
Towards Visualization of Unit Test
and Source Code Relations

By Nadera Aljawabrah

A Thesis:

Submitted To The Phd School In Computer Science Of The

University Of Szeged In Partial Fulfilment Of The

Requirements For The Degree Of
Doctor of Philosophy

Supervisor: Dr.Tamás Gergely

Szeged,2020

Dedicated to
Mom, husband, my kids (Yaman, Mayar, and Zain), sisters,

and my father’s soul

Towards Visualization of Unit Test and Source
Code Relations

Nadera Aljawabrah

Submitted for the degree of Doctor of Philosophy
2020

Abstract

Test-to-code traceability is the ability to relate the test unit and source code artifacts

created during the software development life cycle (SDLC). Traceability of test and

code relations is fundamental to support various activities of software development

such as program comprehension, verification and validation, impact analysis, reuse,

maintenance, and software evolution. Notwithstanding its importance, many signif-

icant challenges are associated with traceability. One of these challenges is how to

support the comprehension and maintenance of these links efficiently and effectively.

Visualization is an important part that effectively supports understanding test-to-

code relations. It provides enhanced process visibility, helps engineers, developers,

and testers to verify the quality of TCT links, and understand which code modules

are tested by which unit tests.

As there are many sources from where the traceability relations can be inferred,

one of the most important questions is to decide which source or combination of

sources is the best to determine the test-to-code links. It is obvious that, if these

sources disagree, this will make it harder to understand what is going on, what was

the goal of the developer, and how the components are really related and change

impact analysis can yield false results, etc. Fortunately, visualization can aid this

task. The presented approach consists of three parts. The first part consists of the

recognition of artifacts from two different areas, source code, and unit test. The

second part presents different sources for capturing the links between code and test

iv

such as a naming convention, last call before assert, and the static call graph. The

third part includes the visualization method used to visually present the traceabil-

ity links inferred from traceability links sources. The trace visualization approach

is implemented as a trace visualization tool, which is called TCTracVis.

This thesis also provides an empirical study based on the implementation of the

presented approach. The approach and its tool support are applied in different

software development projects conducted with a group of students, academics, and

from industry. The effectiveness and practicability of the presented approach and its

tool support have been evaluated. The effectiveness results indicate that the visu-

alization of multilevel test-to-code traceability links, inferred from multiple sources,

is more effective for the testers and developers than using visualization of a single

source of traceability links. It helps to get a bigger picture of what is going on with

the tests, find solutions to the problems in testing, and understand the relationships

between test cases and the corresponding units under test. At the same time, the

usability results indicate that the participants found that the approach and its tool

support usability, and enhance the overall browsing, comprehension, and mainte-

nance of test-to-code traceability links of a system.

Copyright c© 2020 by NADERA AL JAWABRAH.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

November 24, 2020

Acknowledgements

Alhamdulillah, thank you Allah for all the blessing you had given me. The ability,

courage, endurance, and patience you put inside me, strengthening me in completing

this study and research.

First and foremost, I would like to show my deepest appreciation to my supervisor,

Dr.Tamás Gergely, for his precious and continuous guidance and support throughout

the course of this study. His knowledge and his logical way of thinking have been of

great value for me.

My special gratitude goes to my beloved mother for being the secret of my life-

long success with her blessing and prayers.

I owe my loving thanks to my supportive, encouraging and patient husband, Mr.Brhan

Alzyoud, my dear sisters Andera & Kawthar, my brother in law Ayed, my beloved

son Yaman, dear daughters Mayar & Zain, and all family members. Without their

endless support, love, and belief in me, it would have been impossible for me to

finish this work.

Finally, I’ll be forever grateful for all my friends who always being there and being

supportive in spiritual and understanding during the whole course of my study in

University of Szeged.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions of Thesis . 3

1.3 Outline of Thesis . 4

1.4 Published Articles Related to the Dissertation 5

2 Background 7

2.1 Traceability Definition . 7

2.2 Test-to-Code Traceability Links . 9

2.3 Software Visualization . 10

2.4 Visualization of Source Code . 13

2.5 Visualization of Testing Information 15

3 State of The Art 18

3.1 Research Method . 18

3.1.1 Creating Search Strings . 19

3.1.2 Research Identification . 22

3.1.3 First Round of Exclusion . 23

3.1.4 Second Round of Exclusion 23

3.2 Software Artifacts Relations . 24

3.2.1 Source Code and Software Artifacts Relationships 25

vi

Contents vii

3.2.2 Test Case And Software Artifacts Relationships 26

3.2.3 Test Cases and Source Code Relationships 28

3.3 Overview Of Traceability Recovery Approaches 29

3.3.1 Information Retrieval- Based Approach (IR-Based) 29

3.3.2 Data Mining-Based Approach 30

3.3.3 Heuristic-Based Approach . 31

3.4 Presentation Methods . 34

3.4.1 Traditional Methods . 34

3.4.2 Graph-Based Visualization Methods 37

3.4.3 Space-Filling Representation Methods 40

3.4.4 Virtual Reality Environment (VRE) 43

3.4.5 Visualization of Traceability Links in Literature 44

3.5 Discussion . 47

3.5.1 Open Research Area . 49

3.6 Conclusion . 51

4 Visualization of Trace Approach 53

4.1 Tracing Test and Code Links During Software Development 53

4.2 The Proposed Approach . 55

4.2.1 Traceability Recovery Techniques 58

4.2.2 Other Functionalities . 63

4.3 Architecture and Design principles 63

4.4 The Usage Example . 64

4.5 Summary . 70

5 Evaluation Of Visualizing Trace Approach 72

5.1 Usability Evaluation . 72

5.2 Study Context . 73

5.3 Study Subjects . 73

5.4 Study Results . 74

5.5 The Results of Questions . 78

5.6 Discussion . 80

November 24, 2020

Contents viii

5.7 Threats to Validity . 81

5.8 Summary . 81

6 Summary 83

Bibliography 88

November 24, 2020

Abbreviations

LA Lexical Analyses

LCBA Last Call Before Assert

CV Co-Evolution

LOC Lines of Code

LSI Latent Semantic Indexing

NC Naming Convention

NOA Number of Attributes

NOM Number of Methods

PM Probabilistic Model

RTM Requirements Traceability Matrix

SCG Static Call Graph

SCOTCH Slicing and Coupling based Test to Code trace Hunter

SDLC Software Development Life Cycle

STS Started Tested Sets

SVN Subversion (version control system)

UML Unified Modeling Language

UUN Unit under Test

VRE Virtual Reality Environment
ix

Chapter 0. List of Abbreviations x

VSM Vector Space Models

XML Extensible Markup Language

November 24, 2020

List of Figures

2.1 Mapping Software to Graphical Representation (from [28]) 11

3.1 Summary of The Identified Papers 24

3.2 Traceability links of Software Artifacts 25

3.3 Requirements Traceability Matrix . 27

3.4 Bar Chart Visualization Technique from [119] 35

3.5 Requirement Traceability Matrix . 36

3.6 Hyperlinks Visualization Technique from [21] 36

3.7 Class-Graph View [132] . 38

3.8 Visualizing Links in Project Using Sequence Diagram [66] 39

3.9 Non-Linear Data Structure . 40

3.10 Coverage TreeMap in OpenClover . 41

3.11 An Overview of Relationships between Source Code and Documents [66] 42

3.12 Sunburst of World Population [127] 43

3.13 City Metaphor VRE . 44

4.1 Left-to-Right Hierarchical Tree Visualization 56

4.2 Multilevel Visualization Approach . 57

4.3 Tracing Links Using NC . 59

4.4 EvaluationClassTest with a class under test 60

4.5 EvaluationClassTest with LCBA . 61

4.6 Architecture of the TCTracVis . 62

4.7 TCTracVis User Interface . 65

4.8 Traceability links of issue-registerTest using NC 66

4.9 Traceability links of issue-registerTest using LCBA 67

xi

List of Figures xii

4.10 Traceability links of issue-registerTest using SCG 68

4.11 Statistics Data of the HR System . 69

4.12 Statistics data of the HR system in graph view 70

5.1 Types of Subjects . 74

5.2 Average Time to Complete Tasks . 75

5.3 Number of Steps to Perform the Tasks 76

5.4 Evaluation Results . 79

November 24, 2020

List of Tables

1.1 Thesis Points Matrix . 6

3.1 Extracted Search Terms for Source Code and Software Artifacts . . . 20

3.2 Extracted Search Terms for Test case AND Source Code 21

3.3 Extracted Search Terms for Visualization AND Software artifacts . . 22

3.4 Extracted Search Terms for Visualization AND Test and Code Trace-

ability Links . 22

3.5 Sources of Literature . 23

3.6 Traceability Links Visualization Techniques 46

4.1 Solutions Characteristics . 65

5.1 Evaluation Tasks . 73

5.2 Questionnaire used in the experiment 77

5.3 Distribution of Questions over Tasks 78

xiii

Chapter 1

Introduction

The IEEE standard glossary of software engineering of terminology [1] defines trace-

ability as “The degree to which a relationship can be established between two or more

products of the development process”. There are two types of traceability as men-

tioned in [2]: 1) traceability between software artifacts at the same level of software

life-cycle which is known as vertical traceability (e.g. traceability between require-

ment components), 2) and traceability between software artifacts at different levels

of software life-cycle which is known as horizontal traceability (e.g. traceability be-

tween source code and test cases).

Source code evolves very often. Nevertheless, test cases that examine it are not up-

dated; maintaining consistency and traceability information between unit tests and

source code is costly and time consuming. As well as, testing is frequently skipped

due to the pressure to time to move on to the next change of a software or due to

the market. Furthermore, system developers or people who maintained it may no

longer available due to turnover or outsourcing.

In this thesis, we pay more attention to traceability links between two of software

artifacts: test units and its corresponding units under test (related source code).

Our goal is to provide a visualization method that helps the developers/testers to

understand traceability links between units’ test and its related source code. we

developed a tool that automatically recovers traceability links between test cases

and their related classes and supports visualization of these retrieved links.

Visualization is an efficient way that facilitates the understanding of traceability

1

1.1. Motivation 2

links between software artifacts, as well as supports several software development

tasks. Some noteworthy examples are:

• Software comprehension.

• Maintenance.

• Change Impact analysis.

• Refactoring.

• Software revolution.

1.1 Motivation

Test-to-code traceability links is an underlying asset during the development and

the evolution of the software. For example, unit tests are significant source of doc-

umentation, they can help a developer to understand production code and identify

failures, particularly when performing maintenance tasks. Moreover, in refactoring

process, dependence’s between unit tests and its corresponding code under test can

be used to maintain the consistency. When refactoring, some modifications to the

test suite are required together with the source code in order to keep it valid [3].

Therefore, if the exact links between unit tests and related tested code are defined,

refactoring of these unit tests can be automated and greatly simplified [4]. Visual-

ization is a very effective method that enables testers to understand, recover, and

browse the inter-relationships between unit tests and its corresponding tested code

in an intuitive and natural way.

According to [5] the development of test-to-code traceability links is not sufficiently

managed in literature. Recent research on test-to-code traceability links is directed

on how to identify the links between test and code, as well as only a few approaches

have been suggested and used to recover test-to-code-traceability links. Most of

these approaches have come from the outstanding work [6]. In this previous work, a

set of traceability recovery strategies have been proposed to establish links between

Xunit test cases and production class in object-oriented programs. However, none of

the proposed approaches provides tool support to facilitate traceability links, as well

November 24, 2020

1.2. Contributions of Thesis 3

as, none of these approaches support visualization of traceability links [5]. Moreover,

they concluded that there is no single technique that is superior to all others.

Several approaches have been explored to extract the links between test and code

[6], [7]. Recently, research into combining test-to-code traceability links recovery ap-

proaches has become very popular, as it helps to improve the quality and accuracy of

the retrieved links [153], [159], [121], [109]. However, it is complex, time-consuming,

and susceptible to error task to manually retrieve test-to-code traceability links.

Moreover, it is also important to efficiently support the comprehension, browsing,

and maintenance of the retrieved links. These issues can be significantly solved

by the support the automatic generating of test-to-code traceability links [5], and

adopting visualization to represent these links in an intuitive and natural way.

In recent years, several publications have appeared [9]- [11] documenting the visu-

alization of traceability links among different software artifacts (e.g. requirements,

source codes, documents, etc.). Moreover, many visualization tools have been de-

signed to represent traces between software artifacts in different views [12], [11].

However, as yet, no visualization method focused on test-code traceability links,

neither tools were implemented with this focus., which in turn, lays the foundation

of our work.

1.2 Contributions of Thesis

In this thesis, we focus on the specific problem of automatically recovering and visu-

alizing the traceability links between test cases and the related production classes.

