technique traverses the dendrogram

in reverse—starting at the final cluster. At each step, the technique examines the

merged clusters at that level, and computes the similarity, using Equation 4.2.1, of

the fault-localization rankings of the merged cluster with its constituent clusters.

When at least one of the constituent clusters is dissimilar to the merged cluster, the

traversal has found new information, and thus, the traversal continues (i.e., this is not

the stopping point for the clustering). For example, in Figure 10, the fault-localization

result of c1.1 is compared with the fault-localization result of each c2.1 and c2.2 using

Equation 4.2.1. If c1.1 is dissimilar to either c2.1 or c2.2, the traversal continues.

Our experience with our empirical evaluation (presented in Chapter 7) has led to

the observation that the typical result of this analysis is that the composite clusters

are often dissimilar to at least one of their constituents on the more clustered end

of the dendrogram (the right side of Figure 10), and that the composite clusters are

rarely dissimilar to their constituents on the less clustered end of the dendrogram

(the left side of Figure 10). At some point in between, the clustering begins to show

the constituent clusters beginning to differ from the composite clusters in terms of

their fault-localization results. This is the point at which we stop the clustering.

The algorithm to determine the stopping point for the profile-based clustering is
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presented in Figure 16. The algorithm DetermineStoppingPoint takes a den-

drogram D as input. It also takes the two thresholds MostSusp and Sim as input.

Lines 2-5 compute the Tarantula metrics, suspiciousness and confidence, for each

coverage entity in E and for each cluster in C. To do this, the algorithm calls the

AssignMetrics algorithm defined in Figure 2. Line 6 initializes a variable n to the

number of levels in the dendrogram D. Line 7 iterates over the levels in D, start-

ing from the most-clustered level (level 1) to the second-to-least-clustered level (level

n− 1). To illustrate this concept of “most clustered” and “least-clustered”, consider

again Figure 10. The most-clustered level is level 1 on the right side of the figure.

The least-clustered level is level 10 on the left side of the figure. In the algorithm,

Lines 8-10 assign p as the newly merged parent cluster for level l and c1 and c2 as the

two constituent, child clusters in level (l+1) for p. Lines 11-12 compute the similarity

of p with c1 and the similarity of p with c2. Lines 13-15 determine if p is similar to

both children, and if so, return the current level l as the stopping point.

To determine the similarity of the parent cluster p and the child clusters c1 and c2,

the function FaultSimilarity is used. The algorithm for this function is presented

Figure 16. FaultSimilarity takes two clusters Ci and Cj as input as well as the

MostSusp threshold. The clusters Ci and Cj contain the sorted list of coverage

entities, from most suspicious to least suspicious according to the AssignMetrics

algorithm (defined in Figure 2). Lines 2-3 create two sets si and sj which contain

the top MostSusp coverage entities from the sorted list of entities from each Ci and

Cj, respectively. Line 4 computes the similarity of these two sets using the Jaccard

similarity metric.
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Algorithm: DetermineStoppingPoint

Input : D: a dendrogram describing the clustering of test cases, along with
each cluster’s associated profile
MostSusp: percentage threshold distinguishing the most suspicious
entities from the entities not of interest
Sim: percentage threshold for the similarity metric

Output : l: the level in D for stopping the clustering
Declare: MC [E, TC ]: coverage matrix for cluster C, the program’s coverage

entities E, and C’s test cases TC

P : a list of boolean values [P1, P2, ..., Pm] specifying whether each
test case in T passed

begin1

foreach cluster C in D do2

AssignMetrics(MC , P)3

sort coverage entities E from most suspicious to least4

end5

n← number of levels in D6

for l← 1 to (n− 1) do7

p← merged parent cluster for level l in D8

c1 ← child cluster 1 of p in level (l + 1) in D9

c2 ← child cluster 2 of p in level (l + 1) in D10

δpc1 ← FaultSimilarity(p, c1, MostSusp)11

δpc2 ← FaultSimilarity(p, c2, MostSusp)12

if δpc1 > Sim and δpc2 > Sim then13

return l14

end15

end16

end17

Function: FaultSimilarity

Input : Ci: cluster with its ranked list of entities
Cj: cluster with its ranked list of entities
MostSusp: percentage threshold distinguishing the most suspicious
entities from the entities not of interest

Output : d: assigned distance between Ci and Cj

begin1

si ← top MostSusp most suspicious entities for Ci2

sj ← top MostSusp most suspicious entities for Cj3

d← si∩sj

si∪sj
4

end5

Figure 16: Clustering stopping-point algorithm.

57



4.2.1.3 Using fault-localization clustering to refine clusters

After the clusters are identified using profiles and fault-localization results, the tech-

nique performs one additional refinement. Occasionally, similar fault-localization re-

sults are obtained on multiple branches of a dendrogram. To merge these similar

clusters, the technique groups clusters that produce similar fault-localization results.

Consider, for example, Figure 17, the same dendrogram as Figure 10 except that

each branch is labeled with the fault to which it is focused.4 For example, at clustering

Level 10, six of the clusters produce fault-localization results that are focused at Fault

2, two produce fault-localization results that are focused at Fault 1, and one produces

fault-localization results that are focused at Faults 3 and 4. On the other side of the

dendrogram, at Level 1, the one cluster produces fault-localization results that are

focused at Fault 1.

In this dendrogram, clustering Level 5 gives the maximum clustering without

diminishing the clusters’ abilities to locate all faults. Note that for each of Faults 1,

3, and 4, there is one cluster that produces fault-localization results that target that

fault. However, for Fault 2, there are two such clusters. We want to merge these two

clusters to produce one cluster that targets Fault 2.

To identify the places where this refinement of the clustering can be applied,

the technique performs a pair-wise comparison of the fault-localization results of the

clusters at the stopping-point level of the dendrogram. For this comparison, we use

the Jaccard similarity parameterized for this task. We then merge the similar clusters.

For example, in Figure 10, consider that the stopping point of the clustering was

determined to be best at Level 5. A pair-wise similarity would be calculated for the

five clusters at this level by inspecting the similarity of the suspicious statements

that each targets. If it found that clusters c5.4 and c5.5 were similar, these would be

4Of course, this is hidden knowledge that the technique cannot know. However, I use it for
discussion of the goal of the refinement.
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Figure 17: Dendrogram with fault number of the best exposed fault.
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combined to produce the final set of fault-focusing clusters.

4.2.2 Complexity Analysis of Profile-based Clustering

The profile-based clustering performs a pair-wise comparison of the clusters. At the

beginning of the clustering, there is one singleton cluster for every failed test case.

There will be
(

t
2

)
comparisons, which is equivalent to t(t − 1)/2 comparisons. At

the second level in the dendrogram, there are t − 1 clusters (t − 2 singleton clusters

and one new merged cluster containing two test cases). The new cluster must be

compared against each other cluster, but the others do not need to be re-compared to

each other because those results can be stored and reused from the previous level in

the dendrogram. Thus, at this second level, there are an additional t−2 comparisons.

The number of comparisons for Level 2 through Level t (there are always exactly t

levels in the dendrogram) is (t − 2) + (t − 3) + (t − 4) + ... + 1 which is equal to

(t − 1)(t − 2)/2. For all levels of the dendrogram, the number of comparisons is

t(t− 1)/2 + (t− 1)(t− 2)/2 = t2− t+ 1. Each comparison requires that each branch’s

profile be differenced between the two compared clusters. Each branch’s difference

is a constant-time operation (specifically, a subtraction operation), with a cost C.

Suppose there are s branches in the code (a measure of the size of the program).

Each cluster comparison will require Cs time. Thus, the total time to perform all

comparisons and build the dendrogram is Cs(t2− t+ 1). The run-time complexity is

O(t2s).

To determine the stopping point of the clustering, the rankings from the fault-

localization technique must be computed for possibly every cluster represented in the

dendrogram. The dendrogram contains exactly t singleton clusters and t− 1 merged

clusters. For the 2t−1 clusters, the fault-localization technique must be performed on

the fault-focusing cluster that that cluster represents. If using Tarantula and the time

and complexity analysis from Section 3.5.1, each cluster’s fault-localization calculation
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requires s(t + C) time and complexity of O(tn), where s is the number of coverage

entities, t is the number of test cases, and C is a constant. The total time to generate

all the fault-localization results is (2t−1)∗s(t+C) which is O(t2s) complexity. Each

merge point is compared against both of the clusters that contributed to it. Because

there are t−1 merged clusters, there are 2(t−1) such comparisons. Each comparison

requires (1) the sorting of the coverage entities which in the worst case is O(s log s),

and (2) the set similarity calculation (using the Jaccard measure which is computed

with set intersection and set union operations) which is computed in O(s). The

complexity for the comparisons is O(t ∗ [(s log s) + s]) = O(ts log s). The complexity

of the determination of the stopping point is composed of the fault-localization result

computation and the comparisons. Thus, the total complexity for determining the

stopping point of the clustering is O(t2s+ ts log s). The overall run-time complexity

for building the dendrogram and determining the stopping point is O(t2s+ ts log s).

4.2.3 Clustering Based on Fault-localization Results

The second fault-focusing technique, shown as Technique 2 in Figure 9, uses only

the fault-localization results. The technique first computes the fault-localization sus-

piciousness rankings for the individual failed test cases, TF , and uses the Jaccard

similarity metric to compute the pair-wise similarities among these rankings. Then,

the technique clusters by taking a closure of the pairs that are marked as similar.

The algorithm to calculate the fault-localization-based clustering is presented in

Figure 18. The algorithm, ClusterFault, takes an initial set of clusters C as input,

as well as the MostSusp and Sim thresholds. Lines 2-5 initialize a graph G with

each cluster from C as a node, and compute for each cluster the ranking of entities

from most-suspicious to least-suspicious according to the AssignMetrics algorithm

(defined in Figure 2). Lines 7-14 iterate over all cluster pairs. For each cluster pair,

Line 10 computes a similarity measure using the FaultSimilarity function (defined
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in Figure 16). Lines 11-13 create an edge in graph G between the two clusters in the

cluster pair. Lines 16-22 compute the final set of clusters F by calculating the nodes

that are reachable from each other. All clusters that are reachable are grouped into a

cluster. Lines 16-22 iterates until the initial set of clusters C is empty. Line 17 takes

any cluster Ci from C. Line 18 computes the set S of clusters that are reachable from

Ci. Line 19 puts cluster Ci in S; the set S now forms one of the final clusters. Line 20

adds S to the final set of clusters F . Line 21 removes all clusters in S from C.

For example, consider Figure 19, which shows the same ten failed test cases de-

picted in Figure 10. Each failed test case is depicted as a node in the figure. The

technique combines each failed test case with the passed test cases to produce a test

suite. The technique uses Tarantula to produce a ranking of suspiciousness for each

test suite, and these rankings are compared using the Jaccard metric in the same

way described in Sections 4.2.1.2 and 4.2.1.3. The technique records the pairs of

clusters that are identified as similar (above the similarity threshold). In Figure 19,

a pair-wise similarity between failed test cases is depicted as an edge. The technique

produces clusters of failed test cases by taking a closure of the failed test cases that

were marked as similar. Thus, any test case that is reachable from another test case

will be in the same cluster. Using the example in Figure 19, test case nodes that are

reachable over the similarity edges are clustered together. In this example, failed test

cases f1 and f2 are combined to a cluster, f6, f7, f8, f9, and f10 are combined to

a cluster, and f3, f4, and f5 are each singleton clusters.

4.2.4 Complexity Analysis of the Fault-Localization-based Clustering

The fault-localization clustering technique performs a pair-wise comparison of each

pair of clusters. At the beginning of the clustering, there are t (where t is the number

of failed test cases) fault-localization results. Each of these fault-localization results

was computed by calculating the suspiciousness and confidence of each coverage entity.
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Algorithm: ClusterFault

Input : C: a list of initial clusters [C1, C2, ..., Cn]
MostSusp: percentage threshold distinguishing the most suspicious
entities from the entities not of interest
Sim: percentage threshold for the similarity metric

Output : F : the set of final clusters
Declare: MC [E, TC ]: coverage matrix for cluster C, the program’s coverage

entities E, and C’s test cases TC

P : a list of boolean values [P1, P2, ..., Pm] specifying whether each
test case in T passed
G: an empty graph of cluster nodes

begin1

foreach cluster Ci in C do2

create a node for Ci in G3

AssignMetrics(MC , P)4

sort coverage entities E from most suspicious to least5

end6

n← |C|7

for i← 1 to (n− 1) do8

for j ← i to n do9

δ ← FaultSimilarity(Ci, Cj, MostSusp)10

if δ > Sim then11

create an undirected edge in G from Ci to Cj12

end13

end14

end15

while C 6= ∅ do16

Ci ← a cluster from C17

S ← set of all clusters reachable from Ci in G18

S ← S ∪ {Ci}19

F ← F ∪ {S}20

C ← C − S21

end22

end23

Figure 18: Fault-localization-based clustering algorithm.
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Figure 19: Graph where each node represents a failed test case and edges represent
pairs that are deemed similar. Clusters are formed by all nodes that are mutually
reachable.

The amount of effort to generate each of these fault localization results is linear in

the size of the program in terms of the number of coverage entities and linear in the

size of the test suite. Let s represent the number of coverage entities in the program.

As shown in Section 3.5.1, the Tarantula algorithm’s complexity is O(ts). Because

the algorithm has to calculate t such results, the complexity of this first stage is

O(t2s). After this, the algorithm sorts the coverage entities from most suspicious

to least suspicious. To sort over all fault-localization results, this step would be

O(ts log s). Finally, the algorithm performs a pair-wise comparison of these results.

Just like the first level of the profile-based clustering, the algorithm performs O(t2)

such comparisons. Each comparison will require O(s) steps to perform the Jaccard

distancing. The overall run-time complexity is O(ts+ts log s+st2) = O(t2s+ts log s).

4.3 Parallel Approach to Debugging

A developer can inspect a single failed test case to find its cause using an existing

debugging technique (e.g., [17, 78]), or she can utilize all failed test cases using a
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fault-localization technique (e.g., [42, 43, 48, 49]). Regardless of the technique cho-

sen, after a fault is found and fixed, the program must be retested to determine

whether previously failed test cases now pass. If failures remain, the debugging pro-

cess is repeated. We define this one-fault-at-a-time mode of debugging and retesting

sequential debugging.

In practice, however, there will typically be more than one developer available

to debug a program, particularly under urgent circumstances such as an imminent

release date. Because, in general, there may be multiple faults whenever a program

fails on a test suite, an effective way to handle this situation is to create parallel work

flows so that multiple developers can each work to isolate different faults, and thus,

reduce the overall time to a failure-free program. Like the parallelization of other

work flows, the principal problem of providing parallel work flows in debugging is

determining the partitioning and assigning of subtasks. The partitioning requires an

automated technique that can detect the presence of multiple faults and map them

to sets of failed test cases (i.e., clusters) that can be assigned to different developers.

To parallelize the debugging effort, we devised a technique that we call parallel

debugging that is an alternative to sequential debugging. Parallel debugging auto-

matically partitions the set of failed test cases into clusters that target different faults,

called fault-focusing clusters, using behavior models and fault-localization informa-

tion created from execution data. Each fault-focusing cluster is then combined with

the passed test cases to get a specialized test suite that targets a single fault. Con-

sequently, specialized test suites based on fault-focusing clusters can be assigned to

developers who can then debug multiple faults in parallel. The resulting specialized

test suites might provide a prediction of the number of current, active faults in the

program.

The main benefit of this technique for parallel debugging is that it can result

in decreased time to a failure-free program; the empirical evaluation (in Chapter 7)
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supports this claim for the subject program used in the evaluation. When resources

are available to permit multiple developers to debug simultaneously, which is often the

case, specialized test suites based on fault-focusing clusters can substantially reduce

the time to a failure-free program while also reducing the number of testing iterations

and their related expenses. Another benefit is that the fault-localization effort within

each cluster is more efficient than without clustering. Thus, the debugging effort

yields improved utilization of developer time, even if performed by a single developer.

Our empirical evaluation shows that, for the subject used, using the clusters provides

savings in effort, even if debugging is done sequentially. A third benefit is that the

number of clusters is an early estimate of the number of existing active faults.

A final benefit is that the technique automates a debugging process that naturally

occurs in current practice. For example, on bug-tracking systems for open-source

projects, multiple developers are assigned to different faults, each working with a set of

inputs that cause different known failures. The technique improves on this practice in

a number of ways. First, the current practice requires a set of coordinating developers

who triage failures to determine which appear to exhibit the same type of behavior.

Often, this process involves the actual localization of the fault to determine the reason

that a failure occurred, and thus a considerable amount of manual effort is needed.

The techniques can categorize failures automatically, without the intervention of the

developers. This automation can save time and reduce the necessary labor involved.

Second, in the current practice, developers categorize failures based on the failure

output. The techniques look instead at the execution behavior of the failures, such as

how control flowed through the program, which may provide more detailed and rich

information about the executions. Third, the current practice involves developers

finding faults that cause failures using tedious, manual processes, such as using print

statements and symbolic debuggers on a single failed execution. Our techniques

can automatically examine a set of failures and suggest likely fault locations in the
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program.