We provide an innovative visualization test-to-code traceability approach that com-

bines various test-to-code recovery approaches and support efficient visualization

technique that displays the recovered links in two levels, class-level, and method

level. We developed a tool TCTracVis that supports the automated recovery ap-

proaches and the simultaneous visualizations of test and code relations. The main

idea of using the traceability recovery approaches is to help software engineers to

trace the relationships between unit test and source code, and automatically extract

traceability links at low cost and time. The goal of using visualization is to identify

November 24, 2020

1.3. Outline of Thesis 4

the disagreement between traceability links inferred from different sources [BNN02].

This might point out places where something is wrong with the tests and/or the

code (at least their relationship) in a specific system.

This thesis describes a novel approach for the visualization of the traceability links

between two software artifacts: test and code. The approach represents a new way

to efficiently visualize links between these two artifacts. Furthermore, it combines a

number of traceability methods to automatically infer traceability links between a

test case and the responsible unit under test (UUT). Then, the results produced are

visualized to help the developers to decide on what are the real links. Our approach

and its implementation aim to improve and ease the development process in several

ways: helps comprehension, interact search, and impact analysis when something

needs to be changed.

The main contributions of this thesis are as follows: First, a literature review is

presented investigating existing research on the traceability between tests and code.

Second, a multilevel visualization approach that presents a detailed overview of test-

to-code traceability links on the class level and method level, alongside the three

automated traceability recovery methods to retrieve these links. In addition, the

practical implementation of a visualization tool has been discussed. Finally, an em-

pirical study was conducted applying the presented approach and tool support in

practice and evaluating the usability and efficiency of the developed tool.

1.3 Outline of Thesis

The remainder of this thesis is arranged as follows:

Chapter 2: Background Information

In this chapter, we introduced a background knowledge about the general terms and

terminology used in this thesis. We presented a brief description of test and code

relations, visualization of software system, and in particular visualization of source

code and visualization of testing related information.

Chapter 3: State-of-the-art

This chapter presents the results of a systematic literature review on the visual-

November 24, 2020

1.4. Published Articles Related to the Dissertation 5

ization of traceability between test units and their related source code. It explains

existing traceability recovery approaches as well as visualization techniques used to

present the traceability links between software artifacts. Furthermore, it discusses

their strengths, weaknesses, and limitations to reveal gaps that a new approach can

fill.

Chapter 4: Trace Visualization Approach

This chapter describes the trace visualization approach that automatically captures

and visualizes the traceability links between test and code during development. As-

sumptions and preconditions of the approach are addressed. The main phases of the

approach are briefly presented. In this chapter, a system called TCTracVis is also

described, which implements the trace visualization approach.

Chapter 5: Evaluation of Trace Visualization Approach

This chapter presents an experimental evaluation of the presented visualization ap-

proach and its tool support.

Chapter 6: Summary

The final chapter consists of the conclusion and the summary of the thesis as well

as suggestions for future work.

1.4 Published Articles Related to the Dissertation

This thesis is based on the following publications:

1. Aljawabrah, Nadera, and Tamás Gergely. "Visualization of test-to-code rela-

tions to detect problems of unit tests." The 11th Conference of Phd Students

in Computer Science. 2018 [BNN01].

2. Aljawabrah, Nadera, Támas Gergely, and Mohammad Kharabsheh. "Under-

standing Test-to-Code Traceability Links: The Need for a Better Visualizing

Model." International Conference on Computational Science and Its Applica-

tions. Springer, Cham, 2019. [BNN02].

3. Aljawabrah, N., and Qusef, A. (2019, December). TCTracVis: test-to-code

traceability links visualization tool. In Proceedings of the Second International

November 24, 2020

1.4. Published Articles Related to the Dissertation 6

Conference on Data Science, E-Learning and Information Systems (pp. 1-4)

[BNN03].

4. Nadera Aljawabrah, AbdAllah Qusef, Tamás Gergely, and Adhyatmananda

Pati, Visualizing Multilevel Test-to-Code Relations. In 3rd International Con-

ference on Information and Communication Technology and Applications,

Springer (CCIS), 2020.[BNN04]1

5. Nadera Aljawabrah, Tamás Gergely, Sanjay Misra, and Luis Fernandez-Sanz,

Automated Recovery and Visualization of Test-to-Code (TCT) Links: An

Evaluation, in the submission to IEEE Access.[BNN05]

Table 1.1: Thesis Points Matrix

Thesis Points
Publications

[BNN01] [BNN02] [BNN03] [BNN04] [BNN05]

A comprehensive overview investigating existence research

on the visualization of the traceability between tests and code
X X

A visualization method that visually presenting

the test-to-code traceability links at different levels,

alongside multiple traceability recovery methods

to retrieve these links. The visualization method

is implemented using the TCTracVis visualization tool.

X X X

Evaluation of the presented approach and tool support in terms

of usability and efficiency throughout an empirical study.
X X

Other Publications

The following publications have been published during my PhD study.

1. Otoom, A. F., Hammad, M., Al-Jawabreh, N., and Seini, R. A. (2016). Visual-

izing Testing Results for Software Projects. In Proc. of the 17th International

Arab Conference on Information Technology (ACIT’16), Morocco [BNN06].

2. Hammad, Maen, et al. "Multiview Visualization of Software Testing Results."

International Journal of Computing and Digital Systems 9.1 (2020) [BNN07].

1Proceedings will be published by Springer in the Communication in Computer and Information

Science (CCIS) series.

November 24, 2020

Chapter 2

Background

This chapter describes the background information included in this thesis. General

terms are defined in the contexts of traceability and visualization. This involves a

concise introduction to test-to-code traceability with further information about using

visualization in representing software structure and different software artifacts (e.g.

source code, test results).

2.1 Traceability Definition

There are several terms and definitions of traceability that are provided in the lit-

erature. We summarize the most cited definitions of traceability in this section.

The term traceability is defined earlier in the IEEE standard glossary of software

engineering of terminology [1] which provides two definitions of traceability:

1. “The degree to which a relationship can be established between two or more

products of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another”.

2. “The degree to which each element in a software development product estab-

lishes its reason for existing”.

Spanoudakis and Zisman [14] provide a definition of traceability as “the ability to

relate artifacts created during the development of a software system to describe the

system from different perspectives and levels of abstraction with each other, the

7

2.1. Traceability Definition 8

stakeholders that have contributed to the creation of the artifacts, and the rationale

that explains the form of the artifacts”. The definition here affirms the use of trace-

ability links in development process, which, for example, these uses are being able

to create the artifacts and explain the rational of them.

Another general definition of the traceability is given by Gotel [15] who define the

traceability as “the potential for traces to be established (created and maintained)

and used. This definition explicitly states that if the trace links will be used, they

should be established first.

The definition of traceability in [15] is consistent with what stated in [16] which

describes software traceability as “the ability to interrelate any uniquely identifiable

software engineering artifact to any other".

In addition, one of the most common term is requirements traceability. In re-

quirements engineering, the term traceability is explicitly related to requirements.

Requirements traceability is defined by [17] as “The ability to describe and follow

the life of a requirement in both a forwards and backwards direction (i.e., from its

origins, through its development and specification, to its subsequent deployment

and use, and through periods of ongoing refinement and iteration in any of these

phases)”. This definition is first and most widely accepted and used in the context

of requirements traceability. It discusses the artifacts refinements and iterations.

However, it is explicitly oriented to requirements and to follow a requirement’s life,

but nothing is mentioned about the use of traceability. In [BNN08], we proposed

a model that defines the requirements elicitation process. The model focused on

the improvement of the requirements quality by applying the requirements tracking

and refinement. The aim of tracking requirements is to allocate each requirement

to a stakeholder or a user who requests it. Each phase is useful in ensuring the

satisfaction of the users and will fulfill the requirements as needed.

[19] deduced a definition of traceability based on analyzing a set of definitions of

traceability. The definition encompasses not only the artifacts created in software

development, but also those artifacts created during system development (e.g. hard-

ware models). Therefore, he defined system traceability as “The ability to relate

uniquely identifiable system engineering artifacts created and evolved during the

November 24, 2020

2.2. Test-to-Code Traceability Links 9

development of a system, maintain these relationships throughout the development

life cycle and use them to facilitate system development activities”. The artifacts in

system development in this case include all artifacts that are related to the system.

For example: hardware models, behavior models, design models, code, requirements,

test cases, test results, and stakeholders. Based on this definition, we can deduce

that three aspects of traceability should be taken into account during system devel-

opment: identify the artifacts involved, maintain the links between them, and use

these links to facilitate the activities in the development process.

2.2 Test-to-Code Traceability Links

In the line with the understanding of the concept of traceability link, Parizi et.al.

[5] suggested a definition of test-to-code traceability which is defined as “the one

to represent the relationship between two elements of tests and code artifacts, i.e.

between a test case and the responsible unit under test (UUT)”. Based on the

proposed definition, many other terms related to test-to-code traceability have been

established such as:

• Trace link (or traceability link). The definition of trace link is given by [16]

as “A specified association between a pair of artifacts, one comprising the

source artifact (e.g. tests) and one comprising the target artifact (e.g. source

code)”. The authors in [15] define a trace as “a specified triplet of elements

comprising: a source artifact, a target artifact and a trace link associating the

two artifacts”. The tracing task implies identifying the target artifacts that

are related to a specified source artifact”.

• Trace artifact. The authors in [15] define trace artifact as “traceable units of

data”. While in [16] it is defined as “A traceable unit of data (e.g., a single

requirement, a cluster of requirements, a UML class, a UML class operation, a

Java class or even a person). It is one of the trace elements and is qualified as

either a source artifact or as a target artifact when it participates in a trace”.

• Test case: in Center of excellence for software traceability (coest) [16], test case

November 24, 2020

2.3. Software Visualization 10

is defined as “A set of test inputs, execution conditions, and expected results

developed for a particular objective, such as to exercise a particular program

path or to verify compliance with a specific requirement”. And in [20] it is

defined as “Documentation specifying inputs, predicted results, and a set of

execution conditions for a test item”.

• Traceability (links) recovery: Parizi et.al. [5] defined traceability links recovery

as “retrieving candidate links between elements in one artifact, and elements in

another”. Traceability link recovery process relies on using a single or multiple

strategies and techniques, or approaches.

• Test-to-code traceability links recovery approach : As mentioned in [5], it is

an approach that is capable to derive the traceability links between specific

tests and source code artifacts. In research, test-to-code traceability links is

immature. On the other hand, there is much more interest in traceability links

between requirements and other software artifacts [11], [21] - [24].

2.3 Software Visualization

Visualization is a process of presenting an abstract and complex data in a remark-

able, colour-coordinate, and clear-cut format in forms of images, charts, graphs,

diagrams, and tables that can aid in understanding the purpose of data [BNN02].

According to Friedman [25], “Main goal of data visualization is to communicate in-

formation clearly and effectively through graphical means. It doesn’t mean that

data visualization needs to look boring to be functional or extremely sophisticated

to look beautiful” i.e. ideal visualization should not only convey information clearly

but also motivate the reader to share and interest. Claire et al. [26] defined software

visualization as “a discipline that makes use of various forms of imagery to provide

insight and understanding and to reduce complexity of the existing software sys-

tem under consideration”. In the other words, software visualization is the mapping

from software artifacts to graphical representations (see Figure 2.1). In probably

the simplest case, we can textually visualize artifacts, which is actually regarded as

November 24, 2020

2.3. Software Visualization 11

Figure 2.1: Mapping Software to Graphical Representation (from [28])

the most primitive type of visualization. Research studies show evidence that, for

certain activities, specific methods of graphic visualization work better than textual

visualization [27]. Many researchers believe in the value of software visualization,

particularly in supporting the software engineering process.

In the context of programs comprehension, visualization plays an effective role in

understanding the complex data analysis with respect to the evolution of large soft-

ware systems in which major changes on source code entities have been occurred.

Throughout the history of software development, visualization of software artifacts

has drawn considerable interest from research teams and several visualization tech-

niques have been suggested to examine and explore various aspects of software sys-

tems [29], [30].

It is necessary to identify the appropriate visualization technique for the given de-

veloper’s needs, these needs include:

A. Task. What is the visualization used for? Many visualization techniques

have been proposed to support developers in performing different software

engineering tasks. Tasks can be categorized using a number of standards. For

example, S.Diehl in [31] classified the tasks into three categories:

• System’s structure, where the system can be visualized depending on the

dependencies attained from source code.

• System’s behaviour to visualize the system by describing the execution

of the running system.

• System’s evolution, where the visualization described the changes cap-

tured in version control system.

Jonathan et al. in [32] categorized the tasks based on the cognitive process

domains into: finding, building, understanding, and questioning. Tasks can

November 24, 2020

2.3. Software Visualization 12

be also defined by the matter of need [33]:

1. People (e.g. who works on a task).

2. Code (e.g. the code changes).

3. Progress (e.g. task item progress).

4. Test (e.g. test results analysis).

Utilizing these classifications in the analysis of the tasks can help developers

to identify the task and, in turn, find the appropriate visualization techniques.

B. Audience. Users who have the data and will use the visualization tool play a

particular role in the software life-cycle [148]. The software visualization that

successfully address issues arise with a specific audience can be unsuccessful

with the needs of another one. Therefore, when looking for an appropriate

visualization for certain task, the role of user should be taken into account.

While programmer’s audience is the most targeted by most of software visu-

alization tools, some other visualization tools target another audience such as

architect or project manager.

C. Data. To choose which visualization technique has to be used depends in

part on the data features. These software data features can be different from

the same system (e.g. source, format). Software visualization can provide

developers with a tangible and meaningful representation of the software data

[148]. There are various types of software data that relate to software system.

For example: source code can be visualized to analyse software structure,

execution logs can be visualized to analyze software behavior, and meta-data

from the VCS to analyze the software evolution. As well as, only certain data

types can be presented by some visualization techniques (e.g. hierarchical,

continuous, discrete, quantitative, and qualitative).

D. Technique. The technique used to display the visualization defines the graph-

ical attributes that represent the characteristics of software data. Various

visualization-based techniques have been used in software visualization [149].

November 24, 2020

2.4. Visualization of Source Code 13

For instance, graphs are the most common visualization technique used to con-

vey information and describe binary relations (in general). Other techniques

are also used depending on the context, such as charts, UML diagrams, and

trees. Out of these techniques, in recent years, a metaphor has become a key

concept where ideas or objects (lower level of abstraction) are used as a rep-

resentative or symbol of other things (higher level of abstraction) which are

different from their actual meaning.

E. Medium. The medium refers to the means where visualization should be dis-

played. Software visualizations are commonly displayed using the standard

computer screen medium [34]. Software visualization has evolved from two-

dimensional (2D) representations to three dimensional (3D) and, currently,

virtual environments. Therefore, suitable medium plays a significant role in

improving the efficiency of software visualizations.

2.4 Visualization of Source Code

The area of visualizing source code relevant information is widely targeted in lit-

erature and it has been accepted as a means to help in software maintenance and

understand the evolution of software system [35], [36]. The visualization technique

used depends on the information being visualized (e.g. metrics, relationships, de-

pendences). For example: graph-based representation turned out to be appropriate

for visualizing source code evolution.

Most of studies have focused on visualizing source code related metrics and many

approaches are proposed in this regard [150]. Metrics is a numerical/proportional

value to describe and measure the quality of software artifacts [37], [38] (e.g. source

code quality, testing quality, documentation quality), therefore it is called quality

metric. Identifying which metrics can be used depends on the intent of visualiza-

tion. The code-related metrics which has been frequently used for visualization

purposes are: line of codes (LOC), McCabe complexity [39] and number of methods

(NOM) [40], [41]. These metrics support the maintainability of source code. In visu-

alization space, data and metrics are mapped to a set of visual attributes according

November 24, 2020

2.4. Visualization of Source Code 14

to the context of visualization.

City metaphor is the most popular metaphor used for visualizing program com-

ponents [146]. This metaphor supports navigation the program, interaction with

represented elements, and explore the city’ structure. City metaphor is an effective

3D method to represent a software structure that enables the user to be well aware

of the position of software objects. Thus, it would be easily retrieved in the devel-

opment process. In other words, 3D visualization makes use of the spatial memory

of users [42].

Wettel and Lanza [43] presented a 3D city metaphor-based visualization to represent

large and complex object-oriented programs. They represent packages as districts

included the buildings which in turn represent classes using CodeCity visualization’s

tool. Two code metrics are used for mappings on visual properties: NOM maps on

the height of the building, and NOA maps on the width. Their visualization is

limited on a higher level of abstraction, i.e. package and class.

Quite recently, considerable attention has been paid to use 3D game environments

in software visualization. CodeMetropolis [44] is a command-line tool applying city

metaphor to visualize source code at a lower level of abstraction (methods and at-

tributes). It uses a game engine, "Minecraft" [45], to visualize the structure of

source code. A single method is represented as a floor located in a building (class).

Code metrics display the distinct attributes of a software system. These attributes

are mapped to various properties in visual representation space. For instance, the

height of the floor expresses the size of the method in terms of logical lines of code.

A developer is a player who can fly and explore Minecraft word and get much detail

about the internals of classes. Code Park [46], another game environment-based

tool, has been recently developed to visualize source code. In this tool, the source

code itself has been directly visualized in 3D space instead of using a metaphor to

be represented.

A set of code metrics has been used in explore 3D graphs metaphor to describe the

internal structure and relations of the large-size programs for quality assessment pur-

poses [47]. Visual properties of program entities (e.g. size, shape, color) represent

particular metrics of these entities for mapping in 3D visualization metaphor. Infor-

November 24, 2020

2.5. Visualization of Testing Information 15

mation is presented from two points of view; usage-based pattern and inheritance-

based pattern. Depending on these patterns, quality attributes such as the size and

complexity of programs can be observed in visual space.

In line with the aforementioned works, there have been extensive research works

related to code visualization, and research resort to visualization to reduce the sub-

mitted effort in understanding software, which in turn, simplifies the software main-

tenance and evolution [30]. Visualization also leads to a better code understanding

particularly in 3D visualization.

2.5 Visualization of Testing Information

Visualization can be an effective method to provide a valuable information about;

the adequacy of code testing [48], visualizing software faults [49], and evaluation

code coverage of test suites’ quality [50]. There has been a large amount of litera-

ture that deals with the visualization of test information, and a wide range of tools

that have been proposed for the task of visualizing testing information. Jones et

al. [51] proposed a spectrum-based color tool which visualizes code statements that

are executed by test cases which in turn facilitate and support faults localization in

code under test. Test-Fault localization is a main objective of other visualization

tools as well such as TestQ [52] and ҲSuds [53]. Visualization supports understand-

ing inner workings of source code and test suites. Cornelissen et al [54] proposed an

approach to visualize the behavior of test suites using sequence diagrams produced

by test execution.

Test-related metrics has been gaining importance in visualization’s realm in recent

years. Test-metrics can be accepted as a good indication of a quality of test. Code

coverage metrics is one of the most popular test metrics used to measure the per-

centage of code that is executed by test cases. As the size and complexity of software

under test and its automated test suites increasing, visualization is needed to analyze

code coverage and to provide testers a wide range of information about the quality,

performance, and cost of the testing process. A wide number of tools have been

proposed for the task of visualization of testing information such as (TeCReV) [55]

November 24, 2020

2.5. Visualization of Testing Information 16

which is a graph-based tool for visualizing test coverage and test redundancy infor-

mation. The proposed tool can be used in many software testing activities such as

improving testing coverage and fault localization. Another visualization technique

has been presented in [56]. Its main target is to help software testers to determine

the location of test suite, its relationship with the production code, and which parts

of code are covered by test cases.

Various visualization techniques are developed depending on the type of data to be

visualized and on the objectives of visualization. City metaphor has been also used

to provide information with respect of the evolution of test cases. In [57] test cases

are represented as buildings and each metric’s value is associated with feature of vi-

sual elements (e.g. color, high, size) in 3D visual space. The visualization provides

information supporting regression test selection such as, how many test cases were

usually or no longer used. Balogh et al. [58] extended CodeMetropolis to include

visualization of test related metrics in the Minecraft world to support developers

to better understand the test suites quality and its relation to the production code.

Different types of test metrics are determined to show the behavior of test on the

code of different units; e.g. code coverage metrics, partition metrics and other spe-

cific metrics. In the visualization space, code units are represented as buildings

protected by outposts which, in turn, represent test suites. The attributes of the

outposts reflect the quality attributes of the tests.

Test suites are usually used to evaluate software systems and detect the program

faults. The larger the programs are, the more of the test cases executed; thus, a

huge amount of data will be produced which is difficult to be interpreted as textual

form. Visualization of test suites is useful to give any reader an obvious view of the

testing results as well as to determine the faults occurrence in source code with least

efforts and time.

In [BNN07], we present a visualization approach that models the results of the test

cases applied in object oriented code elements. The proposed visualization help

testers to understand and to keep track on test cases and their tested code elements.

Five views are proposed to cover different code levels; method, class, package, UML

and system. A tool has been developed to automatically manage the software test-

November 24, 2020

2.5. Visualization of Testing Information 17

ing process and to generate the data model for the proposed visualizations. The

evaluation results showed that the proposed views are useful and helpful in under-

standing the testing results.

As mentioned in Section 2.2, the relationships between test and code are known as

traceability links. Previous researches [59], [7] mainly concerned to derive these links

using different methods. Nevertheless, visualization of these links is not supported

by these methods.

November 24, 2020

Chapter 3

State of The Art

In this chapter, we provide an overview of the state of the art of visualization

traceability links between unit tests and code. We conducted a study that identified

existing research creating, using, and representing test-to-code traceability links.

In our study, we have the following research questions for our searches:

• RQ1: How are the links between unit test and code under test created?

• RQ2: What supporting tools are usually used for the creation of links?

• RQ3: To what extent has a visualization of test-to-code relations been inves-

tigated in existing studies?

• RQ4: What visualization techniques and tools are proposed to represent test-

code relations?

In the next sections, we present our research method. Then, an overview of the

identified approaches will be provided. Finally, the research questions are taken up

again in the discussion.

3.1 Research Method

For our research strategies and documentation, we used the guidelines in [147].

The main objective was to describe major contributions in three research areas of

traceability between: 1) source code and software artifacts, 2) test cases and software

18

3.1. Research Method 19

artifacts, and 3) test cases and source code, and two research areas of visualization of

1) software artifacts traceability links, and particularly 2) test-to-code traceability

links. [147] suggest that a systematic literature review should have the following

characteristics:

• A review protocols (identify research question)

• A defined search strategy

• A wide range of search source

• A described search string, based on a list of synonyms combined by ANDs and

ORs

• A documented search strategy

• Explicit inclusion and exclusion criteria paper selection should be checked by

two researchers.

We have met all the above criteria except the paper selection, which was checked

only by one researcher. The review adopted a structured process with the following

steps:

3.1.1 Creating Search Strings

We gathered several publications that listed various approaches on the basis of

different approaches relating to traceability topics. Therefore, we have refined and

selected those methods that meet the following criteria in line with our research

aims:

• Those traceability approaches that make a separation between traceability

related to source code and artifact traceability (e.g. requirements, documents,

bugs).

• Those traceability approaches that make a separation between traceability

related to tests and artifact traceability (e.g. requirements, design).

November 24, 2020

3.1. Research Method 20

• Those traceability approaches that define only the traceability links between

tests and code.

Thus, we conducted four separate searches; we created four different search strings.

The first search string covers research for generating and using links between software

artifacts and source code, and software artifacts and test cases. The second search

string covers research generating and using links between test cases and source code.

While in the third search string covers research for visualization of traceability links

between software artifacts in general. And finally, the visualization of traceability

links between tests and code is covered in the fourth search string.

Search for Software Artifact And Source Code Or Software Artifacts

And Test Case Literature

The final search string for the literature of software artifacts-to-source code (e.g.

requirement, documents) and software artifacts-to-test cases had three terms. The

first term is split into two terms, each concerning either source code (using term 1a)

from Table 3.1 or test case (using term 2b). The second terms address the software

artifact, while the third term implies that the traceability links between these arti-

facts are considered (see Table 3.1). All terms should have included in the title or

the abstract of the publications.

Table 3.1: Extracted Search Terms for Source Code and Software Artifacts

Search Term Constraint

Term 1a Source Code OR Code
Title, Abstract

Term 1b Test Case OR Unit Test OR Test

AND

Term2 Software artifacts OR Requirement Title, Abstract

AND

Term3 Traceability Links OR Links OR Traceability Title, Abstract

November 24, 2020

3.1. Research Method 21

Search for Test Case-to-Source Code Literature

The final search string for the literature of test case and source code had also three

terms. The first term includes test case, while the second term includes source code.

The third term implies that the traceability links between these test cases and source

code are considered (see Table 3.2). All three terms should have included in the title

or the abstract of the publications.