4.4 Sequential and Parallel Debugging

The sequential and parallel debugging modes, described in Section 4.3, are analo-

gous to many types of sequential and parallel work flows. One such example is the

parallelization of computation on multi-processor computers. On a multi-processor

computer, a task is divided into subtasks that are processed simultaneously with co-

ordination between the processors. There is a cost of this coordination, and thus, the

total processing effort is often higher in the parallel computation than the sequential

one. However, because of better utilization of the processors and the divide-and-

conquer strategy, the task can often complete faster when computed in parallel.

To illustrate, consider Figures 20 and 21, which represent sequential and parallel

computation of a task, respectively. In the figures, the solid arrows represent the

cost of the subtasks, and the dotted arrow in Figure 21 represents the overhead of

performing the tasks in parallel. The figures illustrate that, whereas there is some cost

associated with the parallelization of the task, with parallel processing, the overall

time to complete the task can be much less than in the sequential processing of

the task. Also, Figure 20 shows that in the sequential processing, only one of the

processors is utilized in the computation of this task.

Subtask 1 Subtask 2 Subtask 3

Time

Processor 1

Processor 2

Processor 3

Figure 20: Sequential processing of a task.
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Subtask 1

Subtask 2

Subtask 3

Time

Processor 1

Processor 2

Processor 3

Figure 21: Parallel processing of a task.

Figures 20 and 21 illustrate the two dimensions of this parallelization—the com-

pletion time of the task and the degree of parallelization that was accomplished for

the task. The “width” of these figures depicts the time dimension, and the “height”

depicts the parallelization dimension. In Figure 20, the width shows that the task

took a relatively long time to complete, and the height shows that there was little

parallelization of the task—in this case, there was no parallelization of the task. In

Figure 21, the width shows that the task took a relatively short time to complete,

and the height shows that the task was parallelized to a large degree—in this case,

the task was fully parallelized. For the parallelization of the debugging task, we can

also measure these two dimensions. The completion of the debugging task can be

measured as the time to debug the faults causing the failures, and the degree of par-

allelization of the debugging task can be measured as the number of developers that

can simultaneously debug the program.

Like the parallelization of a computation task, some debugging subtasks, such as

locating one fault, can dominate other tasks. For example, a program that contains

four faults may cause a number of test cases to fail. Upon inspection, we may find

that all of the failed test cases fail due to one fault. After that dominating fault

is found and fixed, the program is re-tested. This re-testing reveals that there are

still a number of failed test cases, but these failed test cases are now caused by the

remaining three faults. This phenomenon is illustrated in Figure 22. In the example,
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Fault 1 must be located and fixed before Faults 2, 3, and 4 can be located and fixed

because all failed test cases fail due to Fault 1. Only after Fault 1 is fixed do Faults

2, 3, and 4 manifest themselves as failures.

Fault 1 Fault 2

Fault 3

Fault 4

Time

Developer 1

Developer 2

Developer 3

Figure 22: Fault 1 dominates Faults 2, 3, and 4.

Unlike the parallelization of a computation task, the cost for each fault subtask

can change as a result of the parallelization. In fact, we found empirically that the

fault subtasks are often more efficient in the parallelized version. In the parallelized

version, the test suite for each fault subtask is generated specifically for that fault.

Thus the fault localization is often more effective at locating that fault than the

non-specialized, full test suite.

Consider the example presented in Figure 5 on page 40. In the traditional, se-

quential mode of debugging, the developer would be aware that there were four failed

test cases, but would be unaware of the number of faults that caused them. Thus, a

typical, sequential process that she follows might be:

1. Examine the statement at the highest level of suspicion: statement 10. She

would realize that statement 10 was, in fact, faulty and would correct the bug.

2. Rerun the test suite to determine whether all of the faults were corrected. She

would witness that two of the failed test cases now pass and two of the formerly

failed test cases still fail. Figure 23 depicts the coverage and new, recomputed

fault-localization results.
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      int x,y,z,m;

     mid() {

  1:  read("Enter 3 numbers:",x,y,z);

  2:  m = z;

  3:  if (y<z)

  4:     if (x<y)

  5:        m = y;

  6:     else if (x<z)

  8:  else

  9:     if (x>y)

  11:    else if (x>z)

  12:       m = x;

  13: print("Middle number is:",m);

     }

  7:        m = y; // fault1. correct: m=x

  10:       m = y; // fault2 corrected
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Figure 23: Example mid() and all test cases after fault2 was located and fixed.

3. Examine the statement at the highest level of suspicion: statement 7. She would

realize that it was, in fact, faulty and would correct the bug.

4. Rerun the test suite. In this case, she would witness that all test cases pass.

Consider again the example in Figure 5. To demonstrate the utility of parallel

debugging, assume that there exists a technique that can automatically determine

that there are two distinct types of failures in this program and can automatically

cluster them. The groupings of “Cluster 1” and “Cluster 2” are depicted in Figure 5.

Given this clustering, a test suite can be generated for each cluster by combining all

passed test cases with each cluster, and the fault-localization results can be calculated

on this new, specialized test suite. The specialized test suites are shown in Figures 6

and 7. Each of these test suites and fault-localization results can be given to a different

developer to debug. A parallel process that they follow in this circumstance might

be:
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1. Examine the statements at the highest level of suspicion: statement 7 for one

developer and statement 10 for the other developer. They would each realize

that those were, in fact, faulty and would correct them.

2. Rerun the test suite to determine if all of the faults were corrected. In this case,

they would witness that all of the test cases pass.

This example demonstrates how an automated technique may reduce the overall

time to achieve a failure-free program. Also notice that fault1 on Statement 7 was

made more noticeable by the removal of the “noise” generated by fault2 on Statement

10 without the need to actually correct fault2.

4.5 Related Work

There are two broad areas of related work: the clustering of executions and the

determination of which developer would be responsible for each fault-localization

result. This section describes the related work in each of these areas.

4.5.1 Clustering Executions

The main component of the technique is the automatic clustering of failed executions

according to their causes. Dickinson and colleagues show that clustering of executions

can isolate failed executions from passed executions [22]. In later work, Podgurski

and colleagues show that profiles of failed executions can be automatically clustered

according to similar causes or faults [57]. Their approach depends on a supervised

classification strategy informed by multivariate visualizations that assist the practi-

tioner. In contrast, our technique is completely automated and attempts to cluster

failed executions according to their root cause by combining information from exe-

cution profiles with information about the relative failure-causing suspiciousness of

lines of code.
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Bowring and colleagues present a technique to cluster executions using discrete-

time Markov chains [12]. The goal of this work is to automatically classify future

executions based on training information using active learning. The technique and im-

plementation by Bowring and colleagues were extended and described in Section 4.2.1

and used for the experimentation described in Chapter 7.

Zheng and colleagues present an approach to finding bug predictors in the presence

of multiple faults [79]. The authors show that test runs can be clustered to give a

different bug-predictor profile or histogram. They also present a result that is similar

to my findings: that some bug predictors dominate others—they call these predictors

super bug predictors. We found similar results, although from a different perspective:

we found that some faults prevent others from being active. Beyond this, our work

differs from theirs in that our work presents a methodology for debugging multiple

faults in parallel. Also, our work presents an experiment and metrics (in Chapter 7)

describing the costs of debugging multiple faults.

Liu and Han present two pair-wise distance measures for failed test cases [50].

They demonstrate the difference between a profile-based distance measure (usage

mode) and fault-localization-based distance measure (failure mode) by means of

multidimensional-scaling plots. For the subject programs and plots that they present,

they propose that the fault-localization-based distance measure is better able to iso-

late failures caused by different faults. Our work differs from theirs in a number of

ways. First, unlike their multidimensional plots of executions, our work provides an

automatic way to cluster failed test cases without interpretation by the developer.

Second, our experiments do not confirm their finding that profile-based distances

are inferior to fault-localization-based distances. Although, we cannot generalize to

other programs, our experiments show that each type of clustering may have its own

strengths. Finally, their work targets a sequential-mode of debugging by removing

faults that are creating noise making it difficult to find the most dominant fault at
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each iteration. Our work aims to enable the parallelization of the debugging task.

On the topic of clustering executions, note that the clustering of failures is related

to a standard practice used by many developers. This failure clustering can be seen by

considering one of many online bug-tracking systems. In such a bug-tracking system,

failure reports are often assigned to different developers. Additionally, some failure

reports are marked as duplicates of other failure reports. These duplicates, along with

the failure report that they duplicate, are simply a manual form of clustering. This

manual form of clustering requires that a coordinating developer must identify some

characteristics that uniquely identify failures caused by different faults. In fact, often

the coordinating developer must actually locate the fault that is causing the failures

before she can group and then assign them. Our fully automatic technique can help

with this manual approach by suggesting (1) likely fault locations, (2) when failure

reports are duplicates, and (3) when marked duplicates may be incorrectly marked

this way.

4.5.2 Determining Responsibility

On the topic of determining responsibility for fixing faults, Ren and colleagues [59]

present the Chianti system that suggests which change to the program likely caused

the failures. Anvik and colleagues [5] use source-code change management logs to

suggest which developer might be most appropriate to address a particular failure.

This area of research for determining responsibility for fixing faults is orthogonal to

our goals for debugging in parallel. However, we believe it is complimentary; such

techniques might work well along with the partitioning of the failures.
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CHAPTER V

VISUALIZATION

Comprehension of fault-localization results may be difficult due to the amount of data

that is produced by a technique like Tarantula. This chapter presents a visualization

that is designed to aid comprehension and scalability of the technique. The chapter

first presents some motivation for the visualization. The chapter then presents the

color metaphor that is used to present the suspiciousness and confidence metrics.

The chapter next describes representations of the program being debugged at various

levels of abstraction. The chapter then describes how the color applies to each repre-

sentation level. The chapter next introduces a visualization of the test suite. Finally,

the chapter describes how the different components of the visualization interact.

5.1 Motivation for Visualization

Chapter 3 presents the suspiciousness and confidence metrics that are used to pro-

vide a ranking of the coverage entities in the program to help guide the developers’

inspection for the purposes of debugging. To make this information more accessible

to the developer, we designed a visualization that represents these metrics and the

program to be debugged. The suspiciousness and confidence values that are assigned

to each coverage entity in the program can be difficult to interpret by the developer

due to the possible large number of such entities. Also, the relationships among

coverage entities with high suspiciousness values may be difficult for a developer to

comprehend given only a large list of suspiciousness and confidence values. A ranking

of coverage entities, from most suspicious to least suspicious, may also be difficult

for a developer to interpret. For example, the developer may be presented with a

listing of statement numbers that represents the ranking of those statements from

74



most suspicious to least suspicious. This listing would contain as many entries as

there are statements in the program. The developer would be forced to find those

statements in the program, one-by-one, without any context as to the suspiciousness

values for other, related statements.

For these reasons, we created a number of visual metaphors that allow the Taran-

tula technique’s results to be displayed to the developer in a way that (1) presents the

suspiciousness and confidence values in an intuitive way, (2) scales to large programs,

(3) enables a developer to interact and explore the fault-localization results, and (4)

provides both a high-level, global view of the software as well as a low-level, local

view.

5.2 Color Metaphors for the Suspiciousness and Confi-
dence Metrics

Our visualization utilizes a continuous color (or hue) spectrum from red through

yellow to green to color each coverage entity in the program under test. This color

dimension maps to the suspiciousness metric. The intuition is that entities that are

primarily executed by failed test cases (and are thus, highly suspicious of being faulty)

are colored red to denote “danger;” entities that are executed primarily by passed

test cases (and are thus, not likely to be faulty) are colored green to denote “safety;”

and entities that are executed by a mixture of passed and failed test cases and thus,

do not lend themselves to suspicion or safety, are colored in the yellowish range of

colors between red and green to denote “caution.” This color mapping uses a “traffic

light analogy.” We chose this as the default color mapping because people are already

familiar with these colors and because of its intuitive meaning.

We use the “HSB” color model which describes color in terms of hue, saturation,

and brightness. Of these three color dimensions, we use hue and brightness—the

saturation is fixed at 100%. In particular, the hue of a coverage entity, e, is computed

by the following equation:
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hue(e) = 1− suspiciousness(e) =

passed(e)
totalpassed

passed(e)
totalpassed

+ failed(e)
totalfailed

=
%passed(e)

%passed(e) + %failed(e)

(5.2.1)

In Equation 5.2.1, passed(e), failed(e), totalpassed, totalfailed, %passed(e), and

%failed(e) have the same meaning as those given for Equation 3.3.1. We subtract

the suspiciousness value (which varies from 0 to 1) from the value 1 because most

computer color models place the red hue at 0 and the green hue at some value above

that (often 0.33 or 33%).

The Tarantula tool uses the color model based on a spectrum from red through

yellow to green. To achieve the range from 0 to 0.33 as many computer color models

dictate for this spectrum, we multiply the result of Equation 5.2.1 by the value of

0.33 (or whatever the computer color model specifies for the green hue). However,

the resulting hue(e) can be scaled and shifted for other color models. The scaling or

shifting may be useful for people that have different types of color vision deficiencies.

The most common type of color vision deficiency affects the person’s ability to dif-

ferentiate red and green. Thus, for these people it would be useful to have a way to

shift the spectrum.

In addition, another color dimension maps to the confidence metric. The confi-

dence is visually encoded in the brightness of an entity. Bright entities represent high

confidence and dark entities represent low confidence.

In particular, the brightness of a coverage entity, e, is computed by the following

equation:

brightness(e) = confidence(e)

= max

(
passed(e)

totalpassed
,
failed(e)

totalfailed

)
= max

(
%passed(e)

100
,
%failed(e)

100

)
(5.2.2)
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In Equation 5.2.2, the variables are the same as those defined above for Equation 5.2.1.

Based on our experience and due to the limitations of computer displays and human

perception, we also created a lower bound on the brightness value. Users often cannot

perceive the difference between a pure black (brightness = 0) and a low value of

brightness (e.g., brightness = 0.2. Thus, according to the limits of the users and the

computer display, in practice we scaled the brightness as such

scaled brightness(e) = (range ∗ brightness(e)) + (1− range) (5.2.3)

where range is defined as the range of perceptible brightness values. For example, if

range were defined as 0.7, the brightness value would vary from 0.3 to 1.

5.3 Representation Levels

To investigate the program-execution data efficiently, the user must be able to view

the data at different levels of detail. This visualization approach represents software

systems at three different levels: statement level, file level, and system level.

We chose to focus attention on two-dimensional visualization techniques rather

than three-dimensional techniques to minimize the interaction required by a user to

see all dimensions of the display. With this approach, the user is not required to rotate

the display to reveal obscured features as is often necessary with three-dimensional

visualizations.

5.3.1 Statement Level

The lowest level of representation in the visualization is the statement level. At this

level, the visualization represents source code, and each line of code is suitably colored

(in cases where the information being represented does involve coloring). Figure 24

shows an example of a colored set of statements in this view. The statement level is the

level at which users can get the most detail about the code. However, directly viewing
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the code is not efficient for programs of non-trivial size. To alleviate this problem,

the visualization approach provides representations at higher levels of abstraction.

... 
finallyMethod.setName( 
    handlers.getFinallyNameForCFGStartOffset(finallyStartOffsets[i] )); 
if ( numFinallyBlocks != 0 ) { 
    finallyMethod.setType(Primitive.valueOf(Primitive.VOID)); 
    finallyMethod.setContainingType(parentMethod.getContainingType()); 
} 
finallyMethod.getContainingType().getProgram().addSymbol( finallyMethod ); 
finallyMethod.setDescriptor( new String("()V") ); 
finallyMethod.setSignature( parentMethod );
...

Figure 24: Example of statement-level view.

5.3.2 File Level

The representation at the file level provides a miniaturized view of the source code.

This technique is similar to the one introduced by Eick and colleagues in the SeeSoft

system [8, 27]: the technique maps each line in the source code to a short, horizontal

line of pixels. Figure 25 shows an example of a file-level view. This “zoomed-away”

perspective lets more of the software system be presented on one screen. Colors

of the statements are still visible at this scale, and the relative colorings of many

statements can be compared. This visualization represents each line of code with a

line of pixels that is proportional to the length of the line of code, and the indentation

is preserved. This approach presents the source code in a fashion that is intuitive and

familiar because it has the same visual structure as the source code viewed in a text

editor. This miniaturized view can display many statements at once. However, even

for medium-size programs, significant scrolling is necessary to view the entire system.

For example, the subject program for one of our feasibility studies, which consists

of approximately 60,000 lines of code, requires several full screens to be represented

with this view. Monitoring a program of this size would require scrolling back and
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forth across the file-level view of the entire program, which may cause users to miss

important details of the visualization. The scale limitations of this visualization

motivates a higher level of abstraction, described in the next section.

Figure 25: Example of file-level view.

5.3.3 System Level

The system level is the most abstracted level in my visualization. The representation

at this level uses the treemap view developed by Shneiderman [69] as well as extensions

to this view developed by Bruls and colleagues [14]. We chose to use treemaps because

they are especially effective in letting users spot unusual patterns in the represented

data and can scale to programs in the millions of lines of code.

In the development of the system-level view, we considered other visualization

techniques such as Stasko and Zhang’s Sunburst visualization [70] or Lamping, Rao,

and Pirolli’s Hyperbolic Tree visualization [46]. These techniques, however, focus
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more on the hierarchical structure of the information they represent, and use a con-

siderable amount of screen space to represent such structure. For our application, the

hierarchical structure of the program modules is less important than representing as

much information as possible at each level of the hierarchy. With treemaps, the entire

screen space can be used to represent the color information for the hierarchical level

being considered (e.g., a package or the classes in a package) without using valuable

screen space to encode redundant information about nodes’ parents. The hierarchical

structure is used only to group nodes belonging to common branches of the tree.

For the system-level view, the tool builds a tree structure that represents the

system. The root node represents the entire system. The intermediate non-leaf

nodes represent modularizations of the system (e.g., Java packages). The leaf nodes

represent source files in the system. The treemap visualization is then applied to this

tree. The size of the leaf nodes is proportional to the number of executable statements

in the source file that it represents.

5.4 Coloring for Different Representation Levels

Each statement in the program is assigned a color according to the hue and brightness

variables defined previously, but the coloring applies differently to the different visual

representation levels. For the statement-level and the file-level representations, no

mapping is necessary: for each statement, the color (i.e., hue and brightness) of

the statement is used to color the corresponding line of code in the statement-level

representation and the corresponding line of pixels in the file-level representation.

For the system-level representation, there is no one-to-one mapping between state-

ments and visual entities. Therefore, we defined a mapping that maintains color-

related information in the treemap view. Each leaf node (i.e., rectangle) in the

treemap view represents a source file.

To map the color distribution of the statements in a source file to the coloring of
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the node that represents that source file, we developed a treemap-like representation

to further partition each node (in this sense, we are embedding a treemap within each

treemap node). For example, if half the statements in a source file were colored bright

red, and the other half were colored dark green, the treemap node would be colored

as such—half of it would be colored bright red and half of it would be colored dark

green.

Using a traditional treemap algorithm for coloring the nodes would likely cause the

colors to be laid out in a different fashion for different nodes. For example, suppose

the colors assigned to the statements in source file A were evenly distributed among

four colors: bright red, dark red, bright green, and dark green. To color the node

in the treemap view, we may use a traditional treemap algorithm to further divide

node A (that represents source file A) into four equally-sized blocks, each colored

by one of the specified colors. However, in a traditional treemap algorithm, relative

placement of nodes is not guaranteed. So, in node A, the bright red block may be

placed in the upper-right corner, but in node B, which represents similar proportions

of colored statements, the bright red block may be placed in the lower-left corner. In

a treemap view that contains many nodes, a non-uniform appearance of the nodes

will likely cause confusion as to where the boundaries of the nodes lie. Therefore,

we chose to keep the same layout of colors within each node while still showing the

color distribution in a treemap-like fashion. The layout is characterized by varying

the hue across the horizontal axis and by varying the brightness across the vertical

axis. Figure 26(b) shows an example of this layout, where hue ranges from green,

through yellow, to red on the horizontal axis, and the brightness varies from dark to

bright on the vertical axis.

This layout determines the relative placement of the colors within each treemap

node, but does not define how the colors are mapped to colors assigned in the

statement-level or file-level representations. Thus, we defined a technique for skewing
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Figure 26: Example that illustrates the steps of the treemap node drawing.
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the colors of Figure 26(b) to present the appropriate proportions of colors assigned

while preserving the layout of the colors.

I will explain this technique while illustrating it on the example in Figure 26.

Assume that the sample file-level view shown in Figure 26(a) is a source file composed

of a set of statements, with related colorings, to be mapped into a treemap node. The

skewing of the color layout is performed in four steps. The first step plots the color

of each statement onto a coordinate system with hue varying across the horizontal

axis and brightness varying across the vertical axis. For the example, this step would

result in the points plotted on the hue/brightness space in Figure 26(b), in which

each point represents a statement in Figure 26(a) positioned at the appropriate hue

and brightness.

The second step segments the space horizontally and vertically into equal-sized

blocks to create a discrete bucket for each block, so as to categorize the statements’

colors. This segmentation is shown in Figure 26(c). For the sake of simplicity, this

example uses only four segments vertically and four segments horizontally, resulting

in sixteen blocks; however, in a real application, this could be tuned to a finer-

grained categorization. After the segmentation is complete, each block is drawn with

a representative color.

The third step determines, for each row, the width of each block. To this end, the

technique computes the ratio of the number of statements in the block to the number

of statements in the entire row. The width of each block is proportional to this ratio.

The widths of the blocks for the example are shown in Figure 26(d). The technique

assigns the leftmost block in the first row 5/6th of the total width of the node because

five of the six points in the row fall into this block. Likewise, the coloring technique

assigns the rightmost block the remaining 1/6th of the width of the node. The middle

two blocks in the first row are eliminated (i.e., they are assigned width 0) because

they contain no points. Note that the technique assigns no widths for the second row
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because no points fall into this row.

The final step determines the height of each row by computing the ratio of the

number of statements in the row to the number of statements in the entire node. The

heights of the blocks for the example are shown in Figure 26(e), which is the final

representation of the node. The technique assigns the first row 6/10th of the total

height of the node because six of the ten points in the node fall into this row. The

last two rows are each assigned 2/10ths of the total height of the node.

This coloring technique results in blocks that are proportional in size to the number

of statements plotted in them and, in addition, maintains the layout of the color blocks

for each node. For example, the brightest green block, which contained five of the

ten statements, results in half of the total area of the node (5/6 ∗ 6/10 = 1/2).

5.5 Representation of Executions

To represent executions, we defined an execution bar : a rectangular bar, of which

only a subset is visible at any time. The bar consists of bands of the same height

of the bar but of minimal width. Minimal width refers to a width that is as little

as possible but can still be seen. The actual width depends on the characteristics of

the graphical environment, such as the size and resolution of the display. Figure 27

shows a simple example of an execution bar.

Figure 27: Example of execution bar.

Each band in the execution bar represents a different execution of the program

and is colored according to the pass/fail status of the test case that it represents:

green for a passed test case and red for a failed test case.
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5.6 Integration of Visual Components

Visual components interact with each other to let the user navigate and explore the

information displayed. For example, if the user selects one or any subset of test cases

in the execution bar, the other views update with the results of Tarantula performed

on only those test cases. If the user clicks on any of the components in any of the

views, the other components focus on that component.

The integration and layout of these component is shown in the screen capture

presented in Figure 28. In this figure, the statement-level view is in the lower left, the

file-level view is in the center-left, and the system-level view is in the center-right. In

addition to these major components, the tool contains components for convenience

and informational purposes. These include an interactive color legend, a statistics

pane, a color slider, and menus to control the color-space.

First, in the lower right of Figure 28 is an interactive color legend. The color

legend is drawn as a two-dimensional plane with hue varying on the horizontal axis

and brightness varying on the vertical axis. The color legend includes a small black dot

at each position in the color space occupied by a source-code statement. By selecting

a bounding rectangle in this region around some points, the user can modify (filter)

the main display area, showing and coloring only statements having the selected color

and brightness values.

Second, immediately above the interactive color legend in Figure 28 is the statistics

pane. This pane shows some information about the last statement that was moused-

over in the file-level or source-level views. For example, in Figure 28, the mouse was

last placed over line 1066 of jaba/graph/cfg/CFGImpl.java. This statement was

executed by 90 of the 707 test cases. Twenty four of the 707 test cases failed, and 20

of them executed this statement.

Third, in the upper left corner of the interface in Figure 28 is a slider that controls

the grayscale brightness of lines not being drawn using the red-yellow-green mapping
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Figure 28: Screenshot of the Tarantula tool.
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(comments, unexecuted lines, filtered lines, etc.). If the slider is moved to the left, the

unexecuted and unexecutable statements become darker, letting the user focus only

on the executed statements. If the slider is moved to the right, the unexecuted and

unexecutable statements become brighter, letting the user see the full structure of

the code. In Figure 28, the slider is positioned to show those statements not involved

in the mapping as light gray.

Fourth, in the upper right corner, below the execution bar, are some controls to

filter the test cases that are used. These controls provide convenient access to explore

how different subsets of the test suite affect the Tarantula results.

And finally, under the “Preferences” menu are controls to change the color-space

used. This may be especially useful for color-blind users.
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CHAPTER VI

IMPLEMENTATION OF THE TARANTULA SYSTEM

To evaluate the techniques presented in this dissertation, we implemented a number

of tools. This chapter presents the tools that were developed to enable the techniques

described in the previous chapters. First, this chapter provides an overview of the

implementation. Then, it presents the tools that are used to provide dynamic execu-

tion information about the test cases. Next, it describes the implementations for the

clustering of failed test cases. The chapter then describes the components that were

developed to enable the visualization of the fault-localization results. The chapter

next describes the ranking that was implemented for the purposes of evaluation. Fi-

nally, the chapter describes how the fault-localization techniques were implemented

in a way that enabled the localization of faults in deployed software.

6.1 Implementing Tarantula: An Overview

The Tarantula implementations were primarily written in Java with various support-

ing tools and scaffolding written in a variety of languages such as Perl, Python, Bash,

and C#. Figure 29 shows a high-level data flow diagram of the Tarantula System.

Figure 30 provides a legend for the visual components used in Figure 29. The system

is composed of a number of processes. First, the program is instrumented so that

it produces dynamic coverage information upon execution. This program is either

executed with the test suite, or deployed to clients. The Gammatella subsystem of

Tarantula handles the deployment and capture of the data from the clients in the

field. Regardless of whether the dynamic information comes from the in-house test

suite, or the in-the-field client executions, the information is collected and processed.

The execution information can be sent directly to the component that computes the
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suspiciousness and confidence metrics, or it can be first sent to the clustering subsys-

tem. For the clustering subsystem, the failed test cases are input to the clustering

tool, which outputs the clusters of failed test cases, i.e. fault-focusing clusters. These

fault-focusing clusters along with the passed test cases are used to create specialized

test suites. The specialized test suites are used to compute the suspiciousness and

confidence metrics. The values of these metrics are used to either compute the ranking

of the coverage entities (for use in experimentation) or to generate visualizations of

the results (for use by developers). The components of this diagram will be described

in the next section.

6.2 Instrumenting and Coverage Processing

The prototype implementations of Tarantula have used instrumentation to provide

statement coverage. We integrated it with a few different instrumentation tools. We

integrated it with the statement-coverage instrumenter that is built into the Aris-

totle Analysis System [6]. The Aristotle Analysis System provides both static- and

dynamic-analysis tools for programs written in C. It uses the Edison Design Group’s

(EDG) C front-end compiler [26] to parse the program and produce syntax trees.

The instrumenter, il-st, also uses the EDG tools to provide support for program

modification. This instrumenter transforms the syntax tree that EDG produces to

include basic-block level probes. The instrumenter then utilizes functionality built-

into the EDG tool that permits source code to be generated from the syntax tree.

The resulting generated source code is then compiled and executed by the test suite.

Each execution of the program produces a new coverage file that represents which

entities were executed during that execution. All of the coverage files for a test suite

are then input and parsed by the Tarantula tool.

Another version of the Tarantula tool uses instrumentation that was provided by
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the GNU C compiler, gcc [30]. The gcc tool provides functionality that lets it in-

sert coverage probes into the binary machine code. When gcc is provided with the

“-ftest-coverage -fprofile-arcs” arguments, it compiles the source code into an

executable file that also has the coverage probes included. When the executable file

is executed, it records which statements and branches were executed and the number

of times each was executed during that execution. After the execution terminates,

the profiling information is output to a binary, machine-readable file. The instru-

mentation provides cumulative profiling information—that is, the profiling represents

the sum of all executions thus far. To capture the dynamic information for each

execution, individually, the profiling-output information is copied, and the execution

profile counters are then reset to zero. Another supporting tool, gcov [31], that is

included in the gcc software package, enables the reading of the files that contain the

profiling information. The gcov tool reports for each statement in the program one
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of three possible results: (1) the statement is unexecutable (for example, it is a com-

ment, variable declaration, or blank line); (2) the statement is executable, but it was

not executed; or (3) the statement was executed n times. When parsing the output

of gcov, Tarantula translates the profiling information to coverage information: if a

statement is executed n times and n > 0 it reports that that statement was executed.

Another version of the Tarantula tool uses instrumentation that was provided by

the InsECT (for Instrumentation, Execution, and Coverage Tool) instrumenter [16].

InsECT instruments programs that are written in Java. It takes the compiled byte-

code file as input, inserts probes, and outputs a modifies byte-code file that can be

executed by the Java virtual machine. InsECT is capable of providing instrumenta-

tion of various coverage entities. Tarantula uses the statement-level instrumentation

capabilities in InsECT. Each execution of the program produces a new coverage file

that represents which entities were executed during that execution. InsECT provides

a Java-language library that can be linked and used that lets the client program,

Tarantula in this case, query the execution coverage information for the program

under test.

6.3 Clustering of Failed Test Cases

We implemented the clustering of failed test case to enable multiple-fault debugging

and parallel debugging by integrating three existing systems: the Aristotle Analysis

System, the Argo execution clustering tool, and the Tarantula Debugging Tool. The

Aristotle Analysis System [6] is written in C and runs on Solaris. Among other things,

it is capable of analyzing and instrumenting C programs. The instrumenter that we

used provides branch profiles of executions. Upon running the test suite, the profiles

are saved to disk and sent to the Argo clustering tool.

Argo [11] is written in C# and runs on the .Net virtual machine in Microsoft

Windows. Argo models and clusters program executions using the approach described
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in Section 4.2.1. Argo takes the execution branch profiles of the failed test cases as

input and outputs a dendrogram. The dendrogram is saved and sent to the fault-

localization module for the determination of the stopping point for the clustering and

the refinement of the clusters.

The fault-localization module was written in Java and was run on Linux. It com-

puted the fault-localization results for every node in the dendrogram to determine the

stopping point for the clustering, as described in Section 4.2.1.2. Once the stopping

point for the clustering was determined, the fault-localization module was used to

refine the clusters, as described in Section 4.2.1.3.

We also wrote cross-platform scaffolding to support the coordination of the mul-

tiple programs across multiple operating systems and computers. The scaffolding

provided communication among the Aristotle Analysis System, the Argo system, and

the Tarantula fault-localization module across the Linux, Microsoft Windows, and

Solaris platforms. The scaffolding also provided the results processing and the cen-

tral guidance of how the processing should continue for derivative multi-fault versions

of the subject program. The scaffolding was built using Unix shell scripting and the

Perl programming language.

6.4 Computing Fault-Localization Metrics

The computation of the suspiciousness and confidence metrics was written in Java.

For every coverage entity that was monitored, it computes the metrics, as was de-

scribed in Section 3.3. Each specialized test suite is input along with the coverage

information gathered from the instrumented program. The coverage information is

parsed and the coverage matrix is built. For each of the specialized test suites, the

suspiciousness and confidence values for each coverage entity is output. The compu-

tation module was also used to experiment with other metrics.
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6.5 Visualizing Fault-Localization Results

The visualizer is the module of Tarantula that implements the visualization techniques

described in Chapter 5. The visualizer is divided into several interacting components

that are all written in Java using the graphical capabilities of the Swing toolkit. For

the Treemap view, we modified and extended Bouthier’s publicly available Treemap

Library [10].

6.6 Ranking the Coverage Entities

The ranking of the coverage entities is done by sorting the coverage entities that were

instrumented. The sorting occurs as was described in Section 3.4. The suspiciousness

metric is used as the primary sorting key and the confidence metric is used as the

secondary sorting key (breaking any ties among entities with equivalent suspiciousness

values). This ranking computation was written in Java. It is used to inform the

evaluation of the Tarantula technique, which will be described in Chapter 7.

6.7 Monitoring and Debugging Deployed Software

One application of Tarantula that we explored was its use in monitoring deployed

software. We called the version of Tarantula that was applied to deployed software

“Gammatella.” To enable the monitoring and fault localization of software after

it is deployed to clients, we implemented the Tarantula technique in a way that can

provide communication between the client software and the developers. The program

was instrumented using the InsECT tool that was described in Section 6.2. At the

end of an execution at the client’s site, or at given time intervals (e.g., in the case of

continuously running applications), the information is dumped, compressed, and sent

back to a central server over the network.

We use the SMTP protocol [58] to transfer the program-execution data from the

clients’ machines to the central server collecting them. The compressed data are
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attached to a regular electronic-mail message whose recipient is a special user on the

server and whose subject contains a given label and an alphanumeric ID that uniquely

identifies both the program that sent the data and its version.

6.7.1 Data Collection Daemon

The Data Collection Daemon is a simple tool written in Java that runs as a daemon

process on a server on which we store the execution data. Each instance of the tool

monitors for execution data from all instances of a specific version of a specific pro-

gram, provided to the tool in the form of the corresponding alphanumeric identifier.

The tool, upon execution, retrieves the incoming mail for the collection user from the

server. To facilitate access of the data from different machines, we use the Internet

Message Access Protocol (IMAP [72]).