Table 3.2: Extracted Search Terms for Test case AND Source Code

Search Term Constraint

Term 1 Test case OR unit test OR test Title, Abstract

AND

Term2 Code or Source code Title, Abstract

AND

Term3 Traceability Links OR Links OR Traceability Title, Abstract

Search For Visualization Of Software Artifacts Traceability Literature

The final search string for the literature of visualization of software artifacts had

four terms. The first term includes software artifacts, while the second term includes

a specific term of artifacts (i.e. requirements, source code, and test case). The third

term implies that the traceability links between these artifacts are considered (see

Table 3.3). The fourth term ensures that the visualization of traceability links

between software artifacts are considered. All terms should have included in the

title or the abstract of the publications.

Search For Visualization Of Test And Code Traceability Links Literature

The final search string for the literature of visualization of Test and Code traceability

links had four terms. The first term includes test case, while the second term

includes source code. The third term implies that the traceability links between

these artifacts are considered (see Table 3.4). The fourth term ensures that the

visualization of traceability links between tests and code are considered. All terms

should have included in the title or the abstract of the publications.
November 24, 2020

3.1. Research Method 22

Table 3.3: Extracted Search Terms for Visualization AND Software artifacts

Search Term Constraint

Term 1 Software artifacts OR Requirements Title, Abstract

AND

Term 2 Source code OR Test Case Title, Abstract

AND

Term 3 Traceability Links OR Links OR Traceability Title, Abstract

AND

Term 4 Visualization OR Representation OR Presenting Title, Abstract

Table 3.4: Extracted Search Terms for Visualization AND Test and Code Traceabil-

ity Links

Search Term Constraint

Term 1 Test case OR tests OR unit test Title, Abstract

AND

Term 2 Source Code OR Code OR Class Title, Abstract

AND

Term 3 Traceability Links OR Links OR Traceability Title, Abstract

AND

Term 4 Visualization OR Representation OR Presenting Title, Abstract

3.1.2 Research Identification

To generate a state of the art comprehensive picture of visualizing traceability be-

tween software artifacts and especially between test and code, we used different kinds

of sources. We utilized the sources of the domain-specific publication SpringerLink,

ACM, and IEEE. We also included ScienceDirect source in order to cover several

other domains specific sources to ensure research coverage in other less dominant

sources as well (see Table 3.5).
November 24, 2020

3.1. Research Method 23

The results of each search string are as follows:

• First search results retrieved 584 of papers.

• Second search results retrieved 187 of papers

• Third search results retrieved 261 of papers

• Fourth search results retrieved 101 of papers

Table 3.5: Sources of Literature

Data Sources

Digital Library

SpringerLink

IEEE Xplore

ACM Digital Library

Science Direct

Search Engine Google Scholar

3.1.3 First Round of Exclusion

The publications were refined depending on their title and abstract. As a result

of this refinement, the first search leads to 57 results, 35 results for the second

search, 32 for the third search, and 16 results for the fourth search. After removing

duplicates, a total of 120 results were retrieved which, in turn, are too many for

thorough review and analysis. As a result, second exclusion was conducted.

3.1.4 Second Round of Exclusion

In the second exclusion, we inspected the abstract, introduction, and conclusion.

We excluded papers that did not explicitly related to either source code, test case,

or software artifacts. We also excluded papers which had a different concern than

the context of traceability and visualization of traceability in software development

or engineering or were out of them. Consequently, the process showed that the total

number of relevant papers was 45 as shown in Figure 3.1.
November 24, 2020

3.2. Software Artifacts Relations 24

Figure 3.1: Summary of The Identified Papers

3.2 Software Artifacts Relations

Software artifacts relationships can be treated as Traceability links between soft-

ware artifacts. Software traceability focuses on two aspects of software artifacts’

relationships: 1) the ability to follow up the artifact’s life throughout its develop-

ment, validation, and verification, 2) The ability to describe the association links

among related artifacts and their artifact’s life. The traceability between software

artifacts has two dimensions as mentioned in [2], vertical traceability and horizontal

traceability (see Figure 3.2). Vertical traceability defines as connections between

different software artifacts at the same phase of software life-cycle, while horizontal

traceability defines as connections between different software artifacts at different

phases of software life-cycle. Our attention in this thesis is on the horizontal trace-

ability dimension.

November 24, 2020

3.2. Software Artifacts Relations 25

Figure 3.2: Traceability links of Software Artifacts

3.2.1 Source Code and Software Artifacts Relationships

The focus of recent research is the capture of traceability links between requirements

and source code during development. Traceability links between requirements and

source code can be helpful in several activities in software development process such

as software maintenance and reuse. If the software engineers can understand the re-

lationships between requirements and source code, they can easily identify the code

elements that implement the requirement they want to maintain and reuse (e.g.

change request modifications, fix bug). Requirements-to-code traceability links pro-

vides the knowledge of which part of code that the requirements are implemented

in.

[23] captures the links between requirements and source code by classifying the re-

quirements and source code according to whether they are specific to one product or

common to multiple products using the configuration management log as a source

of links. Asuncion and Taylor [60] proposed an approach to establish links between

different artifacts (including requirements and code) by analyzing interactions of

users during generating or modifying artifacts. Omoronyia et al. [61] recover links

between requirements and code based on developer-led operations that create code

artifacts to meet requirements.

On the other hand, requirements-to-code traceability can help to identify the code

parts that directly impacted by maintenance request. Although the traceability
November 24, 2020

3.2. Software Artifacts Relations 26

links between requirements and source code can be benefit in maintenance and other

software development activities, the cost of traceability recovery and management

should be taken into consideration, especially in manual recovery of all traceability

links of a large product.

The manual recovery of requirements-to-code traceability links is complex, error-

prone, and time consuming [62]. Therefore, many researches focus basically on

semi-automatic and automatic approaches. Gesamtfakult and Delater [63] sum-

marized 29 approaches for establishing traceability links between requirements and

code. The approaches were ordered according to their year of publication, type

of automation (automatic, semi-automatic, and manual), and the technique used

to create the links (e.g. information retrieval (IR), execution trace, transforma-

tion, machine learning, or inference). From 29 approaches, there are 26 approaches

use automatic techniques, while only one approach uses semi-automatic and two ap-

proaches use manual techniques. Furthermore, among the 26 automatic approaches,

the large majority of 73% (19 approaches) use IR techniques for creation the trace-

ability links, while about 15% (4 approaches) use execution trace, and the remaining

approaches either use transformation, inference, or machine learning.

Traceability links between documents and source code has been a part of research

interest as well [64], [65]. Xiaofan et al [66] used IR models to recover the trace-

ability links between documents and source codes. The authors combined three IR

techniques to automatically retrieve the links established between documents and

source code in a system.

3.2.2 Test Case And Software Artifacts Relationships

A test case is defined as a set of variables or conditions that help to satisfy a set

of linked requirements. The creation of multiple test cases can help detect flaws

and errors in the specified requirements or the entire application [67]. Test cases

usually depend on a use case/ user story that helps ensure that the functionality of

system delivered accurately represent the actual needs requested by users [68]. The

traceability links between requirements and test cases are the ability to link the re-

quirement back to user’s rationales and forward to corresponding test cases. During

November 24, 2020

3.2. Software Artifacts Relations 27

Figure 3.3: Requirements Traceability Matrix

the early stages of software development process, the development team gathers all

requirements provided by clients and creates a list of user’s stories based on these

requirements [69]. These stories can provide the development team with a clear idea

about the functionality that should be implemented to satisfy the requirements.

When executing test cases, and on the failure of any test case, the developer can

map it with the associated requirement.

Requirements traceability matrix (RTM) is a typical method used to create the

traceability links between the requirements and test cases (see Figure 3.3). RTM is

a table (document or spread sheet) used to validate that all requirements are linked

to test cases. RTM is commonly created manually. However, there are some tools

have been proposed that automatically support generating RTM [11]. One of the

most benefits of using RTM in creating requirements-to-test case traceability links

is to make sure of 100% coverage of requirements.

Latent semantic indexing (LSI) [120] is also employed to automatically reconstruct

the traceability links between test cases and requirements during the development

process [70], [71].

November 24, 2020

3.2. Software Artifacts Relations 28

3.2.3 Test Cases and Source Code Relationships

Coding and testing are very important activities in the software development life cy-

cle. They are firmly associated with agile software development where the software

is evolved frequently. Software testing includes test suites that execute the program

and an expected outcome declaration [72]. Test cases are used to determine whether

the software being tested works correctly or not for a given input.

IEEE Standard 610 (1990) [73] defines test cases as: “A set of test inputs, execution

conditions, and expected results developed for a particular objective, such as to ex-

ercise a particular program path or to verify compliance with a specific requirement”.

Test case is considered as an up to date document that reflects how parts of code

are changed and how they are supposed to be executed [74]. By identifying faults

in software systems [75], test cases contribute to improving the software quality and

reducing maintenance cost [53]. Therefore, testing is an important activity to guar-

antee the quality of source code.

Test-to-code relations can be treated as traceability links that display how test cases

and the code under test can be connected. Thus these links emphasize the consis-

tency between unit test and tested code (e.g. when a test case fails, the links show

which part of the code is related to this failure). Test cases and tested code can be

connected by different types of relations, for example:

• Direct tests. When developers produce test classes that only test their coun-

terparts in the production classes. [76].

• Indirect tests. When developers produce test classes contain methods that

actually execute tests on other objects. [76].

Test-to-code traceability helps to maintain test cases up-to-date due to changes in

the source code in software evolution and maintenance [15]. A new change on a

part of code could easily affect the behavior of other parts of code. The prob-

lem can be solved using regression tests by re-executing test units to determine if

the changes introduce any errors in other parts of system [151]. However, the de-

velopment process is an iterative and ongoing process, which means new changes

and updates appear frequently on the software, thus numerous regression tests have
November 24, 2020

3.3. Overview Of Traceability Recovery Approaches 29

to run (i.e. increasing testing cost). Therefore, establishing links between units

under test and its related test suites helps in reducing generating regression tests

through facilitating impact analysis, and also used to determine which tests should

be checked after the code change which, in turn, save much time and cost during

software development [4].

3.3 Overview Of Traceability Recovery Approaches

Several approaches and methods were proposed to recover traceability links between

different types of software artifacts. These proposed approaches can be classified ac-

cording to the method used to retrieve such links. In the following sections, we

discuss the definitions of approaches for recovering traceability links between soft-

ware artifacts in literature. Then, we present the proposed approaches for recovering

traceability links specifically between unit tests and tested code.

3.3.1 Information Retrieval- Based Approach (IR-Based)

Information retrieval (IR) methods have been widely used in literature for recovering

traceability links between software artifacts of various types. The justification be-

hind such a selection is that the majority of the documentation that comes with large

software systems consists of free-text documents presented in a natural language,

and a high similarity of text between two artifacts might highlight the existence of

a traceability link. Antoniol et al. [77] introduced the use of IR methods to recover

traceability between low level artifacts (e.g. source code) and high level artifacts (

e.g. requirements). They assume that developers use “meaning full names for code

items”, for instance, functions, methods, classes, types and variables. An assumption

is that the knowledge of application-domain that developers handle is often captured

in the program items when writing the code. Thus, the program items analysis can

help to link low level concepts (e.g. code) with high level concepts (e.g. require-

ments) expressed in free text. Their approach uses a Probabilistic Model (PM) as

IR methods. This method looks automatically for the textual similarity between the

requirements and code textual representations. They extended this approach in [78]

November 24, 2020

3.3. Overview Of Traceability Recovery Approaches 30

by applying Vector Space Models (VSM), as well as they compared the results with

the results presented using PM approach in terms of recall and precision. The ap-

proach employed VSM presented slightly lower results than the approach employed

PM in their previous evaluation.

Other IR methods have been proposed for recovering traceability links between dif-

ferent types of software artifacts. Marcus et. al. [79] used LSI as IR method for

recovering traceability links between documentation and source code. The results

of the approach using LSI have been analyzed and compared with the previous ap-

proaches using PM and VSM applied by Antoniol et al. [78]. The results showed

that the approach using LSI achieved better results than Antolio’s approaches using

VSM and PM.

Later, additional IR methods, for example, Jensen and Shannon method and Numer-

ical Analysis [80], [81], have been proposed to recover links between software artifacts

of different types. In particular, IR approaches have also been proposed for recov-

ering traceability between requirements [82], [22], between design and requirements

artifacts [83], [84], between software documents and maintenance requests [85], be-

tween design documents or requirements and defect reports [86], between numerous

others types of artifacts (e.g., UML diagrams ,use cases, code artifacts, and test

cases) [87]– [89] and between unit tests and units under test [6].

3.3.2 Data Mining-Based Approach

Since developers may not evolve software artifacts in synchronization with each

other (e.g. requirements and source code), they usually update other sources of in-

formation, for example: CVS/SVN repositories, mailing lists, and bug-tracking sys-

tems. These sources of information can be exploited to build traceability-recovery

approaches. Data mining methods on repositories of software configuration man-

agement have been used to recover the traceability links between software artifacts

(e.g. source code artifacts).