For each message retrieved, the daemon parses the subject of the message to check

whether (1) the message contains coverage information (i.e., the subject contains the

coverage label) and (2) the information is coming from the correct program and

version (i.e., the ID provided to the daemon matches the one in the subject). If

both conditions are satisfied, the daemon extracts the attachment from the message,

uncompresses it, and suitably stores the program-execution data in a database. The

additional information about each execution, such as the Java Virtual Machine version

and the user ID, are stored as properties of the execution.

6.7.2 Public Display of Gammatella

To enable developers to learn about failures in the field for their clients and to explore

the parts of the programs related to those failures, we envisioned a display of the

Tarantula visualization that would be placed in a public place. Here, developers could

interact with the visualization to investigate possible causes of failures. Because the

display would be placed in a public area so that all developers could see it, developers

may be prompted to interact with each other, as well, to discuss problematic parts
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of the program and how the program is being used by their clients. A view of a

prototype public display is pictured in Figure 31.

Figure 31: Public display of Gammatella.
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CHAPTER VII

EXPERIMENTATION

To validate my thesis, we performed a number of studies. Section 7.2 presents a study

that demonstrates the effectiveness of the Tarantula technique by examining the sus-

piciousness values that are assigned to faulty and non-faulty statements. Section 7.3

presents a study that demonstrates the relative effectiveness of the Tarantula tech-

nique by comparing it with a number of other fault localization techniques. Section 7.4

presents a study that demonstrates the effectiveness of the Tarantula technique for

programs with multiple faults, both with and without the aid of the partitioning

of test suites, using the clustering techniques presented in Chapter 4. Section 7.5

presents a study that demonstrates the effectiveness of debugging in parallel. Sec-

tion 7.6 demonstrates the efficiency of the Tarantula technique by presenting timings

of applying the Tarantula technique. Section 7.7 demonstrates the efficiency of the

clustering techniques used to enable creation of specialized test suites and debugging

in parallel. Finally, Section 7.8 examines the effects of test suite composition on the

effectiveness of fault localization techniques that use dynamic testing information.

7.1 Subject Programs

Table 2 lists the subject programs that were used for these studies. It also shows

the number of faulty versions, the averages of the numbers of lines of code (LOC)

in each program across all versions, the numbers of test cases in each test pool, and

descriptions of the functionalities of the programs.
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Table 2: Subject Programs.
Faulty Test

Program Versions LOC Cases Description
print tokens 7 472 4056 lexical analyzer
print tokens2 10 399 4071 lexical analyzer
replace 32 512 5542 pattern replacement
schedule 9 292 2650 priority scheduler
schedule2 10 301 2680 priority scheduler
tcas 41 141 1578 altitude separation
tot info 23 440 1054 information measure
space 38 6218 13585 array definition interpreter
space (8-fault versions) 100 6218 13585 array definition interpreter

7.1.1 Siemens Suite

The Siemens programs, along with their versions and inputs, were assembled at

Siemens Corporate Research for a study of the fault-detection capabilities of control-

flow and data-flow coverage criteria [37]. The suite consists of seven programs:

print tokens, print tokens2, replace, schedule, schedule2, tcas, and tot info.

The print tokens and print tokens2 programs are lexical analyzers. The replace

program performs pattern matching and substitution. The schedule and schedule2

programs are schedulers. The tcas program models an aircraft collision avoidance

algorithm. Finally, the tot info program computes statistics [63].

The researchers at Siemens created test cases for these programs. They first cre-

ated black-box tests “according to good testing practices, based on the tester’s under-

standing of the program’s functionality and knowledge of the programs functionality

and knowledge of special values and boundary points that are easily observable in

the code” [37, p. 194]. To do this, they used the category partition method and their

Siemens Test Specification Language tool [7, 54]. In addition, they created white-box

tests so that every statement, edge, and definition-use pair was covered by at least

30 test cases.

The researchers at Siemens also created faulty versions of the programs. They
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modified between one and five lines of code to introduce faults into the programs.

Their goal was to introduce realistic faults based on their experience. To accomplish

this goal, the researchers retained only faults that were neither too easy nor too hard

to detect [37, p.196], which they defined as being detectable by at most 350 and at

least three test cases in the test pool associated with each program.

7.1.2 Space Program

The space program functions as an interpreter for an array definition language

(ADL). The program reads a file that contains several ADL statements. It checks the

contents of the file for adherence to the ADL grammar and to specific consistency

rules. If the ADL file is correct, the space program outputs an array data file contain-

ing a list of array elements, positions, and excitations; otherwise the program outputs

error messages. Space consists of 6218 executable lines of C code. We also used 38

faulty versions of the program, each containing one fault, and the base version, which

is assumed for purposes of the studies to contain no faults. Thirty-three of the faulty

versions, each contain a single fault that had been discovered during the program’s

development. Through working with space, Rothermel and colleagues [65] discov-

ered an additional five faults and created versions with those faults. In addition, we

created a number of multiple-fault versions of space by isolating the faults found in

each of the 38 other versions and injecting them into the base version. The method

for doing this injection of multiple faults is explained in the studies that use them, in

Sections 7.2, 7.4, 7.5, and 7.8

The test suite for space was constructed from 10,000 test cases generated ran-

domly by Vokolos and Frankl [74], and then 3,585 test cases were created by re-

searchers in the Aristotle Research Group to guarantee that each executable edge in

the program’s CFG was exercised by at least 30 test cases [63].
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7.2 Study 1: Evaluating the Effectiveness of the Tarantula
Technique by Examining the Accuracy of the Suspi-
ciousness Metric

To evaluate the effectiveness of the Tarantula technique, we studied the accuracy

of the suspiciousness metric. This study examines the value of the suspiciousness

assigned to both faulty and non-faulty statements. By examining both faulty and

non-faulty statements, we assess the frequency that the technique correctly assigns

high suspiciousness values to faulty statements and the frequency that the technique

incorrectly assigns high suspiciousness values to non-faulty statements. We performed

this study for both single-fault versions of the subject program and multiple-fault

versions to study whether the number of faults had any effect on the technique. The

results showed that the technique successfully narrows the search space for the fault

by assigning high suspiciousness values to a large percentage of faulty statements and

assigning high suspiciousness values to a small percentage of non-faulty statements.

The results also showed that the technique was generally less effective for programs

with multiple faults.

7.2.1 Object of Analysis

For this study, we used the space program that was described in Section 7.1. Using

the 13585 test cases in the overall test pool of test cases, we extracted 1000 randomly

sized, randomly generated, near-decision-adequate test suites from this test pool. This

subject and these test suites have been used in similar studies (e.g., [28, 41, 64, 66]).

These test suites are near decision-coverage-adequate: they covered 80.7% to 81.6%

of the 539 conditions in the 489 decisions. The test suites ranged in size from 159 to

4712 test cases.

We used 20 of the single-fault versions for the space program. We chose these 20

versions because they were the versions for which there was at least one failed test
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case in the 1000 test suites that we generated. We also randomly generated 10 two-

fault versions, 10 three-fault versions, 10 four-fault versions, and 10 five-fault versions

of the space program.

7.2.2 Variables and Measures

We computed the suspiciousness values for each statement for all test suites, and for

all faulty versions of the subject program.

Our experiment manipulated one independent variable: the faulty version of the

space program. The study considered 20 single-fault, 10 one-fault, 10 two-fault, 10

three-fault, 10 four-fault, and 10 five-fault versions of space.

To assess the accuracy of the Tarantula technique, we used one dependent variable:

the suspiciousness value. The suspiciousness value was computed according to the

metric described in Section 3.3.

7.2.3 Experimental Setup

We executed each version with instrumentation on each of the 1000 test suites, and

then applied the Tarantula technique to each version-test suite pair. The instrumen-

tation gathered the coverage information about the test suites. We computed the

suspiciousness value for each of the faulty and non-faulty statements in the program.

7.2.4 Results and Discussion

To determine how frequently the technique assigns an appropriately high suspicious-

ness value to faulty statements, we examine the suspiciousness values assigned to all

faulty statements. Figure 33 shows the results of this part of the study as a segmented

bar chart. The chart contains one bar for each of the twenty versions of the program

that we studied. Each bar in the segmented bar chart represents 100% of the faulty

statements of that version of the program across all test suites. Each segment is color

coded to represent the range of suspiciousness values that it represents. Figure 32
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is a legend that creates the mapping from suspiciousness value ranges to the color

representations of the segments. Each of these representative colors that is used in

the segmented bar charts is the mean hue of the colors that would have been used

if they were to be colored according to the coloring described in Section 5.2 for the

suspiciousness values in that range.
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Figure 32: Legend for Figures 33, 34, and 35 mapping suspiciousness value ranges
to representational colors.

Each segment of each bar represents the number of times that the faulty state-

ments were assigned suspiciousness values in the represented range. The size of each

segment represents the percentage of the times that the faulty statements were as-

signed suspiciousness values in that range across all test suites. For example in

Figure 33, across all 1000 test suites, version 20 (the rightmost bar in the chart) had

approximately 3% of its faulty statements with suspiciousness values between 0.9 and
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1.0, 60% with values between 0.8 and 0.9, 34% with values between 0.7 and 0.6, and

3% with values between 0.5 and 0.6.

Figure 33 shows that, for our program and versions, most of the faulty statements

across all 1000 test suites were assigned suspiciousness values in the three most suspi-

ciousness ranges—greater than 0.7. However, for two versions—11 and 12—the faulty

statements were assigned suspiciousness values between 0.5 and 0.8. We examined

these two versions, and discovered that in them, the fault was in code that initializes

variables in statements that are executed by all or most test cases. For these versions,

the fault manifests itself as a failure later in the code.

To determine how frequently the technique assigns an appropriately low suspi-

ciousness value to non-faulty statements, we examined the suspiciousness values as-

signed to all non-faulty statements. For this part of the study, we applied the same

technique, and we display our results in the same fashion as in Figure 33 except that

the segmented bar chart represents the non-faulty statements, instead of the faulty

ones.

Figure 34 shows these results. In all 20 versions, less than 20% of the non-faulty

statements are assigned suspiciousness values above 0.8, and often much less, indicat-

ing that, for this subject, faults, and test cases, the technique significantly narrows

the search space for the faults. Of the statements with suspiciousness values above

0.8, we found that most of these statements immediately surround the fault in terms

of code listings. For example, if the statements immediately preceding and following

the fault in the code listing are also assigned high suspiciousness values, the technique

would still draw the developer’s attention to the faulty area of the code.

It is worth noting that versions 11 and 12, whose faults were assigned suspicious-

ness values between 0.5 and 0.8, have almost no highly suspicious faulty or non-faulty

statements. This means that for these versions, the technique does not mislead the

user, but simply fails to highlight the fault—no or few false positives.
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To examine how the technique performs for programs with multiple faults, we ex-

amined the suspiciousness values assigned to all faulty statements for several multiple-

fault versions of space. Figures 35(a)-35(d) show the results of this part of the study

in the same segmented bar-chart manner as in Figures 33 and 34. As expected, the

effectiveness of the technique declines on all faults as the number of faults increases.

However, even when there are up to five faults, a large majority of the faults are

assigned suspiciousness values greater than 0.5. In fact, a large portion of the faulty

statements are assigned suspiciousness values greater than 0.7. These charts show

that the percentage of faulty statements with low suspiciousness values is greater

than those seen for the single-fault versions in Figure 33. Overall, for the results

shown in Figure 35, the decline in effectiveness in highlighting the faulty statements

is less than we expected. Even up to five faults, the technique performed fairly well.

We expected that the results of this study may be somewhat misleading. Because

we are presenting the number of faulty statements in each segment for all faults in

Figures 35(a)-35(d), suspiciousness values of individual faults are not distinguished.

For example, the second bar of Figure 35(a) does not allow us to determine how the

individual faults (14 and 17) fell into the different ranges of suspiciousness values.

Were both fault 14 and fault 17 assigned high and low suspiciousness values? Or,

were all of the low suspiciousness values assigned to one of the faults? We believe that

this distinction is important because a fault that is not illuminated by the technique

may eventually be illuminated if another more evident fault is located and removed.

To investigate this situation, we plotted the data for each individual fault of a multi-

fault version. From the left side of Figure 35, we chose a segmented bar that had

both high and low suspiciousness value ranges to dissect.

For this case study, we chose the two-fault version containing faults 14 and 17—the

second bar in Figure 35(a). Figure 36 shows the results of this case study. The first

segmented bar in Figure 36 shows the suspiciousness values assigned to the statement

106



(d)

8,
13

,1
5,

17
,2

0

7,
13

,1
5,

18
,1

9

8,
15

,1
6,

20

11
,1

3,
14

,1
7

12
,1

3,
15

,1
7

2,
12

,1
3,

14

3,
4,

6,
20

11
,1

2

14
,1

7

16
,1

7

17
,2

0

1,
5

3,
20

4,
14

4,
17 2,
9

10
,1

6

4,
8,

11
,1

8

3,
4,

6,
20

2,
12

,1
3,

14

5,
7,

11
,1

2

5,
12

,1
3,

14

7,
10

,1
6,

19

1,
9,

14
,1

6

4,
8,

11
,1

8

7,
13

,1
5,

18
,1

9
12

,1
3,

15

3,
14

,2
0

3,
5,

19

4,
7,

12

4,
6,

16

5,
17

,1
9

5,
18

,1
9

6,
15

,1
9

1,
9,

10

2,
10

,1
8

(c)

(b)

(a)

(h)

(g)

(f)

(e)

2,
4,

10
,1

6,
19

2,
3,

6,
9,

16

1,
2,

8,
11

,1
8

4,
7,

10
,1

4,
20

3,
5,

10
,1

6,
18

2,
5,

9,
12

,1
4

6,
11

,1
2,

15
,1

7

6,
8,

11
,1

7,
19

12
,1

3,
15

,1
7

12
,1

3,
15

8,
13

,1
5,

17
,2

0

6,
8,

11
,1

7,
19

1,
9,

14
,1

6

7,
10

,1
6,

19

5,
12

,1
3,

14

5,
7,

11
,1

2

2,
9

6,
11

,1
2,

15
,1

7

11
,1

3,
14

,1
7

8,
15

,1
6,

20

2,
10

,1
8

1,
9,

10

6,
15

,1
9

5,
18

,1
9

5,
17

,1
9

4,
6,

16

4,
7,

12

3,
5,

19

3,
14

,2
0

4,
17

14
,1

7

10
,1

6

2,
5,

9,
12

,1
4

11
,1

2

4,
14

3,
201,
5

17
,2

0

16
,1

7

2,
4,

10
,1

6,
19

2,
3,

6,
9,

16

1,
2,

8,
11

,1
8

4,
7,

10
,1

4,
20

3,
5,

10
,1

6,
18

3−fault versions

4−fault versions

5−fault versions

80%

70%

60%

50%

40%

30%

20%

10%

0%

80%

70%

60%

50%

40%

30%

20%

10%

0%

80%

70%

60%

50%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

2−fault versions

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

90%

90%

100%

70%

80%

40%

50%

60%

20%

30%

100%

100%

90%

0%

10%

Figure 35: Resulting suspiciousness values for the faulty statements (left) and non-
faulty statements (right) in multiple fault versions across all test suites.
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containing fault 14 across all 1000 test suites. The second segmented bar shows the

suspiciousness values assigned to the statement containing fault 17 across all 1000

test suites. Fault 14 is assigned a suspiciousness value greater than 0.9 for 90% of the

test suites, between 0.8 and 0.7 for 1% of the test suites, and between 0.0 and 0.1 for

10% of the test suites. Fault 17 is assigned a suspiciousness value greater than 0.9 for

all 100% of the test suites. The final bar in Figure 36 shows the effect of rerunning

Tarantula on the program containing fault 14 after removing fault 17. Therefore,

for this version, in the 10% of the test suites when only one fault is illuminated by

the technique, the illuminated fault can be located and removed, thus allowing the

technique to be reapplied to locate the second fault. This phenomenon is an example

of the effectiveness of the technique, as at least one of the faults is illuminated for this

version. In cases where fewer than all of the faults are revealed by this technique, the

user could iteratively remove the discovered faults, retest, and reapply the technique

until the test suite passes on all test cases (i.e., sequential debugging) as was described

in Section 4.3 on page 64.

To determine how frequently the technique assigns an appropriately low suspi-

ciousness value to non-faulty statements for the program with multiple faults, we ex-

amine the suspiciousness values assigned to all non-faulty statements. Figure 35(e)-

35(h) displays these results. For all multi-fault versions, we again notice the low

number of statements with high suspiciousness values: less than 20% with a suspi-

ciousness value between 0.8 and 1.0. The low percentage of suspicious statements

substantially reduces the search space of the program.

Overall, these empirical studies indicate that the technique is effective in illumi-

nating the fault or directing attention toward the fault, and narrowing the search

space of the program for the fault.

108



1714

be
en

 r
em

ov
ed

14
 a

ft
er

 1
7 

ha
s

Faults

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

Figure 36: Resulting suspiciousness values for each individual fault in a two-fault
version (left); resulting suspiciousness values for the remaining fault after the discov-
ered fault has been removed (right).