The authors in [90] were the first to employ release data to detect evolutionary cou-

pling between files and modules. The CVS history allows detecting more fine-grained

logical coupling between files, classes, and functions. Their approach searched the

November 24, 2020

3.3. Overview Of Traceability Recovery Approaches 31

classes’ historical development that measuring the time when existing classes are

changed and new classes are added to the system, as well as maintaining attributes

that related to changes of classes, such as the date of a change or the author. Kadji

et al [91] present sequential pattern mining to files that are committed in software

repositories in order to uncover the traceability links between source code files and

other software artifacts. As different types of files that are frequently committed

together, there is a significant chance that they will have a traceability link between

them. Moreover, these set of files can be used to predict changes in the system

newer versions.

Other approaches [92], [93] used association rule mining on the archives of CVS.

They based on the change patterns mining (i.e. files that have frequently been

changed together) from the change history of the system source code. Zaidman et

al [94] studied the co-evolution of the tests and its related source code by mining

the data stored in version control systems (VSC). The assumption is that tests have

to be committed in VSC alongside the production source codes. They introduced

and combined three views: the change history view, the growth view, and the test

quality evolution view in order to study the co-evolution of test and code over time.

3.3.3 Heuristic-Based Approach

Heuristic-based techniques can be used to recover relationships between different

types of software artifacts. [95] proposed an approach that relies on the existence

of requirement dependent implementation scenarios. They have developed a system

called “Trace Analyzer” that detects which code artifacts can be used when execut-

ing a usage scenario. These code artifacts are then connected to the usage scenario

which is itself connected to one or more requirements. Additional heuristics can be

derived to analyze the guidelines for changing design documents and requirements.

Clearly, such rules can be used for recovering links between requirements and design

artifacts. Techniques of software reflexion model [96] are used to assist a software

engineer compare software artifacts by outlining when one artifact (such as code) is

consistent with and inconsistent with another artifact (such as design artifact).

In addition, heuristic-based methods have been proposed for recovering traceabil-

November 24, 2020

3.3. Overview Of Traceability Recovery Approaches 32

ity links between unit tests and classes under tests. The authors in [97] show that

the dependent classes need more test code, therefore they are more difficult to test

than independent classes. The authors recommend using a “cascade unit tests” to

improve the testability of complex class, in which a complex class test can use tests

of its required classes to create the complex test scenario.

Eclipse Java Development Tools helps the developers to maintain the relationships

between unit tests and test classes, as well as they support a “search-referring tests”

entry of menu that recovers all unit tests that call a selected class [152]. Developers

have to create a unit test by using Junit wizard in order to employ such functionali-

ties. However, such wizard is not used by all developers to create a unit test and thus

these functionalities are not always applied. To remedy Eclipse shortcomings, [98]

provide Junit eclipse-plugin that applies Static Call Graph (SCG) to identify the

class under test for each unit test.

There are only a few specific sets of automatable tractability recovery approaches

have been proposed that are viable means to reveal links between production classes

and test units. The methods most utilized and discussed are presented in [6]. The

authors suggested six traceability recovery strategies as sources to extract the links

between unit tests and source code, naming conventions, fixture element types, LSI,

static call graph, last call before assert and co-evolution. In NC, traceability links

are established if a unit test matches the name of a tested class after removing the

word “Test” " from the name of a class executing the test case. In this approach,

traceability links could not be established if unit tests do not match the names of

tested classes. In SCG, units under test can be derived by collecting all classes un-

der test that are is directly invoked in test case implementation, and thereafter the

classes that are referenced most are selected. In case there are no dominant produc-

tion classes, The selected sets would contain a possible large range of data object

and helper types that will, in turn, impact the precision of the retrieved links. To

mitigate the drawback in SCG, authors in [6] proposed Last LCBA method, which

derives test classes by checking the last call invoked right before asserting state-

ments. However, if developers write many assert statements per test unit, many

units under test could be retrieved. The traceability links can be established in LA

November 24, 2020

3.3. Overview Of Traceability Recovery Approaches 33

approach depending on the textual similarity between test cases and the correspond-

ing unit under test, whereas in CV, the starting point in this approach is the version

control system of the software such as CVS, SVN, SourceSafe, or Perforce. This

approach requires that changes to code under test and unit tests are simultaneously

fetched into the system. Also, developers need to practice testing during develop-

ment, otherwise the CV information is not captured in CVN edges. The results of

comparison [6] showed that NC and fixture element have high precision and recall,

while LCBA provided the higher score of applicability as a result of comparing six

traceability recovery approaches.

NCs have been described in several books and tutorials [?], [118], [119] which is an

indication of their widespread usage in different contexts. However, in this approach,

traceability links could not be established if unit test does not contain the name of

tested class. Naming convention-based heuristics have been used to create unit test

taxonomy [99].

Qusef et al [7] proposed an approach that depends on data flow analysis in depicting

the links between unit test and classes under test. Test-to-code traceability using

slicing and conceptual coupling (SCOTCH) has been proposed in [109], [121] , herein,

traceability links are recovered using dynamic slicing and conceptual coupling tech-

niques and test-to-code traceability links are derived using assert statements, then,

tested classes are identified in two steps: the first step identifies the started tested

sets (STS) using dynamic slicing. In the second step the candidate tested set (CTS)

are produced by filtering STS using conceptual coupling between identified classes

and the unit test. This approach, however, does not consider the semantics of STS

during the coupling conceptual process [5]. Also, the candidate tested classes identi-

fied by dynamic slicing still contain an overestimate of the tested classes [5]. To the

best of our knowledge, SCOTCH is the one and only approach providing automatic

practical support of the test-to-code traceability links.

The authors in [100] present an approach based on a call trace to assess tests for

documentation purposes. The approaches proposed and used in this thesis can be

classified as heuristic-based recovery approach.

November 24, 2020

3.4. Presentation Methods 34

3.4 Presentation Methods

In recent years, research on visualization of traceability links has become very pop-

ular. A great effort has been devoted to the use of visualization techniques to help

users understand and analyze traceability information. Visualization techniques de-

pict links in terms of graphs, matrix, lists, or hyperlinks due to a particular context

to accomplish a task.

3.4.1 Traditional Methods

Charts

Chart is a graphical representation of data in which qualitative and quantitative

data can be represented as symbols. There are several types of charts. The most

common forms are line chart, pie chart, bar chart and histograms [119]. Presenting

data using charts allows users to interpret significant differences at a glance and can

easily make comparisons between entities and attributes.

Several developed tools support visualization using charts. Charts could be used

based on the traceability links between the data being visualized. A comparison

between packages or classes can be a simple relation visualized by bar charts. For

instance, Evolve [123] is a visualization tool that is visualising information obtained

from system run-time execution. Evolve uses bar chart to clarify the relationship

between properties of data. For example, bar chart in Figure 3.4 displays the rela-

tionship between the method invocations locations (y-axis) and the total number of

invocations taking place at each location (x-axis). Rivet in [124] uses various types

of charts for visualizing the execution data of large software system. Pie charts also

have been used in several studies as a visualization method (e.g. PABLO [124],

PARvis [126], and VAMPIR [127]). Charts can be a good method that leads to

faster decision making [128].

Matrix

Matrix is a two-dimensional representation in a form of table. It is frequently used

to visualize relationships between software artifacts [155]. It is commonly used in

visualizing requirement traceability links with other artifacts (see Figure 3.5).

November 24, 2020

3.4. Presentation Methods 35

Figure 3.4: Bar Chart Visualization Technique from [119]

A number of tools have been presented to support matrix visualization method

[11], [104]. In [11] two approaches have been proposed to automated generation of

requirement matrix. In this work, visualization of traceability information using

requirement traceability matrix (RTM) helps in determining requirements depen-

dencies in an effective way. Typically, matrices are selected to visualize a small

volume of traceability information. As presented in [129] matrix is more suitable to

support management task. However, it becomes unreadable when the set of artifacts

becomes large because of visual clutter issues [103].

Tables can easily manage the visualized information for the small number of enti-

ties and attributes. However, it is a big challenge to display the large number of

attributes and entities in which the chance of confusion between columns and issues

in sorting the important features in table will increase.

Hyperlinks and lists

Traceability links can be also presented as hyperlinks and lists. Hyperlinks are pre-

sented to user in tabular formats using natural language [21] (see Figure 3.6). This

method of visualization allows user navigating between related artifacts along link.

A number of tools have proposed hyperlinks as a method for representation trace-

ability information [130], [131].

November 24, 2020

3.4. Presentation Methods 36

Figure 3.5: Requirement Traceability Matrix

Figure 3.6: Hyperlinks Visualization Technique from [21]

Hyperlinks are more preferred in testing and implementation tasks than lists [129].

Lists are the least method picked out for representation traceability links among

other traditional approaches [129]. All the information related to each traceabil-

ity link is presented in list view (source artifacts, target artifacts). The authors

in [108], [24] proposed tools that use lists to represent automatically produced trace-

ability links. Like other traditional methods mentioned above, hyperlinks and lists

do not scale well with large volume of data.

November 24, 2020

3.4. Presentation Methods 37

3.4.2 Graph-Based Visualization Methods

Graph

Graph is one of the most common techniques used by traceability visualization

systems. It is a group of nodes (or vertices) and edges (or links). Graph-based vi-

sualization allows visualization of all overview of traceability links between various

software artifacts. Graph can be easily used to represent the trace data [156]. For

instance, nodes can represent artifacts such as classes, subsystems, objects, while

the edges can represent how these artifacts can be connected (i.e. the relationships

between artifacts), such as routine calls, and inheritance. Program explorer [132]

provides graphs in two views: “object graph” and “class graph” (see Figure 3.7).

“Class graph” displays how objects interact with each other. The nodes represent

the objects for a given class, and edges (or arrows) represent interactions between

the objects. Recently, an empirical study has analyzed and compared four com-

mon visualization techniques [graph, matrix, lists, and hyperlinks] to indicate which

one of these visualizations is more appropriate to be performed in a particular con-

text [129]. It pointed out that graphs are adequate to support management task.

Graphs can model and visualize any type of data that holds information about

connections. A tool, developed by Kamalabalan et al. [133], traces links between

software artifacts and visualizes those links elements as a graph with nodes and

edges. A specific graph-based approach called ChainGraph has been proposed to

visualize relationships between requirements [12].

Although graphs can visualize the overall overview of links between artifacts,

it is a big challenge to display large number of traceability links between software

artifacts because of scalability issues, which make graphs hardly readable or under-

standable by users. Thus, graphs are particularly suitable and valuable to present

a limited set that is related to interest artifact.

UML Diagrams

UML diagrams are diagrams based on the Unified Modeling Language (UML) that

allows users to visualize software and system design. Diagrams are better suited to

document systems than texts in millions of lines of code because they are easier and

November 24, 2020

3.4. Presentation Methods 38

Figure 3.7: Class-Graph View [132]

faster to understand. There are two main categories of UML diagrams:

• Structure diagrams: display the static relationships between the system com-

ponents.

• Behavior diagrams: show the interactions between the components in the sys-

tem, capture the changes of the system, and how it changes over time (in some

diagrams).

There are 14 different types of UML diagrams [134]; each type is used in different

situation. The most popular type of UML diagrams used to visualize the execution

of components interaction is the sequence diagram. In [66], sequence diagram has

been used to visualize the links between artifacts in a traced project as shown in

Figure 3.8. The UML diagrams have been used by different tools [134] as visualiza-

tion method to show the execution traces in systems and software in different levels

(object interactions, class interactions, process interactions).

Traceability information includes information about the artifacts and links to be

visualized. Class diagrams can be an example of artifacts which are created during
November 24, 2020

3.4. Presentation Methods 39

Figure 3.8: Visualizing Links in Project Using Sequence Diagram [66]

the software life cycle [129].

Trees

Trees are one of the significant visualization methods to provide the analysis of data

of large hierarchical structures [136]. Tree is a special type of graph that has no

cycle (see Figure 3.9). Commonly, the structure of tree consists of number of nodes

and parent-child relationships. Every node has just one parent and a number of

children. A node that has no parent is called a root node. Nodes in a tree are con-

nected together with line connections called edges that represent the relationships

between nodes. Nodes with children are called interior nodes. while leaf nodes are

the nodes which have no children.