7.2.5 Threats to Validity

Threats to external validity arise when the results of the experiment are unable to

be generalized to other situations. In this study, we evaluated the effectiveness of the

Tarantula technique on one subject program, space. The results obtained using the

space program cannot be generalized to arbitrary programs. Programs of different

types, of different sizes, and written in different languages need to be examined with

the Tarantula technique to be able to provide some evidence of the generality of the

results.

Threats to construct validity arise when the metrics used for evaluation do not

accurately capture the concepts that they are meant to evaluate. A threat to construct

validity is that we consider the program instructions that differ between the faulty and

non-faulty version of the program to be the fault that we are attempting to localize.

However, it should be noted that the program could be debugged in a number of ways
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to equal effect, including rewriting the entire program. The choice of how to define

the fault can affect the results either positively or negatively.

7.3 Study 2: Evaluating the Relative Effectiveness of the
Technique Compared to Other Fault-Localization Tech-
niques

To evaluate the relative effectiveness of the Tarantula technique, we compared its

effectiveness with other fault-localization techniques. This study compares a number

of techniques in terms of effectiveness in focusing the programmer’s attention on the

likely faulty statements, and thus helping with the search for the fault. The study

shows that Tarantula consistently outperforms the other four approaches for the set of

subjects studied. At the 99%-score level, Tarantula can pinpoint the fault three times

more often than the second-most-effective technique studied. At the 90%-score level,

Tarantula performs 57% better than the second-most-effective technique studied.

7.3.1 Object of Analysis

For the object of analysis, we used the Siemens suite [37] of programs. We chose these

programs because they are the most common object of analysis for comparing fault-

localization techniques. Of these faulty Siemens versions, we were able to use 122

versions. Two versions—versions 4 and 6 of print tokens—contained no syntactic

differences with the correct version of the program in the C file—there were only

differences in a header file. In three other versions—version 10 of print tokens,

version 32 of replace, and version 9 of schedule2—no test cases fail; thus the fault

was never manifested. In five versions—versions 27 and 32 of replace and versions 5,

6, and 9 of schedule—all failed test cases failed because of a segmentation fault. The

instrumenter we used for our experiment (gcc with gcov) does not dump its coverage

before the program crashes. Thus, we were unable to use these five versions for our

study. After removing these ten versions, we used the remaining 122 versions for our
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studies.

7.3.2 Variables and Measures

7.3.2.1 Independent Variables

Our experiment manipulated one independent variable: the fault-localization tech-

nique. The techniques that we examine are:

1. Set union (from Reference [61])

2. Set intersection (from Reference [61])

3. Nearest Neighbor Queries (from Reference [61])

4. Cause Transitions (from Reference [17])

5. Tarantula

The Set-union and Set-intersection techniques were described in Section 2.5.1.

The Nearest Neighbor Queries technique was described in Section 2.5.2. The Cause

Transitions technique was described in Section 2.6. The Tarantula technique was

described in Chapter 3.

7.3.2.2 Dependent Variables and Measures

To compare these techniques, we use one dependent variable: effectiveness of the tech-

nique in locating the fault. To evaluate the effectiveness of the techniques, we rank the

statements of a program in terms of how the individual techniques compute their rank-

ings. For the Set-union, Set-intersection, Nearest-Neighbor, and Cause-Transitions

techniques, we use the SDG-ranking technique that is described in References [61] and

[17]; we described this ranking technique in Section 2.5.1. These techniques produce

an initial subset of program entities that are to be examined as suspicious. However,

these subsets often exclude the fault. Thus, this ranking system specifies a way to
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order the remaining program entities in the search for the fault after the initial spec-

ified subsets are examined. For the Tarantula technique, we used the ranking system

described in Chapter 3. This ranking system uses the “suspiciousness” scores to rank

the executable statements in the program.

The effectiveness is determined by a metric presented originally by Renieris and

Reiss [61] and used in several other studies (e.g., [17, 44, 49]). The metric, Score, is

defined as the percentage of the program that need not be examined to find the fault

using the rank described in the preceding discussion; it is computed by the following

equation:

Score =

(
1− rank of fault

size of program

)
∗ 100 (7.3.1)

In Equation 7.3.1, rank of fault is the placement of the fault in the sorted list of

coverage entities from most suspicious to least, and size of program is the number of

coverage entities in the sorted list.

7.3.3 Experimental Setup

For the Set-union, Set-intersection, and Nearest-Neighbor techniques, we use the

results given in Reference [61]. For the Cause-Transitions technique, we use the

results given in Reference [17].

For the Tarantula technique, we used the implementation of Tarantula that in-

terfaces with the GNU C compiler instrumenter. The Tarantula tool represents any

statements that are executed one or more times for a particular test case as simply

“covered” and statements that are executed zero times as “uncovered.” We distin-

guished the statements that are executable and uncovered from statements that are

not executable, such as comments, variable declarations, and blank lines. We label

only those statements that are executable and uncovered as “uncovered.” Each ex-

ecutable statement is given a suspiciousness score and then ranked according to the
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ranking system described in Section 3.4. Shell scripts automate running the Tarantula

tool on all versions.

To evaluate the effectiveness of the techniques, a score is assigned to every faulty

version of each subject program. The score defines the percentage of the program

that need not be examined to find a faulty statement in the program or a faulty node

in the SDG. To demonstrate, consider the example program in Figure 4 on page 27.

The Tarantula technique assigns a rank of 1 to the faulty statement out of a total of

13 executable statements. Thus, the score in this case is (1− 1/13) ∗ 100 = 92.3%.

The ranking strategy for each technique is used to determine the rank number of

the fault, and this rank number is used to compute the score. The Set-union, Set-

intersection, Nearest-Neighbor, and Cause-Transitions techniques use the nodes of a

system dependence graph (SDG) to determine the percentage of the program that

must be examined. The Tarantula technique uses the subject program’s source code.

To be comparable with the SDG approach, we consider only executable statements to

determine the score. This omits from consideration source code such as blank lines,

comments, function and variable declarations, and function prototypes. We also join

all multi-line statements into one source code line so that they will be counted only

once. We do this to compare the techniques fairly—only statements that can be

represented in the SDG are considered. Thus, the percentage of the program that

need not be considered includes no unexecutable program entities, for all techniques

in our experiment.

We identified the faults and failures by using the versions of the subject programs

that are deemed to be “correct.” To identify the faults, we compared the faulty version

of the program with the correct version. The lines in which they differ are recorded

as the fault. In the cases where the fault comprised multiple lines, the rank of the

fault is defined as the first line to be reached in the sorted list. To distinguish failed

from passed test cases, we ran the correct version with each test case and recorded its
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output. We use these outputs to define the expected outputs for that program and

test cases. We ran all faulty versions recording their outputs, and compared those

with the expected output.

7.3.4 Results and Discussion

Table 3 and Figure 37 show the results concerning the effectiveness dependent vari-

able, Score. Table 3 shows the percentage of versions that achieve a score within each

segment listed. Following the convention used by both References [61] and [17], each

segment is 10 percentage points, except for the 99-100% range and the 90-99% range.

We report our findings on the same segments. Note that whereas a 100% score is

impossible to achieve1 for all techniques considered, the first segment from 99-100%

effectively “pinpoints” the fault in the program.

For example, in Table 3, for about 14% of the faulty versions and their test suites,

the Tarantula technique was able to guide the programmer to the fault by examining

less than one percent (a score of 99% or higher) of the executable code. At the next

score level, 90-99%, we can see in Table 3 that the Tarantula technique is able to

guide the programmer to the fault by examining less than 10% of the program for an

additional 42% of the faulty versions and their test suites.

The results shown in Figure 37 depict the data in Table 3. Points and con-

necting lines are drawn for each technique. The legend to the right shows how to

interpret the lines representing each technique. The labels in the legend are abbre-

viated for space. “NN/perm” is the Nearest-Neighbor technique using permutation

distancing. “NN/binary” is the Nearest-Neighbor technique using binary distancing.

“CT” is the Cause-Transitions technique using the standard SDG-ranking technique.

“CT/relevant” is the Cause-Transitions technique exploiting relevance in the ranking

technique. “CT/ infected” is the Cause-Transitions technique exploiting infections in

1The best-case scenario is where the first ordered location is the fault. For this, the score is
(1− (1/size of the program)) ∗ 100.
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the ranking technique.

The horizontal axis represents the score measure defined above, which in turn

represents the percentage of the subject program that would not need to be examined

when following the order of program points specified by the techniques. The vertical

axis represents the percentage of test runs that are found at the score given on the

horizontal axis. For the Tarantula technique there is one test suite used for each

faulty version, so the horizontal axis represents not only the percentage of test runs,

but also the percentage of versions. For the Set-intersection, Set-union, and Nearest-

Neighbor techniques, multiple test cases are chosen for each version (recall that each

of these techniques is dependent on which single failed test that is used). For these

techniques the vertical axis represents the percentage of all version-test pairs.

At each segment level, points and lines are drawn to show the percentage of

versions for which the fault is found at the lower bound of that segment range or

higher. For example, using the Tarantula technique, for 55.7% of the faulty versions,

the fault was found by examining less than 10% of the executable code, thus achieving

a score of 90% or better.

Overall, Figure 37 shows that the Set-intersection techniques perform the worst,

followed by Set-union, Nearest-Neighbor using binary distancing, Nearest-Neighbor

using permutation distancing, the Cause-Transitions using different ranking strategies

(some that leverage programmer knowledge), and finally, the best result is achieved

by the fully automatic Tarantula technique.

The results show that at the 99% score level, Tarantula was able to effectively

pinpoint the fault.

The studies also show that the Set-union, Set-intersection, and Nearest Neighbor

techniques are less effective than the other two, especially at the higher scores. There

are several possible causes for these differences:

• Sensitivity. The Set-union, Set-intersection, and Nearest-Neighbor techniques
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may be less effective because of the techniques’ sensitivity to the particular

test suites. This sensitivity was demonstrated on the example in Sections 2.5.1

and 2.5.2. For the Nearest-Neighbor technique, removing the set of statements

executed by the passed test case with the most similar coverage from the set of

statements executed by the failed test case may cause the fault to be removed

from the initial set in many cases. To address this problem, we have designed

our Tarantula technique to allow tolerance for passed test cases that occasionally

execute faults.

• Ranking technique. The use of a breadth-first search over the SDG may not

be an efficient strategy for exploring the program. The size of the set of nodes

at each distinct distance (“rank”) would likely grow quickly with the distance

from the initial set. Providing a narrower ordering (closer to a total order) of

program regions may better guide the programmer from the regions that are

most likely to be faulty to those least likely to be faulty (according to some

approximation measures), and may result in better empirical results.

• Use of single failed test case. We have found that the Tarantula technique

performs better with more failed test cases as well as more passed test cases.

With Tarantula, we can observe its results with any subset of the test suite as

long as it has at least one passed test case and at least one failed test case.

However, we have found that utilizing the information from multiple failed test

cases lets the technique leverage the richer information base.

7.3.5 Threats to Validity

There are a number of threats to the validity of this experiment. Specifically, a

threat to external validity is that the results obtained using the Siemens suite cannot

be generalized to arbitrary programs. However, we expect that on larger programs

with greater separation of concerns, all fault-localization techniques will be more
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effective. This expectation is supported by the results presented in Section 7.2 and

the results summarized in Figure 38. In this figure, the Tarantula technique is applied

to the space program. On this larger subject program, Tarantula is much better

at detecting the fault than on the smaller subjects. For 40% of the versions, the

Tarantula technique guided the programmer to the fault by examining less than 1% of

the code, effectively pinpointing the fault automatically. For 87% of the versions, the

programmer needs to examine less than 10% of the program (score of 90% or higher)

specified by Tarantula’s ordering. We expect most fault-localization techniques to

perform better on such larger programs, and would expect to see even better results

on even larger programs that have an even greater separation of concerns.
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Figure 38: Results of the Tarantula technique on a larger program, space.

Another threat to external validity is that the results presented in this experiment

apply only to the case where the subjects used in the study each contain a single fault.
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We cannot generalize these results to these or any programs that have multiple faults.

However, the study presented in Section 7.2, with a program containing multiple

faults, suggests that the techniques can help to identify faults. In these studies, we

evaluated versions of space with up to five faults, and found that our technique could

identify at least one fault in these multiple-fault versions. Furthermore, as faults are

discovered and removed, others reveal themselves, which suggests an iterative process

of using the technique.

A threat to construct validity is that in all techniques presented here, we as-

sume that a programmer can identify the fault by inspecting the code—that is, she

can follow the order of nodes or statements that is specified and determine at each

one whether it is faulty. This applies further to the ranking modifications of the

Cause-Transitions technique using the identification of infections. This issue must be

explored further with human studies.

7.4 Study 3: Evaluating the Effectiveness of the Clustering
Technique for Multiple Faults

To evaluate the effects of clustering failed test cases to create fault-focusing clusters

and specialized test suites on fault localization for programs with multiple faults, we

compared the effectiveness of the Tarantula technique with and without clustering.

We compared three methods of performing the fault localization: (1) with no clus-

tering, (i.e., performing the fault localization using the entire test suite); (2) with

the profile-based clustering to create specialized test suites that are used for fault

localization; and (3) with the fault-localization-based clustering to create specialized

test suites that are used for fault localization. The results of this study show that

clustering failures provides cost-saving potential for locating faults in programs with

multiple faults.

120



7.4.1 Object of Analysis

Our experimental protocol created 100 8-fault versions of space by choosing from the

available faults at random. We simulated a developer’s test suite for each version by

choosing a test suite at random from a collection of 1000 branch-adequate test suites,

each with an average of 156 test cases.

7.4.2 Variables and Measures

7.4.2.1 Independent Variables

Our studies manipulated one independent variable—the technique for creating the

fault-focusing clusters that drive the debugging process. The techniques that we

examine are

no-cluster : sequential debugging without any clustering

profile-cluster : sequential debugging using profile-based clustering (Section 4.2.1)

fault-cluster : sequential debugging using fault-localization-based clustering (Sec-

tion 4.2.3)

7.4.2.2 Dependent Variable

In Section 7.3, we defined the Score metric that has been used in several empirical

studies of the effectiveness of fault-localization techniques (e.g., [17, 44, 49]). In each

of these studies and in the study in Section 7.3, the techniques were used to find just

one fault. The Score metric is defined as the percentage of the program that need not

be examined to find the fault using the rank described in Section 3.4. Equation 7.3.1

is used to calculate the Score.

To evaluate the effectiveness of the localization of multiple faults, we use a varia-

tion of this metric. Instead of evaluating the fault-localization effectiveness in terms

of the percentage of the program that need not be examined to find the fault (as

described by Equation 7.3.1), we use its complement: the percentage of the program
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that must be examined to find the fault. This value is indicative of the time or effort

that the developer would spend in finding a single fault in the program if she exam-

ined the program using the ranks computed by the fault-localization technique. This

metric, which we call Expense, is computed by the following equation:

Expense =
rank of fault

size of program
∗ 100 (7.4.1)

We calculate a metric to assess the total developer expense and denote this metric

as D. D is used to assess the total of all developers’ efforts to find the faults in a

program. D is computed as the sum of the developer Expense for each fault in the

program, and is computed by the following equation:

D =

|faults|∑
i=1

Expensei (7.4.2)

7.4.3 Experimental Setup

We started with an 8-fault version, ran it with the test suite, and detected and

removed one fault. Then we generated the 7-fault version using the remaining seven

faults and ran it with the same test suite. We repeated the sequential fault-removal

process, creating the 6-, 5-, 4-, 3-, 2-, and 1-fault versions until no executions in the

test suite failed.

We gathered the D scores for each of the 90 versions and report the mean and

standard deviation. We also computed the pair-wise difference of the three different

techniques’ scores. The Dno−cluster, Dprofile−cluster, Dfault−cluster, and their pair-wise

differences can be taken as a sample of the entire population of all 8-fault versions for

our subject program. Because our sample size is adequately large, their distribution

approximates a normal distribution. Thus, we computed a two-sided t-interval with

a confidence level of 99%. Interpret this statistic to mean that with 99% confidence,

the mean of the sample will be in the range defined by the lower and upper bounds.
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For the samples calculated by differencing two data points, if both bounds have the

same sign, then we have confidence (with 99% certainty) that one mean is larger than

the other for the entire population.

7.4.4 Results and Discussion

Table 4 (and Figure 39) shows the comparative results for total developer expense D.

The columns show the sample source, mean, and standard deviation, followed by the

lower and upper 99% confidence interval bounds calculated for a two-sided t-interval

for the mean of the sample. The first three rows show statistics derived by measuring

D for each of the three modes. For example, for the technique with no clustering, the

sample mean of Dno−cluster for the 90 8-fault versions of space is 36.63 with standard

deviation of 22.35. The two-sided t-interval with a confidence level of 99% for this

mean is between 31.06 and 42.20.

Table 4: Total developer expense, D.

Source Mean Std. Dev. 99% lower 99% upper

Dno−cluster 36.63 22.35 31.06 42.20
Dprofile−cluster 31.50 26.63 24.86 38.14
Dfault−cluster 26.43 22.42 20.84 32.02
Dno−cluster −Dprofile−cluster 5.13 15.49 1.27 8.99
Dprofile−cluster −Dfault−cluster 10.20 13.54 6.82 13.57
Dfault−cluster −Dfault−cluster 5.07 13.14 1.80 8.34

The last three rows show statistics about the pair-wise differences among the

individual means of the three debugging modes. For example, in the fourth row,

the difference between the means Dprofile−cluster and Dno−cluster is 5.13, with a stan-

dard deviation of 15.49. The two-sided t-interval for the difference of the means

Dno−cluster −Dprofile−cluster is between 1.27 and 8.99

The results show that the most expensive technique is the no-cluster mode and the

least is the fault-cluster mode. When comparing the means of these two debugging
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Figure 39: Mean score for the total developer expense, D, for the three techniques.

techniques in row five, we see that Dno−cluster is expected, with a 99% confidence, to

be greater than Dfault−cluster by a value between 6.82 and 13.57. These results mean

that the use of fault-focusing clusters and the resultant test suites yields reduced total

developer expense.

7.4.5 Threats to Validity

Although this empirical study provides evidence of the potential usefulness of the

execution clustering techniques developed in this research, there are several threats to

the validity of the empirical results that should be considered in their interpretation.

Threats to the external validity of an experiment limit generalizing from the re-

sults. The primary threat to external validity for this study arise because only one

medium-sized C program has been considered. Thus, we cannot claim that these

results generalize to other programs. In particular, no generalization can be made

as to the effectiveness of clustering for debugging. However, a variety of faults were
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randomly combined to produce the 100 8-fault versions used in this research, and

thus, these versions are useful for exploring the presented techniques.

Also, we assume that a developer can identify the fault by inspecting the code—

that is, he can follow the order of statements that is specified and determine at each

one whether it is faulty. We think that the amount of code that must be examined

while following the prescribed order of the fault-localization technique is indicative

of the technique’s effectiveness, and other researchers use the same methodology to

evaluate fault-localization techniques (e.g., [17, 49, 61]).

7.5 Study 4: Evaluating the Effectiveness of the Clustering
Technique for Debugging in Parallel

To evaluate the potential to parallelize the debugging process, we compared the ef-

fectiveness of debugging with the Tarantula technique in the sequential mode and in

the parallel mode of debugging. We compared three modes of debugging: (1) debug-

ging in sequence with no clustering; (2) debugging in parallel utilizing profile-based

clustering; and (3) debugging in parallel utilizing fault-localization-based clustering.

This study finds that clustering failures for the purpose of parallelizing the debugging

process can provide a significant savings by limiting the cost of locating faults in

programs with multiple faults.

7.5.1 Object of Analysis

We use the same 100, randomly generated, 8-fault versions of space as those used

for Study 3, described in Section 7.4.1.

7.5.2 Variables and Measures

This study manipulated one independent variable—the technique for creating the

fault-focusing clusters that drives the debugging process. The techniques that we

examined are
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sequential : sequential debugging without any clustering

profile-parallel : parallel debugging using profile-based clustering (Section 4.2.1)

fault-parallel : parallel debugging using fault-localization-based clustering (Sec-

tion 4.2.3)

To evaluate the effectiveness of the localization of multiple faults in parallel, we use

the Expense measure that was defined in Section 7.4.2. Using the Expense measure,

we compute another metric to assess the critical expense to a failure-free program and

denote this metric as FF . FF is used to assess the relative savings in terms of the time

to deliver a failure-free program (i.e., the expense of the critical path in a failure-free

program). FF is computed as the sum of the maximum developer expense at each

debugging iteration,2 which is the critical path to achieving a failure-free program,

and is computed by the following equation:

FF =

|iterations|∑
i=1

max{Expensef |f is a fault subtask at iteration i} (7.5.1)

We also use the total developer expense measure D that was defined in Sec-

tion 7.4.2 to evaluate these different modes of debugging.

Note that, when debugging without any clustering (using the whole test suite),

the D and FF values are always equal—the total developer expense and the critical

expense of a failure-free program are equal because both are calculated as the sum of

the one-at-a-time developer expenses.

These two metrics, total developer expense (D) and critical expense to a failure-

free program (FF ), capture the two important dimensions of debugging in parallel.

In this study, the sequential mode of debugging does not use any clustering. Thus,

Dsequential and FFsequential will necessarily be equal.

2Section 4.4 describes the phenomenon of fault dominance, and Figure 22 (on page 69) shows an
example of why more than one debugging iteration may be necessary.
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It is worth noting that the Expensemetric also accounts for errors in the clustering

process. Particularly, when the clustering approach produces multiple clusters for

finding the same fault, multiple developers would be simultaneously and unknowingly

debugging the same fault. Because each such developer is working independently,

their expense is not as efficient as if only one of them were debugging that fault. When

the first of these redundant efforts results in a found fault, the other developers that

are also working on that fault had expended redundant effort. We assume that the

developers that are simultaneously debugging communicate with one another when a

fault has been found. This communication limits the expense of any other developer

that may be working to find the same fault. When a developer receives notice from

another developer that a fault has been found, he can check to see if that fault is the

one causing his failures, and if so, stop his debugging efforts. Thus, the expense metric

is calculated as the product of the minimum of the redundant effort and the number of

developers working on that fault. Figure 40 shows an illustration of three clusters that

target the same fault and a fourth cluster that targets another fault. In this example,

the expense required to find fault 1 is calculated as Expense1 = 3 ∗min(2, 3, 4) = 6,

where the minimum of these three developers’ expenses is depicted with the dotted

line at a value of 2. The total developer expense for this example is calculated as

D = Expense1 +Expense2 = 6+5 = 11. Thus, we capture the inherent inefficiencies

that sometimes occur because of inaccurate clustering.

7.5.3 Experimental Setup

Like the experimental setup presented for Study 3, our experimental protocol created

100 8-fault versions of space by choosing from the available faults at random. We

simulated a developer’s test suite for each version by choosing a test suite at random

from a collection of 1000 branch-adequate test suites, each with an average of 156

test cases. Over the course of evaluating all debugging modes, we generated 1147
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Figure 40: The cost model accounts for when the clustering technique produces
multiple test suites that target the same fault.

derivative multi-fault versions. For example, in the sequential mode, we started with

an 8-fault version, ran it with the test suite, and detected and removed one fault.

Then we generated the 7-fault version using the remaining seven faults and ran it

with the same test suite. The sequential fault-removal process repeated, creating the

6-, 5-, 4-, 3-, 2-, and 1-fault versions until no executions in the test suite failed. In the

two parallel modes, we also started with the 8-fault version, determined the number

of clusters and found the faults that they focused, removed those faults, and repeated

the process with another iteration of debugging in parallel with a derivative faulty

version containing only the remaining faults.

To determine the best threshold parameterization, as described in Section 3.1, we

sampled various parameters using ten 8-fault versions. We selected from these the best

candidates for use in our study of the remaining 90 8-fault versions. This “training”

of the parameters for a program is similar to the way in which we would prescribe

training in the field. For both clustering techniques, profile-based clustering and fault-

localization-based clustering, we used only the top 20% of the most suspicious lines—

MostSusp = 20%. For determining the stopping criterion for the clustering, we used

a threshold of Sim = 68% (roughly two standard deviations) in the Jaccard similarity

scores. Also informed by the training, for clustering based on sets of suspicious code,
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we used a threshold of Sim = 50% in the Jaccard similarity scores.

We gathered the D and FF scores for each of the 90 versions and report their

means and standard deviations. We also computed the pair-wise differences of the

three different techniques’ scores. The Dsequential, Dprofile−based, Dfault−based, and their

pair-wise differences (and likewise for FF ) can be considered as a sample of the entire

population of all 8-fault versions for our subject program. Because our sample size

is adequately large, their distribution approximates a normal distribution. Thus, we

computed a two-sided t-interval with a confidence level of 99%. Interpret this statistic

to mean that with 99% confidence, the mean of the sample will be in the range

defined by the lower and upper bounds. For the samples calculated by differencing

two data points, if both bounds have the same sign, then we have confidence (with

99% certainty) that one mean is larger than the other for the entire population.

7.5.4 Results and Discussion

Our two principal metrics for comparing the costs of the three investigated modes are

total developer expense D and critical expense to failure-free FF.

7.5.4.1 Total developer expense

Note that because the total developer expense is necessarily the same for sequential

debugging and parallel debugging, the results presented here mirror those that were

presented in Section 7.4.4. They are presented here for convenience and because they

have relevance in the context of evaluating the sequential versus parallel modes of

debugging.

Table 5 (and Figure 41) shows the comparative results for total developer expense

D. The columns show the sample source, mean, and standard deviation, followed

by the lower and upper 99% confidence interval bounds calculated for a two-sided

t-interval for the mean of the sample. The first three rows show statistics derived by

measuring D for each of the three modes. For example, for the sequential debugging
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Table 5: Total developer expense, D.

Source Mean Std. Dev. 99% lower 99% upper

Dsequential 36.63 22.35 31.06 42.20
Dprofile−parallel 31.50 26.63 24.86 38.14
Dfault−parallel 26.43 22.42 20.84 32.02
Dsequential −Dprofile−parallel 5.13 15.49 1.27 8.99
Dsequential −Dfault−parallel 10.20 13.54 6.82 13.57
Dprofile−parallel −Dfault−parallel 5.07 13.14 1.80 8.34

mode, the sample mean of Dsequential for the 90 8-fault versions of space is 36.63 with

standard deviation of 22.35. The two-sided t-interval with a confidence level of 99%

for this mean is between 31.06 and 42.20.

The last three rows show statistics about the pair-wise differences among the

individual means of the three debugging modes. For example, in the fourth row, the

difference between the means Dprofile−parallel and Dsequential is 5.13, with a standard

deviation of 15.49. The two-sided t-interval for the difference of the means Dsequential−

Dprofile−parallel is between 1.27 and 8.99

The results show that the greatest developer expense is with the sequential mode

and the least is with the fault-parallel mode. When comparing the means of these two

debugging modes shown in row five, we see that Dsequential is expected, with a 99%

confidence, to be greater than Dfault−parallel by a value between 6.82 and 13.57. These

results mean that the use of fault-focusing clusters and the resultant test suites yields

reduced total developer expense even if the debugging is done by a single developer.

7.5.4.2 Critical expense to a failure-free program

Table 6 (and Figure 41) presents the comparative results for the critical expense to

a failure-free program FF. The table is constructed identically to Table 5. Here, for

example, for the sequential debugging mode, the sample mean for FFsequential for
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the 90 8-fault versions of space is 36.63 with standard deviation of 22.35. The two-

sided t-interval with a confidence level of 99% for this mean is between 31.06 and

42.20. Note that Dsequential and FFsequential are necessarily identical, as explained in

Section 7.5.2 (on page 125).

The results show that the greatest critical expense is with the sequential mode

and the least is with the profile-parallel mode. When comparing the means of these

two debugging modes shown in row four, we see that the mean of FFsequential is

expected, with a 99% confidence, to be greater than the mean of FFprofile−parallel

by a value between 14.96 and 21.92. Furthermore, when we compare the means of

the two parallel debugging modes shown in row six, we see that FFprofile−parallel is

expected, with a 99% confidence, to be less than FFfault−parallel by a value between

0.84 and 4.69 (negating the values shown.) These results mean that both parallel

modes are better than the sequential mode, and that for this subject profile-parallel

outperforms fault-parallel in terms of FF . The results show that the use of the

profile-parallel debugging mode yields a 50% reduction in the critical expense to a

failure-free program over the sequential mode.

Table 6: Critical expense to failure-free, FF .

Source Mean Std. Dev. 99% lower 99% upper

FFsequential 36.63 22.35 31.06 42.20
FFprofile−parallel 18.19 13.74 14.76 21.61
FFfault−parallel 20.95 15.00 17.21 24.69
FFsequential − FFprofile−parallel 18.44 13.96 14.96 21.92
FFsequential − FFfault−parallel 15.68 12.03 12.68 18.68
FFprofile−parallel − FFfault−parallel -2.76 7.72 -4.69 -0.84

Notable in the results is that the sequential mode is the most expensive both in

the developer expense, D, and in the critical expense to failure-free, FF. Both parallel

techniques provide a savings over the sequential mode. This means that the fault-

focusing ability of either clustering technique has economic benefits as measured in
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Figure 41: Mean score for the total developer expense, D, and the critical expense
to failure-free, FF , for the three techniques.

expense.

The choice of profile-parallel or fault-parallel may depend on the development or-

ganization’s resources and circumstance. If the goal is to deliver a failure-free program

as fast a possible, then profile-parallel may be a better choice than fault-parallel. How-

ever, if the goal is to minimize development expense, then fault-parallel may provide

a net savings. We investigated this trade-off to determine the reason that each tech-

nique demonstrated a different strength. The fault-parallel technique seems to cluster

more aggressively than profile-parallel. profile-parallel and fault-parallel respectively

have an average of 2.08 and 1.62 parallel fault subtasks across all versions and it-

erations. profile-parallel may incur more total expense due to the under-clustering

situation described in Section 7.5.2 and depicted in Figure 40. Moreover, because

each of the techniques that we implemented has merit, it is likely that clustering ex-

ecutions for the purpose of fault-localization may be conducted in a number of ways
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with good results. Although more research is necessary to determine the best clus-

tering technique, we have demonstrated the promise of parallelizing the debugging

effort in such an automated way.

7.5.5 Threats to Validity

Although this empirical study provides evidence of the potential usefulness of the

parallel-debugging techniques developed in this research, there are several threats to

the validity of the empirical results that should be considered in their interpretation.

Threats to the external validity of an experiment limit generalizing from the re-

sults. The primary threat to external validity arises because only one medium-sized C

program has been considered. Thus, we cannot claim that these results generalize to

other programs. In particular, no generalization can be made as to the effectiveness

of parallel debugging. However, a number of faults were randomly chosen from the

subject and combined to produce the 100 8-fault versions used in this research and

thus, these versions are useful for exploring the presented techniques.

Threats to the internal validity occur when there are unknown causal relationships

between independent and dependent variables. In this study, we have postulated a

simplistic development scenario that removes these causal relationships. However,

for real developers, there will be causal relationships between total expense and the

debugging mode chosen. For example, developers will interact with each other, which

may change the expense in either direction.

Also, we assume that a developer can identify the fault by inspecting the code—

that is, she can follow the order of statements that is specified and determine at each

one whether it is faulty. We do think that the amount of code that must be examined

while following the prescribed order of the fault-localization technique is indicative

of the technique’s effectiveness. This issue should be explored further with human

studies.
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The integration of multiple bug fixes may be more error-prone than one-at-a-time

bug fixing. This may cause new bugs to be introduced as the parallel debugging

proceeds. Our experiment does not address this difficulty; further studies are needed

to explore it.

7.6 Study 5: Evaluating the Efficiency of the Tarantula
Technique

To evaluate the efficiency of the Tarantula technique, we recorded timings of applying

the technique to subject programs and test suites. We compare these results with

the published timings of another state-of-the-art fault-localization technique. We

found that Tarantula is in fact efficient—in some cases two orders of magnitude more

efficient than the compared technique.

7.6.1 Object of Analysis

For the object of analysis, we used the Siemens suite [37] of programs. Of these faulty

Siemens versions, we were able to use 122 versions. These versions are described in

Section 7.3.1.

7.6.2 Variables and Measures

Our study manipulated one independent variable: the fault-localization technique.

The techniques that we examine are: Tarantula and Cause Transitions [17]. We also

reason about the timings of three other techniques: Set union, Set intersection, and

Nearest Neighbor Queries.

To compare these techniques, we use one dependent variable: the efficiency of the

technique, measured as units of time to perform the analysis.

7.6.3 Experimental Setup

To evaluate the efficiency of the techniques, we recorded timings of using the Tarantula

technique. The timings are gathered for both computational time and time required
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for necessary I/O. For the Cause-Transitions technique, we use the timing averages

reported in [17]. For the other three techniques, we do not have recorded timings,

but we can reliably estimate their efficiency relative to the two techniques for which

we have recorded times. We discuss this in detail in Section 7.6.4.

7.6.4 Results and Discussion

Table 7 summarizes the efficiency results for the study. For Tarantula, both compu-

tational time and the time including computation and I/O are shown. For example,

the table shows that for the program schedule2, the Tarantula technique required

0.0032 seconds of computational time and about 30 seconds to read and parse the

coverage information about the test cases. For this same program, Cause Transitions

requires over two hours to complete its analysis.

Table 7: Average time expressed in seconds.

Program Tarantula Tarantula Cause Transitions
(computation only) (including I/O)

print tokens 0.0040 68.96 2590.1
print tokens2 0.0037 50.50 6556.5
replace 0.0063 75.90 3588.9
schedule 0.0032 30.07 1909.3
schedule2 0.0030 30.02 7741.2
tcas 0.0025 12.37 184.8
tot info 0.0031 8.51 521.4

Although we do not have timing information for the Set-union, Set-intersection,

and Nearest-Neighbor techniques, because of the way in which the computation is

performed, we expect that their timings would be similar to those found with the

Tarantula technique. In the Set-intersection and Set-union techniques, set operations

are performed over the set of statements for all passed test cases and a single failed

test case. In the Nearest-Neighbor technique, a distance score must be defined for

every passed test case. Then, set operations are performed over the set of statements
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using two test cases. In these three techniques, the SDG for the program is then tra-

versed until the fault is found. We expect the computational time for these techniques

and Tarantula to be similarly small. Moreover, the time required by the Tarantula

technique for computation is quite small—in the thousandths of a second—thus, com-

parable times for other techniques will be indistinguishable by humans. The I/O cost

should also be similar for these techniques. Recall that the Nearest-Neighbor tech-

nique needs to read in all coverage information for all passed test cases to determine

which passed test case will be chosen as the “nearest” one to the failed test case used.