As the circles are absence in trees, and the hierarchical nature of them, this makes

trees easy to understand and interpret compared to the graphs [137]. Ovation

tool [138] uses tree structure-based view called “The execution pattern view” to

visualize the program execution traces that allows users to browse the program ex-

ecution at different levels of detail. In general, graph-based-visualization methods

help to visualize different aspects of system. However, they tend to be not easily

comprehended as the complexity of the system increases. Marshall in [139] catego-

rized the graph into 4 groups according to the number of components (nodes and

arcs):

• Small graphs: graphs with less than 100 components.

November 24, 2020

3.4. Presentation Methods 40

Figure 3.9: Non-Linear Data Structure

• Medium graphs: graphs with less than 1000 components.

• Large graphs: graphs with less than 10000 components

• Huge graphs: graphs with more than 10000 components.

Graphs lose their efficiency when managing large number of nodes. It is a big

challenge to display the growing amount of information with the lack of visualization

space. Shneiderman et al. [140] indicate that the small graphs are the successful

graph representation as the users can trace the link from the source node to the

destination node and count the number of links and nodes in each path.

3.4.3 Space-Filling Representation Methods

TreeMap

Treemaps are ideal visualization methods used to present a large amount of hierar-

chy structured data (structured tree) that show the distributions of the attributes

rather than the relationships between nodes [10]. The visualization space is parti-

tioned into rectangles, each rectangle represents a node and it is sized, ordered, and

colored (in color-code treemaps) by quantitative variable. In the hierarchy of the

treemaps, levels are displayed as rectangles inside other rectangles. A collection of

rectangles in the hierarchy on the same level represents an expression or a column in

November 24, 2020

3.4. Presentation Methods 41

Figure 3.10: Coverage TreeMap in OpenClover

the data table, as well as, every single rectangle displayed on a level in the treemap

hierarchy represents a column category. One of the main benefits of treemaps lies

in the efficiency using of the visualization space. Treemaps can scale well with the

growing complexity and size of the designed system. However, treemaps tend to be

hard to comprehend as the complexity and the size of the system grows. Different

treemaps layouts were proposed to overcome this issue.

Treemaps have been first introduced by [141]. They used treemap to visualize the

file structure on the hard disk in order to discover the large files that can be removed

for disk cleanup. Many developed tools provide treemaps presentation to represent

large volumes of code and show the code structure as treemap hierarchy. For exam-

ple, OpenClover [157] is a tool measuring the code coverage for Java and Groovey. It

uses treemap to visualize the complexity and code coverage of the classes and pack-

ages. Treemap is split up by a labeled package and further divided by an unlabeled

class (see Figure 3.10). The size of packages or classes represents their complexity,

while the colors represent the level of coverage. In DCTracVis [66], treemap is one

of the two visualization method adopted in the tool to visualize the traceability

links between software artifacts. In this tool, treemap provides an overview of inter-

relationships between source code and documents in the traced system. Colors are

used to differentiate the link status of each node (see Figure 3.11).

November 24, 2020

3.4. Presentation Methods 42

Figure 3.11: An Overview of Relationships between Source Code and Documents [66]

SunBurst

SunBurst is a space-filling approach that displays the hierarchy structure through

a set of rings [104]. Each ring represents a level in the hierarchy, with the central

ring represents the root node, while children nodes moving outwards from it. Sun-

Burst is similar to treemap technique, but it uses a radial layout. It can be used

to display a part item of a whole. For example, Figure 3.12 show the visualizing of

world population using SunBurst. Clearly, the world is divided into continents that

represent the innermost circle with the four top levels (Asia, Africa, others). The

continents are divided into regions, and the regions are divided into countries which

are displayed at the outer part of the circle.

Suburst can also be used to represent the traceability links between software ar-

tifacts. Merten [10] used the sunburst as a visualization method that shows the

traceability relationships between requirements knowledge. Sunburst displays the

structure hierarchy of the system under trace. Nodes are organized in a radial layout

and are presented on adjacent rings representing the tree structure.Multiviso [103]

utilized sunburst along with three other visualization techniques, graph, tree, and

matrix, to visualize traceability information in software development (e.g. require-

November 24, 2020

3.4. Presentation Methods 43

ment information).

Figure 3.12: Sunburst of World Population [127]

3.4.4 Virtual Reality Environment (VRE)

Recently, metaphor has become a key concept where ideas or objects (lower level

of abstraction) are used as a representative or symbol of other things (higher level

of abstraction) which are different from their actual meaning [158]. Metaphor is

a figure of speech providing mapping from software model to an image in which

software entities and relationships are visualized using physical properties; for in-

stance: the solar system metaphor (using stars and planets) [143], neural networks

metaphor [144] video games metaphor [145].

One popular VRE is a City metaphor, is a prevalent metaphor in software visual-

ization where the software is represented as city [146]. The idea of city metaphor

was exploited in [147] and [13]. They used the city metaphor in which the files and

classes are displayed as buildings in a 3D city landscape as shown in Figure 3.13 a.

Code metrics display the distinct attributes of a software system. The relationships

between buildings are shown as directed pipes between them (see Figure 3.13 b).
November 24, 2020

3.4. Presentation Methods 44

(a) City Layout [44] (b) Classes’ Relationships [147]

Figure 3.13: City Metaphor VRE

VRE’s can be easily used specifically by the pre-existing knowledge of users about

environments. However, as the amount of data being visualized grows, VRE’s can

be impractical.

3.4.5 Visualization of Traceability Links in Literature

In recent years, research on visualization of traceability links has become very popu-

lar. A great effort has devoted to the use of visualization techniques in order to help

users to understand and analyze traceability information. Visualization techniques

depict links between software artifacts due to the context to accomplish a task.

Visualization techniques and tools have been developed depending on the type of

traceability information being visualized and the visualization targets. For example,

to understand the dependencies and relationships between software artifacts, how

they interact with each other, and help document links between several kinds of

software artifacts (e.g. requirements, tests) [101]. In Table 3.6, a set of traceability

approaches and tools are listed. Each approach provides one or more visualization

techniques which may display links in different ways depending on the information

task context.

ADAMS [9] is developed to support identifying traceability links between pairs of

software artifacts. Traceability links are arranged in a graph where nodes are the

artifacts and edges represent traceability links. The graph can be built after the user

November 24, 2020

3.4. Presentation Methods 45

pick out the source artifacts. The graph starts from a source artifact by defining

all the dependencies of a particular type that involve the source artifact as a source

or target artifact. Users, within the graph, can identify groups of artifacts that

connected by traceability links (i.e. traceability paths). This graph can display all

links for a specified artifact in a very effective way. However, it does not support

the display of links of multiple software artifacts.

A hierarchical graphical structure is presented by Cleland-Huang and Habrat [102]

to visualize links between requirements information, where requirements are rep-

resented as leaf nodes while internal nodes represent titles and other hierarchical

information. The graph visualization provides a general view of the candidate links,

as well as their distribution throughout the set of traceable artifacts. User can

explore sets of candidate links that naturally occur together in the hierarchy of doc-

ument.

ChainGraph [12] has been proposed to visualize the requirements relationships by

representing requirements as nodes, and edges are the relationships between require-

ments. This approach enables the extensible and flexible representation of multi-

dimensional requirements links and thus allows a better understanding of these

links.

Merten et al. [10] present interactive Sunburst and Netmap representations as a

way to visualize traceability links between the elements of requirements knowledge.

Sunburst supports the visualization of the hierarchical structure of the project un-

der trace. Sunburst nodes are displayed on adjacent rings representing tree view.

Netmap, in the other hand, supports visualization of the links between requirements.

Netmap nodes are represented as segments in a circle and of exactly one ring in the

sunburst. Traceability links are displayed in the inner circle using linear edges.

In [103], Multi-Viso trace tool provides four visualization techniques: Sunburst, ma-

trix, tree, and graph depending on the context in which the traceability is being

applied. The visualization displays a global structure of traceability and a detailed

overview of each link. Gilberto et al. [104] present a traceability visualization tool

called D3TraceView that enables visualizing information of traceability in different

formats based on the purpose of use of traceability information. The tool supports

November 24, 2020

3.4. Presentation Methods 46

several visualization formats such as sunburst, tree, matrix, list, table, bar, gauge,

and radial view. Besides traditional approaches and several graph representations

Table 3.6: Traceability Links Visualization Techniques

Approach Visualization technique Traceability information Tool Support

[9] Graph
Links between

software artifacts
ADAMS

[102]
Hierarchical

graphical structure
Requirements information

[12] Graph Requirements relationships ChainGraph

[10] Sunburst and Netmap
Elements of requirements

knowledge

[103]
Sunburst, matrix,

tree, graph

Links between

software artifacts
Multi-Viso

[104]

Sunburst, tree, matrix,

list, table, bar, gauge,

radial view

Links between

software artifacts
D3TraceView

[105] Colored squares
Links between

software artifacts
TraceVis

[106] Text
Links between

software artifacts
Poirot

[107]
TreeMap

and hierarchical tree

Links between source code

and documentation
DCTracVis

similar to those mentioned above, there are several other techniques used to visualize

the traceability links. Marcus et al. [105] studied traceability links between software

artifacts and showed how visualization can be important in recovering, maintaining

and browsing links between such artifacts. TraceVis [105] uses a map of colored and

labeled squares to show traceability links for a particular source or target artifact. A

map enables users to clearly display all links of a chosen source artifact or a selected

target artifact. Unfortunately, it is unable to show links for multiple artifacts at the

same time. Poirot [108], [106] shows results of the trace in text format. It employs
November 24, 2020

3.5. Discussion 47

confidence levels, checkboxes of user feedback, and tabs that separate probable and

unlikely links to help the analyst assess candidate links. Chen et al. [107] integrate

two visualization techniques: Treemap and hierarchical tree to support a through

overview of traceability and provide a detailed overview of each trace.

3.5 Discussion

Depending on the results of our systematic literature review, we have made vari-

ous interesting outcomes that are discussed in the following. These outcomes are

discussed with respect to our research questions identified at the beginning of this

chapter.

RQ1: How are the links between unit test and code under test created?

To answer this question, we have refined and selected those methods that focus on

traceability approaches that define only the traceability links between tests and code.

In this case, traceability recovery approaches that create links between source code

and other software artifacts and conversely between unit tests and other software

artifacts were not considered. We also elicited from our analysis those approaches

related to IDEs (e.g. Eclipse) which provide some support to browse between unit

tests and tested classes, since they depend on technology and require many manual

efforts and configurations with less accuracy findings.

After final selection and review of publications, we found that only a few and specific

approaches have been suggested and used for traceability links recovery between unit

tests and code under test. Notably, most of these approaches have come from the

outstanding work [6]. They have compared six traceability recovery strategies. The

comparison covers only those approaches relating to test-to-code traceability. The

strategies have been evaluated in terms of accuracy and applicability based on three

open-source Java programs. The results show that last call before assert, lexical

analysis and co-evolution have high applicability; however, they have low accuracy.

While naming convention and fixture element types showed high precision and recall,

the best results are provided by combining the high-applicability strategies with the

high-accuracy ones.

November 24, 2020

3.5. Discussion 48

In [109], the proposed approach provided more accurate results than provided in [6].

This approach depends on applying dynamic slicing and conceptual coupling to re-

cover the links between test cases and source code, thus identifying class under test

(CUT).

An automated test-to-code traceability approach [59] has been proposed to recover

links between source code and test cases on the method level by identifying a “Focal

method” under test. Focal method according to the proposed approach is defined

as "The last method invocation entailing an object state change whose effect is in-

spected in the oracle part of a test case is a focal method under test (F-MUT)". The

approach included a set of phases to distinguish focal methods under test from other

helper methods. The evaluation results of approach pointed out to its accuracy in

determining F-MUTs. Identifying F-MUTs actively promote the software evolution

and maintenance, as well as support test coverage analysis. However, maintaining

and comprehension of these retrieved links is still a challenge task especially in case

of a large and complex software system.

RQ2: What supporting tools are usually used for the creation of links?

In reviewing the state of the art in this thesis, we observed the lack of providing ap-

propriate tool is one of the main problems associated with the current test-to-code

recovery approaches. The assumption is, most of companies prefer using manual

traceability recovery methods.

SCOTCH [109] is the one and only tool that providing automatic practical support

of the test-to-code traceability links. However, it still does not have an industrial

strength to handle automated connections between applications and tests. In addi-

tion, developing commercial off-the-shelf (COTS) tools would be a growing demand

since the results show the absence of COTS tools in this area.

RQ3: To what extent has a visualization of test-to-code relations been

investigated in existing studies?

As shown in Table 1 (Section 3.4.5), visualization of test-to-code traceability links

does not receive any interest in the studied literature. This implies that works on

testing related visualization are still practically limited. One possible reason is that

writing tests is considered to be a time-consuming and not interesting task. De-

November 24, 2020

3.5. Discussion 49

velopers usually focus more on the development process and activities which are

responsible for testing activities.

Recently, in more important projects, developers can not miss testing. However,

they omit traceability because, during the development process, they do not feel

the need for it. Therefore they do not spend effort on it. Moreover, in spite of

the importance of test-to-code traceability links in understanding, maintaining and

refactoring code, it is not commonly used, and its scope is highly neglected in soft-

ware development.

There is a huge requirement to advance test-to-code traceability recovery visualiza-

tion techniques. The existing approaches have several limitations which make the

visualization process rather difficult; for instance, most of the links that could be re-

trieved using the current methods are either redundant links or missing links. There

is no way to recover specific links of high importance. Furthermore, identifying links

is mostly a manual task that needs higher time and effort investment.

RQ4: What visualization techniques and tools are proposed to represent

test-code relations?

An interesting observation that needs attention that is none of the existing recovery

approaches provides support of visualization alongside with traceability links recov-

ering. Moreover, there is not much interest in developing tools to visualize links

between test and code. Most of the tools have been developed to visualize relation-

ships/links between requirements and other software artifacts (source code, design,

test cases). These tools supported different visualization techniques such as graphs,

traceability matrices, hyperlinks (cross-references), and lists.

Visualization of traceability links would be an important aspect, helpful in man-

agement and testing tasks, as well as preferred by users. Therefore, this can be a

valuable avenue for further research within the traceability community to investigate

proper techniques of visualization between tests and code under test.

3.5.1 Open Research Area

The focus of this thesis is on the creation and visualization of traceability links

between tests and code. During working on this thesis, A set of questions were for-

November 24, 2020

3.5. Discussion 50

mulated which the research then based upon. These questions helped us to reveal

specific topics in this area.

Question 1. What is the purpose of visualization?

Visualization must have a purpose. Defining our goal can help in finding proper

visualization techniques to be used and appropriate elements to be presented in it.

Purpose can be: understand relations, impact analysis, find problems (e.g. bad

smells).

Question 2. What is a suitable visualization technique that can be used

to display test-to-code traceability relations and their attributes?

There are several possible ways to visualize test-to-code relations including graphs,

matrices, hierarchical tree, tree maps, 3D space. Among the available visualization

techniques, ‘graph-based visualization’ and ‘traceability matrices’ seem to be the

most suitable methods for various needs to find traceability links between code and

tests. However, the determination of the most suitable method depends on the use

case meaning, as the most suitable method may vary from one use case to another.

For example, when one tries to check the relations of an item for impact analysis,

‘graph representations’ and ‘hyperlinks’ seem to be relevant. On the other hand, if

someone needs a broader view to check inconsistencies among the relations, ‘graph

representation’ showing the traceability links inferred using different link-detection

techniques in different colors might be a better choice. While if the goal is to repre-

sent detailed dependency information, a hierarchical tree can be more suitable. In

addition, a 3D visualization also seems to be appropriate to display attributes of

various items and relations.

Question 3. What are the criteria considered to choose the best visual-

ization technique?

As an example, the size of a program can be a criterion, and should be taken into

account while using any visualization technique. Visualization methods often be-

come too large and thus hard to read and understand in the case of big projects.

Question 4. What is the best recovery approach usable to retrieve the

links between test and code?

Several techniques can be used to derive traceability relations, and each technique

November 24, 2020

3.6. Conclusion 51

retrieves a slightly different set of links. For example, NC supports the established

links more in class-level, while LCBA performs better at method-level. Depending

on the purpose of the visualization and the technique we use, either all links can be

visualized, or we should choose a specific visualization method to visualize any one

of the links, but which one? This is another open question that can be investigated.

Question 5. What is the level of information details that could be visu-

alized?

In a real-time system, thousands of tests and code items exist. Although it is not

impossible to visualize all these at once, this is probably not the best way. Instead,

a selective or hierarchical visualization approach seems to be a better choice. For

example, instead of method-level visualization, one can show test and production

classes or group items based on their relations or some other purposes and visualize

the groups only.

3.6 Conclusion

In this chapter, the results of the systematic literature review on the generating,

recovering, and visualizing the traceability links between source code and software

artifacts (e.g. requirements, documents), test cases and software artifacts (e.g. re-

quirements), and test cases and source code have been discussed. It has been clearly

observed that only a small portion of research has been done on visualization of

test-code relations and its importance in maintenance, comprehension, evolution,

and refactoring of a software system.

Based on the results of the systematic literature review, we defined number of re-

quirements for a new approach:

Req1. Create test-to-code traceability links automatically during the development

process.

Req2. Support visualization of the created traceability links.

Req3. Support tool or integrate the automatic traceability visualization and creation

with the development process to reduce the work effort required during the

November 24, 2020

3.6. Conclusion 52

development.

Req4. Easy to use and apply in practice.

Req5. Provide an empirical evidence that the proposed approach is more efficient

than other approaches.

November 24, 2020

Chapter 4

Visualization of Trace Approach

This chapter introduces a novel approach that combines multiple traceability re-

covery approaches to improve the performance of automated traceability recovery

between unit tests and classes. We supported these approaches with a traceability

visualization technique to allow visualization of the overall structure of traces and a

thorough description of each trace respectively. In other words, the proposed visual-

ization displays the traceability links in two levels, class-level, and method-level. We

developed an efficient visualization tool, called “TCTracVis”, that supports these re-

covery approaches and can automatically capture and visualize the traceability links

between test cases and its code elements.

4.1 Tracing Test and Code Links During Software

Development

The main development artifact in agile development is the source code. Unit tests,

code, and user stories are usually the artifacts produced during agile development

process. Traceability links can provide an intuitive model to describe the relation-

ships between tests and code. These relationships help to improve the process of

software engineering in several ways: facilitating program comprehension, system

changing safely, artifacts reusing easily [160]. For example, Test-to-code traceability

links can be used to determine which tests should be checked after the code changes

which helps in reducing regression tests generation. In recent years, research into
53

4.1. Tracing Test and Code Links During Software Development 54

combining test-to-code traceability links recovery approaches has become very pop-

ular, [153], [159], [121], [109], however, it is complex, time-consuming, and error-

prone task to manually retrieve test-to-code traceability links. Such links also are

often missing in practice due to lost documentation, non-documented linear devel-

opment, legacy system, frequently changing requirements with less documentation,

etc. Moreover,the main issue is how to support the comprehension and maintenance

of these links efficiently and effectively? Visualization of test-to-code traceability

links can be an effective approach to understand test-to-code relations. It efficiently

helps software developers in various software development activities throughout the

software development life cycle (SDLC) [110]. However, only small attention of re-

search has been paid to the importance of visualizing the relations between the unit

test and class code in maintenance, comprehension, evolution, and refactoring of a

software system.

Many traceability recovery methods have been proposed to retrieve links of trace-

ability between different software artifacts [64], [111]– [116]. Some require hu-

man involvement [117], [114], while others can generate traceability links automat-

ically [83], [116], [71], [111]. However, no recovery approaches have a potential to

automatically and accurately recover all possible links between artifacts. Some pos-

sibly important and useful links are missed by approaches, correspondingly, some

un-useful or incorrect links are extracted and may confuse developers.

These issues can be notably diminished by using test-to-code traceability recovery

approaches that automatically establish and retrieve the links between unit test and

unit under test, as well as adopting visualization techniques to present these links

in a simple and intuitive way [8]. In this chapter, our focus is on the traceability

links between classes in source code and test cases in units test that are designed

to test these classes. Our approach aims to provide software engineers with an ef-

fective visualization system that enables them to understand, retrieve, and browse

traceability links between test and code.

November 24, 2020

4.2. The Proposed Approach 55

4.2 The Proposed Approach

In order to provide efficient visualization of traceability, we have developed an ap-

proach supporting the representation of multi-level traceability links displays a thor-

ough overview of each link. Our approach shows which artifacts are related, visual-

izing links between test artifacts and tested artifacts at different levels, class-level,

and method-level. As we are establishing links on the class-level as well as on the

method-level, we use the terms class-under-test, when referring to a tested class, and

the terms tested method or method-under-test for the method-level. Furthermore,

a tested class is tested by one or more test classes on the class level, on the method

level, a tested-method is tested by one or more test methods. To create the test-to-

code traceability links, our approach combines multiple automated sources of test

and code traceability links. We have designed a traceability visualization system,

called TCTracVis, to support the implementation of our approach. Our approach

and the supported tool were built based on the questions posed in Section 3.5.1.

These questions were re-presented and re-answered in this part of the chapter as the

tool was built upon the answers.

1. What is the purpose of visualization?

In our approach, the main goal of using visualization is to support the compre-

hension and maintenance of traceability links efficiently and effectively, and

help to identify the disagreement between traceability links inferred from dif-

ferent sources [BNN02]. It also, can point out places where something is wrong

with the tests and/or the code (at least their relationship) in a specific system,

understand which code elements are tested by which unit tests, and diminish

bugs while updating the existing features of a piece of software or adding

new features to it. Moreover, visualization can help testers and developers to

find solutions with their problems in testing and understand the relationships

between test cases and the corresponding units under test.

2. What is a suitable visualization technique that can be used to display test-to-

code traceability relations and their attributes?

Defining our goal helped us to find proper visualization technique to be used.

November 24, 2020

4.2. The Proposed Approach 56

Figure 4.1: Left-to-Right Hierarchical Tree Visualization

We utilize hierarchy tree graph to visually represent a detailed overview of

traceability links between a node and its related nodes. A node can be a class,

method, or test case. Hierarchy tree can be expanded and contracted to visu-

alize links. We adopt a left-to-right hierarchical tree visualization technique

to show traceability links as children of artifacts in the system and to identify

trace links for a specific node due to the ease and convenience of browsing and

understanding links (see Figure 4.1). Once the traceability links of a selected

node are established and retrieved; a hierarchical tree graph is built to show

links of nodes that are related to the selected node.

We used a hierarchical tree structure to help us to display the traceability

links of a selected item in two levels of dependency information. First level is

a class-level, where a test class is connected to all related tested classes which

the selected test class was written to evaluate. In this level, the traceability

links have the advantages of being bidirectional. This implies that the tested

class can be selected to show all test classes that evaluate this class. The

second level is a method-level, which provides a more detailed overview of

November 24, 2020

4.2. The Proposed Approach 57

TCT links. It shows the traceability links established between a class test and

its related test methods and methods under tests that the test methods were

written to evaluate. Our traceability visualization method provides efficient

traceability visualization between unit tests and tested classes. The overview

of visualization of multilevel links is presented in Figure (4.2).

3. What are the criteria considered to choose visualization technique?

The kind of data that we want to convey to users is one of the criteria consid-

ered when choosing the visualization technique. As the relationship between

test and code is the visualized data in our approach, a hierarchical tree is

a good visualization technique that can show the links within these artifacts

that are somehow complex to explain with words. Furthermore, we took into

consideration how to visualize the traceability links that make it easier for

users to understand the traceability information presented.

Figure 4.2: Multilevel Visualization Approach

4. What is the best recovery approach usable to retrieve the links between test

and code?

Several techniques can be used to derive traceability relations, and each tech-

nique retrieves a slightly different set of links. Still, the issue is that using a
November 24, 2020

4.2. The Proposed Approach 58

single source is not reliable and as such, we use combinations of three of trace-

ability recovery techniques, namely, naming convention (NC), last call before

assert (LCBA), and (SCG). NC showed high precision and recall, while LCBA

provided the higher score of applicability as a result of comparing six trace-

ability recovery approaches [6]. In [98], static call graph is used to identify the

intended class under test by connecting each test with the list of methods that

may be called by the test. This also can help in identifying an error location

in a failed test case. However, there is no single technique that is superior

to all others [6], [5]. In the next section, we define the recovery approaches

supported in our tool with an example of each approach.

5. What is the level of information details that could be visualized?

Although it is not impossible to visualize thousands of tests and code items

in real system at once, this is probably not the best way. Instead, a selective

or hierarchical visualization approach seems to be a better choice. Our goal is

to assist users to present, navigate, and understand test-to-code traceability

links. To accomplish our goal, we use hierarchical tree visualization to show,

a) a hierarchical view of a selected item (i.e. base class/test class with all its

methods and fields) b) base class-to-test case traceability links, and c) test-

to-code traceability links not only on a class level but also the trace links on

a method level (i.e. methods related to the classes and test cases).

4.2.1 Traceability Recovery Techniques

In our tool, we adopt three traceability recovery techniques to retrieve links between

unit’s test and tested code. These techniques are: Naming convention, Last Call

Before Assert (LCBA), and Static Call Graph (SCG). Test-to-code traceability links

are recovered automatically in TCtracVis using one of these approaches according

to which approach the user selects for recovery.