Similarly for the Set-union and Set-intersection techniques, coverage information for

all passed test cases and one failed test case must be read.

It is worth mentioning that Tarantula’s I/O time can be greatly reduced with a

more compact representation of the coverage information. Currently, the tool is using

the output of gcov, which stores every test case’s coverage in a text file that contains

the program’s full source code. For each test case, a text file of this format must be

read in and parsed to extract which statement were executed.

Nonetheless, the results show a difference of about two orders of magnitude be-

tween Tarantula and Cause Transitions, indicating that for these programs the Taran-

tula technique is not only significantly more effective, but also much more efficient.

7.6.5 Threats to Validity

A limitation to this study is that we did not implement the technique to which we

compared. This could be a factor when considering the efficiency results. Whereas the

particular implementation may affect the efficiency of the techniques, the differences

in timing results that we report are drastic enough (two orders of magnitude in some

cases; see Table 7) that we believe that the implementation cannot explain these

differences.
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7.7 Study 6: Evaluating the Efficiency of the Clustering
Techniques for Multiple Faults and Parallel Debugging

To evaluate the efficiency of the two clustering techniques we measured the timings

of applying the clustering techniques. These clustering techniques were defined to

improve the effectiveness of fault localization in the presence of multiple faults and

to enable the parallelization of the debugging process. We found that the fault-

localization-based clustering is more efficient than the profile-based clustering. More-

over, we found that fault-localization-based clustering is efficient enough to perform

in practice, requiring, on average, less than a second to compute the clusters.

7.7.1 Object of Analysis

We use the same 100, randomly generated, 8-fault versions of space as those used

for Study 3, described in Section 7.4.1.

7.7.2 Variables and Measures

This study manipulated one independent variable: the clustering technique used to

cluster failed test cases to create fault-focusing clusters. The techniques that we

examine are

• profile-based clustering

• fault-localization-based clustering

To compare these clustering techniques, we use one dependent variable: the effi-

ciency of the technique measured by the time required to perform the clustering.

7.7.3 Experimental Setup

For the fault-localization-based clustering, we started with 100 8-fault versions of

the subject program, and performed the full parallel-mode debugging: clustering the

failures, creating specialized test suites, finding the faults that each of them found,
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removing those faults from the program, and then iterating the process until the

program and test suite were failure-free. We measured the time for each of the

clusterings.

For the profile-based clustering, the implementation of the tool that performed this

clustering was no longer available to re-run the experiment and gather the timings.

Because of its unavailability, we implemented the clustering technique and simulated

the experiment. We simulated its use on the subject by randomly generating 100

branch profiles for the space program. These were clustered using the profile-based

technique, and the time for this clustering was recorded. This process was repeated

1000 times so that we could take the mean of the timings.

7.7.4 Results and Discussion

Figure 42 summarizes the efficiency results for the study. For the profile-based clus-

tering, the mean time was 24.8 seconds to perform each clustering of 100 failed test

cases. For the fault-localization-based clustering, the mean time was 0.8 seconds to

perform each clustering of all failed test cases over the entire experiment.
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Figure 42: Mean time for clustering expressed in seconds.
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These results show that clustering can be performed efficiently for the purposes of

debugging programs with multiple faults or for debugging in parallel. Although the

profile-based clustering is less efficient than the fault-localization-based clustering,

there are likely many other clustering techniques that can be used for this purpose

that are more efficient. The fault-localization-based clustering has been found to be

both efficient and effective (see Sections 7.4 and 7.5).

7.7.5 Threats to Validity

A limitation of this study is that we were unable to re-run the experiment with the

profile-based clustering to gather timings. This could be a factor when considering

the efficiency results. However, the simulated environment was very similar to the

actual environment for the experiment. In fact, although we did not gather formal

timings when the experiment was originally run, the actual profile-based clustering

took much longer than our re-implemented version.

7.8 Study 7: Studying the Effects of the Composition of
the Test Suite on Fault Localization

To evaluate the effects of the composition of the test suite on fault localization,

we performed an experiment on test-suite composition, in which we investigate the

effects that test-suite reduction strategies have on the effectiveness of fault-localization

techniques. In this study, we used 10 test-suite reduction strategies and four existing

fault-localization techniques including the Tarantula approach, along with a set of

programs, containing single and multiple faults, and a large number of test suites.

This study shows the trade-offs that exist between test-suite reduction and fault-

localization effectiveness. This study also shows that, in general, existing test-suite

reduction strategies reduce the effectiveness of fault-localization techniques.
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7.8.1 Object of Analysis

We used the Siemens suite of programs and the space program. Each version of the

Siemens programs and each original version of the space program contains exactly

one fault, although the faults may span multiple statements or even functions. In

addition to the single-fault versions, we randomly generated 10 2-fault versions and

10 3-fault versions for the space program by injecting the faults from its original

versions into the version that is deemed to have no faults—the correct version.

Combined, there are 190 faulty versions. Of these versions, we were able to use 169

versions. Two versions—versions 4 and 6 of print tokens—contained no syntactic

differences from the correct version of the program in the C file—there were only

differences in a header file. In eight versions—version 32 of replace, version 9 of

schedule2, and versions 1, 2, 3, 12, 32 and 34 of space—no test cases fail, thus the

fault was never manifested. In 11 versions—version 10 of print token2, version 27 of

replace, versions 5, 6, and 9 of schedule, and versions 25, 26, 30, 35, 36, and 38

of space—test cases failed because of a segmentation fault. Thus, we were unable

to use these 11 versions for our experiment. After removing the 21 versions, we were

left with the 169 versions.

7.8.2 Variables and Measures

For this study, we manipulated two independent variables: the test-suite reduction

strategies, and the fault-localization technique. We examined 10 test-suite reduc-

tion strategies. We also examined the effects of reduction on four fault-localization

techniques.

7.8.2.1 Independent Variable: Test-Suite Reduction Strategies

The test-suite reduction strategies that we use for our experiment have two dimen-

sions: (1) the test-case requirements used for the reduction and (2) the test set being

considered in the reduction.
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For the first dimension of our test-suite reduction strategies, we consider two

test-case requirements on which to apply the reduction: statement-based and vector-

based. Statement-based reduction (abbreviated as S), an often-used test-suite reduc-

tion strategy (e.g., [36]), has as its goal to produce a reduced test suite that executes

the same set of statements as the unreduced test suite. Thus, the test-case require-

ments for this strategy are the statements in the program.

To illustrate, consider the program and test suite shown in Figure 43. This exam-

ple program is the same as that shown in Figure 4 from Chapter 2 except that this

example has a test suite that contains more test cases and shows the fault-localization

results from multiple techniques. Program mid() inputs three integers and outputs

the median value of the three integers. To the right of the code is information about a

test suite of eight test cases: inputs are shown at the top of each column, coverage is

shown by the black dots, and pass/fail status is shown at the bottom of the columns.

To the right of the test suite are several columns that relate to fault localization;

these columns will be described in Section 7.8.2.2. For statement-based reduction,

the test-case requirements are statements s1, s2, ..., s13, and the test suite shown cov-

ers all statements except s12. Statement-based reduction could result in {t1, t2, t3,

t4} because this subset of the test suite also covers all statements in the program

except s12 (i.e., it satisfies the same test-case requirements). In this case, t5, t6, t7,

and t8 provide no additional statement coverage over {t1, t2, t3, t4}. More than one

reduced test suite can satisfy the same test-case requirements as the unreduced test

suite. For our example, test suites {t1, t2, t3, t4, t5}, {t2, t3, t4, t7}, and {t2, t3,

t4, t5, t7} are also reduced test suites that satisfy the same test-case requirements as

the unreduced test suite.

Vector-based reduction (abbreviated as V ), our new test-suite reduction strategy,

has as its goal to produce a reduced test suite that executes the same set of statement

vectors as the unreduced test suite. A statement vector is the set of statements
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Figure 43: Example program, information about its test suite, and its rank results
for the four fault-localization techniques.
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executed by one test case.3 To illustrate, consider again the program and test suite

shown in Figure 43. For vector-based reduction, the test-case requirements are the

statement vectors in the program. Test cases t1, t7, and t8 each executes statement

vector 〈s1, s2, s3, s4, s6, s7, s13〉. Thus, to maintain vector coverage, one of these test

cases must be in any reduced test suite. Vector-based reduction could result in test

suite {t1, t2, t3, t4, t5}. In this case, t6, t7, and t8 provide no additional vector

coverage over {t1, t2, t3, t4, t5}. For the example program, there are also other

reduced test suites, such as {t2, t3, t4, t5, t7} and {t2, t4, t5, t6, t8}, that satisfy

the same test-case requirements as the unreduced test suite.

For the second dimension of our test-suite reduction strategies, we consider the

subset of the test cases in the test suite on which the reduction is performed. We

apply the reduction to five types of test sets in the test suite: (1) All, (2) Passed, (3)

Failed, (4) Passed and Failed, and (5) All with preference for failed. The first and

most traditional test set consists of all test cases in the test suite, or All. For this test

set, all test cases in the test suite are considered equally in the reduction. The second

test set consists of all passed test cases in the test suite, or Passed. For this test set,

the reduction is performed only on the passed test cases, with no reduction of the

failed test cases. The third test set consists of the failed test cases, or Failed. For this

test set, the reduction is performed on the failed test cases, with no reduction on the

passed test cases. The fourth test set consists of the set of passed and the set of failed

test cases, or Passed and Failed. For this test set, each group of test cases—passed

and failed—is reduced in isolation and then the reduced sets are combined to form the

reduced test suite. The fifth test set consists of the entire test suite with preference

in reduction given to failed test cases, or All with preference for failed. For this test

set, the reduction is performed like the All approach except that whenever a passed

test case and a failed test case are equal candidates for keeping in the reduced test

3Another term for the set of statements executed by a test case is an execution slice.
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suite, the failed test case is selected.

Combining the two dimensions—the test-case requirements and the test set being

considered—results in 10 test-suite reduction strategies. The abbreviated expression

and brief description for each strategy is shown in the following.

SA: statement-based reduction on all test cases;

SP : statement-based reduction only on passed test cases;

SF : statement-based reduction only on failed test cases;

SPF : statement-based reduction on both passed and failed test cases in isolation;

SR: statement-based reduction on all test cases with preference for failed test cases;

VA: vector-based reduction on all test cases;

VP : vector-based reduction only on passed test cases;

VF : vector-based reduction only on failed test cases;

VPF : vector-based reduction on both passed and failed test cases in isolation;

VR: vector-based reduction on all test cases with preference for failed test cases;

To illustrate the 10 strategies, again consider the program and test suite in Fig-

ure 43. Table 8 shows, for each test-suite reduction strategy, one possible reduction

result.

7.8.2.2 Independent Variable: Fault-Localization Techniques

We examined how the test-suite reduction strategies would effect the ability of four

fault-localization techniques to perform effectively. We considered four fault localiza-

tion techniques:

• Tarantula
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Table 8: Test-suite Reduction Results on mid().

Strategy Reduced Test Suite.
SA {t1, t2, t3, t4}
SP {t1, t2, t3, t4, t7, t8}
SF {t1, t2, t3, t4, t5, t6, t7}
SPF {t1, t2, t3, t4, t7}
SR {t2, t3, t4, t7}
VA {t1, t2, t3, t4, t5}
VP {t1, t2, t3, t4, t5, t7, t8}
VF {t1, t2, t3, t4, t5, t6, t7}
VPF {t1, t2, t3, t4, t5, t7}
VR {t2, t3, t4, t5, t7}

• Statistical Bug Isolation

• Jaccard

• Ochiai

The Tarantula technique was defined in Chapter 3. The Statistical Bug Isolation

technique, or SBI, was defined in Section 3.6.1. The Jaccard and Ochiai techniques

were proposed by Abreu and colleagues for the purposes of fault localization [1] and

were defined in Section 3.5.3.

For convenience, the metrics that define the ranking of the coverage entities and

thus influence the effectiveness are shown here:

For Tarantula, we define two metrics: suspiciousness and confidence as such:

suspiciousnessT (s) =
%failed(s)

%failed(s) + %passed(s)
(7.8.1)

confidence(s) = max(%failed(s),%passed(s)) (7.8.2)
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For Statistical Bug Isolation, to facilitate comparison among Tarantula, SBI, and

the other fault-localization techniques, we adapted Equation 3.6.1 to compute the sus-

piciousness of a statement s or Failure(s) by considering the predicate to be whether

s is executed. In the adapted equation, passed(s) is the number of passed test cases

that executed s and failed(s) is the number of failed test cases that executed s. We

represent the Failure as suspiciousnessS.

suspiciousnessS(s) =
failed(s)

passed(s) + failed(s)
(7.8.3)

SBI also uses other metrics, Context and Increase. However, in this application of

the technique, statement-coverage predicates without selective sampling of predicate

observations, these metrics do not influence the ranking.

The Jaccard technique defines suspiciousness of a coverage entity as

suspiciousnessJ(s) =
failed(s)

totalfailed+ passed(s)
(7.8.4)

The Ochiai technique defines suspiciousness of a coverage entity as

suspiciousnessO(s) =
failed(s)√

totalfailed ∗ (failed(s) + passed(s))
(7.8.5)

Figure 43 shows the way that each of these techniques assigns suspiciousness to

each coverage entity, in this case statements. It also shows for every technique, the

ranking that results.

7.8.2.3 Dependent Variables

For each pairing of a test-suite reduction strategy and a fault-localization technique,

we measured two dependent variables: the percentage reduction in the test-suite size

and the increase in expense of fault localization. The percentage reduction in test-

suite size is measured by calculating the ratio of the size of the reduced test suite to
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its unreduced test suite. This metric, which we call Reduction, is computed by the

following equation.

Reduction =

(
1− size of reduced test suite

size of unreduced test suite

)
∗ 100 (7.8.6)

The effectiveness of the fault-localization technique is measured by the percentage

of the program that must be examined to find the fault if using the prescribed rank

given by the fault-localization technique. This metric, which we call Expense, was

defined in Section 7.4.2, and is computed by the following equation.

Expense =
rank of fault

number of executable lines of code
∗ 100 (7.8.7)

7.8.3 Experimental Setup

We applied the 10 test-suite reduction strategies and the four fault-localization tech-

niques to the 169 versions of our programs and their test suites. This section describes

the way in which we set up the experiment to apply the test-suite reduction strategies

and the fault-localization techniques that we used.

We used three steps to set up the experiment. First, to simulate realistically-

sized test suites for these programs and to experiment with test suites of different

composition, for each of the 169 versions, we randomly generated 10 test suites of

different sizes containing from 50 test cases to 500 test cases by increasing the test suite

size by 50 test cases each time. The smaller test suites are subsumed by the larger test

suites—the 100-test-case test suite contains the 50-test-case test suite, the 150-test-

case test suite contains the 100-test case test suite, and so on. This process created

1, 690 (169 ∗ 10) test suites with sizes ranging from 50 to 500. To provide an average

over many test suites, we repeated the first step 100 times, which created 169, 000

(1, 690∗100) test suites. We used these 169, 000 test suites as the unreduced test suites.

Second, we applied the 10 reduction strategies from Section 7.8.2.1 to the unreduced
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test suites. This gave us 1, 690, 000 (169, 000 ∗ 10) reduced test suites. Including

the 169, 000 unreduced test suites with the 1, 690, 000 reduced test suites resulted in

1, 859, 000 test suites of different sizes. Third, we applied the four fault-localization

techniques to the 1, 859, 000 test suites and recorded the 7, 436, 000 (1, 859, 000 ∗ 4)

fault-localization results for the analysis.

7.8.3.1 Generating Unreduced Test Suites

Each version of the subject programs that we used has a large test pool. We used its

entire test pool as the input and applied the following process to randomly generate

the unreduced test suites.

1. We randomly selected one failed test case from the test pool to ensure that the

generated test suite has at least one failed test case.

2. We randomly selected one test case from the test pool (without considering

its pass/fail status). We repeated the test case selection, without replacement,

until we got the desired number (e.g., 50, 100, . . .) of test cases in the test suites.

Each time one test case was selected, we marked it so that it was not selected

again.

7.8.3.2 Applying Reduction Strategies

For each of the 169, 000 unreduced test suites, we used the following process4 to apply

the five statement-based reduction strategies.

1. We marked all statements as “uncovered” and all test cases as “unselected.”

2. For each “unselected” test case, we calculated the number of “uncovered” state-

ments that it covered.

4For the strategies SA and V A, we randomly selected one failed test case first to ensure that the reduced test
suite has at least one failed test case. Otherwise, fault-localization may not be needed or applied.
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3. We marked the first (if there was more than one) test case encountered that

covered the maximum number of statements as “selected,” and we marked all

statements it covered as “covered.”5

4. We repeated Steps 1-3 until there were no remaining “uncovered” statements

covered by any “unselected” test cases.

5. We considered all “selected” test cases as members of the reduced test suite.

Similarly, for each of the 169, 000 unreduced test suite, we used the following

process5 to apply the five vector-based reduction strategies.

1. We iterated over the test cases in the test suite, checking, for each test case,

whether we have already encountered this exact set of statements (or vector)

covered by another test case. If we have not encountered it before, we created

a bin for it and placed that test case in that bin. If we have encountered it

before, we placed the test case in the matching bin.

2. We randomly selected one test case from each bin. The test cases that were

selected comprised the reduced test suite.

7.8.4 Results

We organize the presentation of the experimental results in the following way. We

first examine the effects of all 10 test-suite reduction strategies on one of the fault-

localization techniques—Tarantula. Section 7.8.4.1 presents the results of the way in

which applying each of the 10 test-suite reduction strategies affects Tarantula’s fault-

localization effectiveness. We next present the reduction achieved by each of the

10 test-suite reduction techniques. These results are important because they show

that the sizes of the reduced and unreduced test suites actually differ. Section 7.8.4.2

5This is equivalent to randomly selecting one test case because the test suites we used were randomly generated
from Section 7.8.3.1.
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presents these test-suite reduction results. Based on the results of Sections 7.8.4.1 and

7.8.4.2, we chose two reduction strategies that are representative of the others, and

present their effects on each of the four fault-localization techniques. Section 7.8.4.3

presents these results. Finally, in Section 7.8.4.4, we show the size reduction of the test

suites by the two representative reduction strategies for each of the subject programs.

7.8.4.1 Expense Increase on Tarantula

Table 9 shows the increase in Expense of using the Tarantula technique on all 10

test-suite reduction strategies for the eight single-fault programs. In the table, rows

represent the subject programs and columns represent the test-suite reduction strate-

gies using their abbreviations. Each entry in the table represents the mean of the

Expense (see Equation 7.8.7) increase over the base Expense computed on the unre-

duced test suite. The mean is computed over all versions of the program, over all

100 iterations, and over all 10 differently-sized test suites. For example, for replace,

the mean increase in Expense over the unreduced test suite for test-suite reduction

strategy SP is 3.958. The last row in the table is a summary aggregation over all

versions and is computed as the mean over all versions of all of the programs, over

all 100 iterations, and over all 10 differently-sized test suites.

The table shows that all statement-based reduction strategies incur a greater ex-

pense increase than the vector-based strategies. Although there are a few exceptions

(using the SP strategy), the overwhelming trend is that these statement-based reduc-

tion strategies cause an increase in the expense. This means that, for our subject pro-

grams, if a test suite is reduced using statement-based strategies, the fault-localization

technique will almost always perform worse. Among the statement-based reduction

strategies, for the subjects we studied, reducing on all test cases with preference for

failed (SR) causes the greatest increase in fault-localization expense, and reducing on

all failed test cases (SF ) causes the least increase in expense. Among the vector-based
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reduction strategies, reducing on any of the unreduced test suites shows a negligible

impact on the fault-localization expense. This means that, for our subject programs,

if a test suite is reduced using vector-based strategies, the fault-localization technique

will almost always perform the same. We also see that for vector-based strategies,

reducing on the failed test cases (VF ) incurs the greatest increase on average and re-

ducing on all test cases with preference for failed (VR) causes the least increase in the

fault-localization expense. In fact, on many versions and programs and overall, reduc-

ing based on the VR strategy causes a decrease in the fault-localization techniques’

expense, although we note that this decrease is small and not always present.

7.8.4.2 Percentage Reduction

Table 10 shows the percentage reduction in the size of the test suite using each of the

10 test-suite reduction strategies. Like Table 9, rows represent the subject programs

and columns represent the test-suite reduction strategies using their abbreviations.

Each entry in the table is the mean of the percentage reduction of the test suite from

the unreduced test suite using the indicated strategy. For example, for replace, the

mean reduction of 92% is achieved on the unreduced test suite by test-suite reduction

strategy SP ; this means that the reduced test suite is only 7.7% of the unreduced

test suite. Each mean is computed over all faulty versions of the program, over all

100 iterations, and over all 10 differently-sized test suites. The last row in the table

is a summary, and is computed as the mean over all versions of all programs, over all

100 iterations, and over all 10 differently-sized test suites.

From the table, we can see that most statement-based reduction strategies provide

more reduction than the vector-based strategies. On average, the statement-based

reduction strategies provide about a 90% reduction in the test-suite size, and the

vector-based reduction strategies provide about a 50% reduction in the test-suite size.

One exception occurs for both statement-based and vector-based reduction when they
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are applied to the failed test base: the statement-based reduction strategy applied to

only failed test cases (SF ) provides only about 5% reduction, and the vector-based

reduction strategy applied to only failed test cases (VF ) provides only about 3%

reduction. This small reduction occurs because, in general, these test suites contain

many more passed test cases than failed test cases, and thus, less reduction is achieved

when reducing only on these relatively few failed test cases.

7.8.4.3 Expense Increase on All Fault-localization Techniques

To evaluate and compare the effects of test-suite reduction on all four fault-localization

techniques discussed in Section 7.8.2.2, we present the results of each fault-localization

technique on two strategies: statement-based reduction on all test cases (SA) and

vector-based reduction on all test cases (VA). Tables 9 and 10 indicate that applying

these two test-suite reduction strategies on all test cases is representative of the other

eight test-suite reduction strategies.

Figures 44, 45, 46, 47, 48, 49, 50, 51, 52, and 53 show these results. We present the

data using 10 boxplot6 charts. Figure 44 through 51 show the charts for each of the

single-fault programs, and Figures 52 and 53 show the charts for the multiple-fault

versions of the space program. Each boxplot column shows a fault-localization tech-

nique applied to a reduced test suite produced by either statement-based reduction

or vector-based reduction. The fault-localization techniques are abbreviated as such:

T for Tarantula, S for Statistical Bug Isolation, J for Jaccard, and O for Ochiai.

These data show that, for our subject programs, these test-suite reduction strate-

gies have a similar effect on all four fault-localization techniques for each subject

program. The data also shows that the statement-based reduction strategy clearly

produces both a greater increase in fault-localization expense and greater variability

6A boxplot is a standard statistical device for representing data sets. In these boxplots, each data set’s distribution

is represented by a box. The box’s height spans the central 50% of the data and its upper and lower ends mark the

upper and lower quartiles. The middle of the three horizontal lines within the box represents the median. The vertical

lines attached to the box indicate the tails of the distribution.
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Figure 44: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for print tokens.
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Figure 45: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for print tokens2.
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Figure 46: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for replace.
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Figure 47: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for schedule.

156



T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)
-20

-10

0

10

20

30

40

E
x
p
e
n
se

 I
n
cr

e
a
se

schedule2

Figure 48: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for schedule2.
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Figure 49: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for tcas.
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Figure 50: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for tot info.

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)
-20

-10

0

10

20

30

40

E
x
p
e
n
se

 I
n
cr

e
a
se

space

Figure 51: Expense increase for the statement-based reduction (SA) and the vector-
based reduction (VA) for single-fault programs for Space.
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Figure 52: Expense increase for the statement-based reduction (SA) and vector-
based reduction (VA) for Space with 2 faults.
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Figure 53: Expense increase for the statement-based reduction (SA) and vector-
based reduction (VA) for Space with 3 faults.
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in those increases over the vector-based strategy. Whereas the boxplots for SA are

generally raised and wide, the boxplots for VA are centered at zero and narrow.

7.8.4.4 Size Results

Figure 54 shows the percentage reduction for each test-suite reduction strategy on

each subject program as two boxplot charts. The left chart shows the results for

the SA strategy and the right chart shows the results for the VA strategy. The

vertical axis for these charts represents the percentage of test-suite size reduction for

each program and reduction strategy. The figure shows that the statement-based

reduction strategy provides a much greater and more consistent reduction than the

vector-based reduction strategy.

7.8.5 Discussion

In this section, we summarize and provide some observations about the results that

we obtained.

The data demonstrates a trade-off between the test-suite reduction that is achieved

and the effectiveness of the fault localization. The statement-based reduction strategy

provides much greater reduction of the test suites but in general negatively affects the

effectiveness of the fault-localization techniques. The vector-based reduction provided

less reduction in test-suite size, but provides negligible impact on the effectiveness of

the fault-localization techniques. These results hold for all four fault-localization

techniques.

In their study, Hao and colleagues [35] found that test-case redundancy can nega-

tively affect fault localization. Our studies provide a more thorough experiment with

the goal of investigating whether removing redundancy from the test suite improves

the effectiveness of fault-localization techniques, as they proposed. Our evaluation

does not support their finding that redundancy is a major source of fault-localization

error. Although we observed that occasionally the fault localization improves by
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removing redundancy, in our study, the improvement was small and unpredictable.

Given that our experiment shows that, for our subjects, elimination of test-suite

redundancy generally negatively impacts effectiveness of fault localization, we were

interested in whether it is possible to retain fault-localization effectiveness, with neg-

ligible impact, while saving testing costs. We observed that, usually, traditional

statement-based reduction can save testing expense, but it comes at the cost of effec-

tiveness of fault localization. We investigated a stricter reduction criterion—vector-

based—and showed that in general, for our subject programs, testing expense could

be reduced with negligible effects on fault-localization effectiveness.

Because of the trade-off between reduction and fault-localization effectiveness,

we recommend that developers utilize the reduction strategy according to the time

that can be allocated to testing. If testing time is limited, testing cost is very high,

or developer time is inexpensive, the statement-based reduction strategy may be

most appropriate. If developer time is most important, the vector-based reduction

strategy may be most appropriate. Additionally, if testing cost is inexpensive, then

the entire test suite may be run to provide the fault-localization technique with the

most information.

7.8.6 Threats to Validity

Threats to internal validity arise when factors affect the dependent variables without

the researchers’ knowledge. It is possible that some implementation flaws could have

affected the results. However, we are confident in the accuracy of the results, given

that we implemented four fault-localization techniques and 10 test-suite reduction

strategies, and the results were consistent among them.

Threats to external validity arise when the results of the experiment are unable

to be generalized to other situations. In this experiment, we evaluated the effects of

test suite reduction on fault localization using only eight programs, and thus, we are
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unable to definitively state that our findings will hold for programs in general. We

attempted to address some of these uncertainties by performing our evaluation on

a variety of programs of varying size. For each subject program, we performed our

evaluation on varying sizes of test suites, many different faults, and many randomly

chosen test suites. We also performed evaluation on a varying number of faults for

one of the programs to demonstrate how this factor affects the results. In addition,

we implemented and evaluated the effects on four fault localization techniques.

Threats to construct validity arise when the metrics used for evaluation do not

accurately capture the concepts that they are meant to evaluate. In our case, we

measure the effectiveness of the fault localization techniques using the Expense mea-

sure that shows the percent of the code that must be examined to find the fault. The

metric assumes that the developer will inspect the program, statement by statement,

in the prescribed order until reaching the fault, and that she will be able to recognize

that it is faulty. While this may not be a realistic debugging process, we believe

that it is a reasonable approximation of relative effectiveness of the fault localization

technique. For example, a technique that identifies the fault as the most suspicious

statement will likely provide the developer with a better hint than another technique

that marks the fault as the least suspicious statement.
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CHAPTER VIII

CONCLUSIONS

This dissertation presents an approach for providing partial automation for fault

localization with the use of commonly available dynamic information gathered from

test-case executions in a way that is effective, efficient, tolerant of test cases that pass

but also execute the fault, and scalable to large programs that potentially contain

multiple faults. Specifically, the approach and techniques identify suspicious regions

in programs using coverage information gathered from test cases. These suspicious

regions can be reported to the developer to direct attention in the debugging process.

This dissertation also provides techniques to automatically partition test suites to

better enable fault localization of programs with multiple faults and to enable a

parallelized approach to debugging.

These approaches have been shown to be effective and efficient for the programs

that we studied. Specifically, the fault-localization technique has been shown to more

effective in pinpointing faults than the best of the techniques to which we compared it

for the subject programs used. Moreover, in some cases, our technique was found to be

two orders of magnitude more efficient than this best technique to which we compared

it. The test suite partitioning and the creation of specialized test suites was shown

to be an effective and efficient approach to addressing the problem of programs with

multiple faults. Our studies showed that clustering failures can provide an expected

gain in efficiency over not clustering with a 99% confidence for the subject programs

that we used. Moreover, using failure clustering to enable debugging in parallel gives

an additional benefit in terms of a reduced critical expense or a reduced time to

delivery. Our studies showed a 50% reduction in the critical expense to a failure-free
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program for our subject programs. Our studies also found that failure clustering can

be efficient: on average the clustering required less than a second.

8.1 Merit

This dissertation research provides a number of merits for the field of software en-

gineering. We developed a new technique for assisting software developers in their

attempts to locate faults in programs that is both effective and efficient. Our tech-

nique can use commonly available dynamic information that is available from many

current testing tools.

We developed a new techniques for locating faults in programs that contain mul-

tiple faults. We showed that these techniques are both effective and efficient.

We presented the first work on a new mode of debugging, called parallel debugging,

and provided supporting techniques that automate much of this process. We showed

that this mode of debugging can provide a significant savings in terms of the time to

debug a program.

This research provides a number of directions for future research, and in fact, sev-

eral researchers have already used our research as a foundation for theirs. Researchers

have extended the concepts of our fundamental fault-localization algorithm to new

forms of fault localization, re-interpreted our fault-localization metrics in terms of

data-mining concepts, re-interpreted and extended our fault-localization metrics in

terms of set-similarity concepts, and extended our visualization approaches to three-

dimensional displays.

8.2 Future Work

This dissertation research leads to many possible future research direction . The rest

of this chapter discusses the future work in three areas.
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8.2.1 Exploration of Extensions to Fault Localization Technique

This dissertation has presented a foundational fault-localization technique that can

be extended and varied in a number of ways. First, this work can be applied to

a number of different coverage entities, such as statements, branches, method calls,

and methods. Because one of our goals was to use commonly available testing in-

formation, we focused our empirical evaluation on statement-level instrumentation.

Future researchers can evaluate whether other forms of instrumentation may prove

to be more effective for some types of faults. The type of coverage entity may affect

which types of faults are found most effectively. Future researchers can explore the

correlation of the type of fault and the method to find them best.

8.2.2 Hierarchical Fault Localization

This dissertation demonstrates that fault localization performed using statement cov-

erage information can be both effective and efficient. However, less efficient techniques

may be found that can locate faults more effectively in some cases. For example, the

Tarantula technique might be applied to definition-use pairs or sub-paths through the

program. Because such instrumentation may be expensive both in terms of the exe-

cution overhead time and storage space, these approaches may be less efficient. Tech-

niques could be developed that leverage more efficient approaches to inform and target

more expensive approaches. Specifically, a light-weight approach, such as Tarantula

using statement coverage, could be used to select regions of the code on which to

selectively apply the more expensive approaches. In this way, a hierarchical approach

to fault localization could be developed.

8.2.3 Fully Parallelized Debugging

This dissertation presents a foundation for future work on debugging in parallel. This

work may motivate a number of future research directions. Here, I identify three areas

for potential future research. First, during parallel debugging, one developer could
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finish his debugging while another developer is still debugging. In this situation, fixes

could be distributed to other developers, or one fault fix may affect the debugging ef-

forts of another developer. Techniques could be developed that automatically provide

recommendations in such situations.

Second, organizational and situational constraints will likely dictate the best way

to debug in parallel. For example, an imminent release date may require a more

aggressive parallelization if redundant developer work can be afforded in an effort to

quickly resolve critical bugs. Also, an organization may have a limited number of

developers—the parallelization should take this into account. A cost model could be

developed that is informed by the program and test suite as well as organizational

constraints to customize the technique.

Third, assignment of suspected faults and specialized test suites to the developers

that will debug them can be automated. Based on information such as source-code

revision history, ownership or familiarity of the suspected faulty code can be mapped

to developers. Techniques could be developed to leverage this information to au-

tomatically assign developers to fault-localization results and specialized test suites

when multiple faults can be debugged simultaneously.

8.2.4 Integrated Fault Localization

This dissertation presents fault-localization techniques that utilize artifacts from the

testing process to suggest developer actions with a symbolic debugger. These steps

currently involve separate tools and thus require the developer to switch between

them. A typical process would require the developer to perform the following three

steps: (1) test the program to generate the passed and failed test cases, along with

the execution information about each test case; (2) input this testing information to

the fault-localization tool which produces information that suggests possible faults

in the program; and (3) use a symbolic debugger to place break-points and examine
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the state at the suggested faulty sites. The integration of these three tools can

further automate much of the developer’s work. A tool could run the test suite,

automatically find likely faults, rerun test cases, and sample the state at those sites. A

debugger could automatically place break-points at likely fault sites. Also, techniques

could be developed to integrate source-code management systems that can remember

past fault locations and their fixes to potentially inform future debugging efforts.

These integrations offer possibilities for both further automation and avenues for

easy adoption in practice.
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