November 24, 2020

4.2. The Proposed Approach 59

(a) Fragment of EvauationClass class

(b) Fragment of EvauationClassTest class

Figure 4.3: Tracing Links Using NC

A. Naming Convention (NC). Over the past years, naming convention was

found to have been the best and one of the most frequently used techniques

in retrieving links [5], [6]. In our tool, we adopt a derivative of the traditional

naming convention [153], which replaces the condition that name of test unit

must exactly match the name of tested code, with the more flexible condition

that the name of test unit contains the name of tested code. Therefore, the

tested class is linked to the test class if the name of the test class includes the

name of the tested class after removing the term test from the test class.

November 24, 2020

4.2. The Proposed Approach 60

link(nt, nc) =

True, if nc is substring of nt

false, otherwise
(4.2.1)

Where nt is the name of a test unit and nc is the name of tested code. This

approach can perform better if a project does not follow the naming conven-

tions. In Figure 4.3, we briefly describe how naming convention does work.

Figure 4.3.a shows a fragment of class EvaluationClass which is being tested

by EvaluationClassTest class as shown in Figure 4.3 b. We can observe that

the name of test case provides a hint about the class under test. The link is

established if the test case contains the name of tested class after removing

Test word. In naming convention, the trace is unidirectional which means that

the trace starts from unit test to code. NC can better support the established

links in class-level.

Figure 4.4: EvaluationClassTest with a class under test

B. Static Call Graph (SCG). SCG works by inspecting the production class

calls in the implemented test unit. The production class referred most is the

most likely to be the unit under test. In our visualization system, it counts

which classes are called and how many times they are called in each test

method. They are stored in a Hash table, then it finds the class invoked

most and shows the traceability information. For example, in Figure 4.4, the
November 24, 2020

4.2. The Proposed Approach 61

EvaluationClass class is referenced twice in EvaluationClassConstructorTest

by the constructor and AddNewEvaluationTest.

Figure 4.5: EvaluationClassTest with LCBA

C. Last Call Before Assert (LCBA). LCBA derives test classes by looking

at what . In our approach, the statements in each test method are analyzed

and searched for classes and methods called test method, and then the test

method is linked to tested class if the tested class is last return before an assert

statement.

link(tm, tc) =

True, if tc is last return before assert in tm

false, otherwise
(4.2.2)

Where tm is the test method, and tc is the tested class. For example, in Figure

4.5, EvaluationClassTest needs to call class EvaluationClass in the statement

performed right before assert statement to compare the assert results.

To the best of our knowledge, and according to the previous studies that at-

tempt to recover the traceability links between test and code, the majority of

approaches used prefer utilizing manual recovery methods. Our approach is

intended to overcome the shortcoming associated with the existing approaches

in available traceability recover tool by providing practical support and real-

November 24, 2020

4.2. The Proposed Approach 62

ization of the test-to-code traceability recovery. We adopted lightweight [5]

automatic recovery that can be directly executed at run-time and does not re-

quire pre-computation of the input. Although the majority of the techniques

were manual (from the scratch), the methods listed in the literature and re-

searches are all able to automatically infer links. However, the problem is

that using a single source is not accurate [5], and as such, our tool generates

links using multiple sources and then visualizes them in a way that allows the

developer to compare the links and determine which ones to consider as valid.

Figure 4.6: Architecture of the TCTracVis

November 24, 2020

4.3. Architecture and Design principles 63

4.2.2 Other Functionalities

Further features in TCTracVis involve some metrics about the traced solution (e.g.

no. of base classes, no. of test classes, no. of classes not tested). These information

can be visually displayed using several bar charts.

The metrics provide a quick overview of artifacts of the traced solution which can

better help to extract valuable information with less effort. For example, one can

reveal classes of the code not exercised by a set of test cases. This insight enhances

the improvement of testing by creating new test cases for the untested classes. This

means creating new links between unit tests and UUT, thus improving the quality

of the code, increasing code coverage, facilitating maintenance, and reducing costs.

4.3 Architecture and Design principles

A design model of TCTracVis has been built as a stand-alone desktop application

that runs in MS Windows. It automatically recovers traceability links between unit

tests and tested code in a project and visualizes these links using hierarchy tree

graph visualization technique (see Section 4.2.2). At the time of this writing, this

tool is designed to find traceability data of the source code created in C# and the

Microsoft unit tests used in it. It supports multiple traceability recovery sources to

extract test-to-code traceability links. Figure 4.6 illustrates the architecture of our

visualization traceability tool.

Input

The tool requires a solution file as an input, as the tool is designed to find the

traceability between classes and test cases of any program /application developed in

C# in Visual Studio, the solution file holds the information about all the projects

used in source program. To make the performance of tool better, some third party

resources are used to read the assembly and IL Codes for the Source Codes, read

the C# Source Codes and get the data like classes, methods, fields etc, and visualize

the traceability data in hierarchy tree view.

Getting Information on Projects

In the first step, the tool reads the solution file and finds the project files (source

November 24, 2020

4.4. The Usage Example 64

code and unit test) used in it. As per the Visual Studio file structure, the project

files are in an XML format. Next, the tool searches for C# source code files and test

case files (as in Visual Studio a solution file can contain different types of projects

all together). In this part, the tool also finds the path of the assemblies which would

be read in the next stage.

Reading Assemblies

Next, the tool finds the assemblies and reads them, basically, it reads two assemblies,

(1) The assembly created by the source code (name spaces and classes), (2) the

assembly created in test cases Studio.

Displaying Traceability Information

Namespaces and classes are loaded into visualization generator which shows the

hierarchy of classes and name spaces using a hierarchical tree visualization technique.

Our approach can find traceability between test cases and source codes using three

mechanisms namely: NC, LCBA, and SCG (for more details see Section 4.2.1).

The retrieved links are then input into visualization generator and displayed using

hierarchical tree visualization technique. The tool also provides some metrics about

the traced solution, these metrics are visualized using several bar charts.

4.4 The Usage Example

Figure 4.7 shows a test case retrieving and visualizing traceability links between

production classes and test cases of two solutions written in C#: HRsystem, which

is a human resources information system developed by ITG1 with enough units

tests for implementation and evaluation purposes, and UnitTestExample2 ; which is

an open source Windows forms application with main module functionality that is

served by several small classes which are used in unit testing. Table 4.1 shows the

characteristics of the two C# solutions.

1Integrated Technology Group (ITG) https://www.itgsolutions.com/
2https://github.com/situ-pati/UnitTestExample

November 24, 2020

4.4. The Usage Example 65

Figure 4.7: TCTracVis User Interface

Table 4.1: Solutions Characteristics

System LOC No.of classes No.of base methods No.of test classes No.of test methods
No. of Public Methods

used in Test Classes

HRsystem 3208 31 180 15 109 126

UnitTestExample 1912 15 113 5 27 86

Our Visualization tool includes several components as follows:

1. “Class view” and “File view”. In these views all the namespaces (the container

that stores the classes), classes, and test classes are displayed. When you

click on the class in the class view, a detailed information of all the members

(methods and fields) is displayed in the bottom part of this section. The

members are arranged by their scope type (Private / Public / Protected) as

shown in Figure 4.7.a.

2. “Test cases” (Figure 4.7.b). This section shows available test classes used in

the solution.

3. “Select Method” (Figure 4.7.c) button. Users can select one of traceability

recovery approaches for establishing links between the test cases and tested
November 24, 2020

4.4. The Usage Example 66

classes in the project under trace.

4. “Tree View” (Figure 4.7.d). This view represents a visualization section that

shows the hierarchy tree graph of all related links retrieved. This section

shows two types of graphs: The Dependency Graph which displays code-to-

test traceability links, and Test-to-Code Graph which displays test-to-code

traceability links. By clicking on an Item in the TreeView, an expanded list of

the following items in the tree is displayed.

In a class view, a double click on a class shows a hierarchy tree graph for a

selected class and all its related methods and fields. When a user right-clicks

on the class item in the Class View, a popup menu appears as "Base Class

to TestCase Dependency" as shown in Figure 4.7.e. When the popup menu

is clicked, a tree-view appears in the tree-view showing the dependency graph

for a selected base class (i.e. test classes that call a selected class). (see Figure

4.7.f). In test cases view, a user can initially select one traceability recovery

approach, a double click on the test case shows the details in the “TreeView”

section as a hierarchy tree graph. A click on a test class in a hierarchy tree

graph expands it to show subsequent items related to a selected test class

(i.e. base classes and test methods). Figures 4.8, 4.9, and 4.10 show the

visualization of test-to-code traceability links for issue-registerTest test case

from UnitTestExample using NC, LCBA, and SCG respectively.

In Figure 4.7, issue-registerTest test class is connected to issue-register base

class by matching their name using naming convention strategy.

Figure 4.8: Traceability links of issue-registerTest using NC

While Figure 4.8 provides visualization of the traceability links of issue-registerTest
November 24, 2020

4.4. The Usage Example 67

test class using last call before assert strategy. The Figure shows a set of tested

classes which are called by issue-registerTest test class in the statements per-

formed right before assert statements in issuebookTest test method.

Finally, static call graph strategy is used in Figure 4.9 to establish the links

of issue-registerTest test class. The visualization shows the production classes

that are invoked most in the implementation of test class and the number of

times called in each test method.

Figure 4.9: Traceability links of issue-registerTest using LCBA

As shown in the previous figures, we can see that test-to-code traceability links

from different sources are displayed which, in turn, provide a clearer picture of

what is taking place within these tests. Furthermore, a hierarchical tree view

presents a detailed overview of traceability links at method level especially

with LCBA and SCG approaches.

5. “Statistic View”. This view shows the statistics from the current traced solution

(see Figure 4.7.h).

• The first section of statistic view shows the number of base classes in

the solution (Private / Protected and Public), number of base methods,

November 24, 2020

4.4. The Usage Example 68

number of test cases/ classes, number of test methods, and number of

public methods used in test classes (see Figure 4.11).

• The second section of statistic view shows an overall overview of base

methods (public) not tested in the test cases. These are written in the

format [Base Class Name] Method Name. To export the statistics data

to an XML file, users can select “Save to XML” menu from the “File”

menu available in the “Statistics” view (see Figure 4.11).

6. “Statistics data in graph” (Figure 4.7.g). The statistics data in graph view

shows the statistics data in statistics view in graphical manner (see Figure

4.12).

Figure 4.10: Traceability links of issue-registerTest using SCG

November 24, 2020

4.4. The Usage Example 69

Figure 4.11: Statistics Data of the HR System

The results achieved in this chapter satisfy three requirements given in Section 3.6:

Req1. Create test-to-code traceability links automatically during the development

process.

Our approach support three traceability recovery techniques (i.e. NC, SCG, LCBA)

that automatically establish the links between test and code.

Req2. Support visualization of the created traceability links.

The approach supports hierarchical tree visualization to display the retrieved links.

The hierarchical tree view presents a detailed overview of traceability links retrieved

by multiple sources of links at method level.

Req3. Support tool or integrate the automatic traceability visualization and cre-

ation with the development process to reduce the work effort required during the

development. Our approach is implemented by TCTracVis visualization traceability

tool.

November 24, 2020

4.5. Summary 70

Figure 4.12: Statistics data of the HR system in graph view

4.5 Summary

This chapter introduced visualization traceability approach that integrating two

software artifacts (i.e. code classes and units test). Our approach and the supported

tool were built based upon the questions formulated in Section 3.5.1. We discussed

and answered these questions again in this chapter as the tool was built upon the

answers.

The proposed approach composed of the following components:

• The first component introduced the traceability information (i.e. solution file

that contains the artifacts and traceability links between them).

• The second component defines three traceability recovery sources that auto-

matically retrieve the links between units test and their related classes.

• The third component presents the visualization technique to visually display

the links between the selected elements.

• The fourth component provides statistical information of the traced solution

that can be visually displayed as well.

Furthermore, three requirements given in Section 3.6 have been satisfied which con-

tributed to obtaining the chapter results. The requirements are:
November 24, 2020

4.5. Summary 71

Req1. Create test-to-code traceability links automatically during the development

process.

Req2. Support visualization of the created traceability links.

Req3. Support tool or integrate the automatic traceability visualization and cre-

ation with the development process to reduce the work effort required during the

development.

November 24, 2020

Chapter 5

Evaluation Of Visualizing Trace

Approach

The main target of this chapter is to develop an understanding of the effectiveness

and usability of our visualization traceability approach in order to justify the effort

and time spent in the design of the TCTracVis tool. To testify to the tool, we

conducted a usability study. We prepared a set of questions to know how the use

of TCTracVis helps its end users in browsing, comprehension, and maintenance of

test-to-code traceability links of a software product or project.

5.1 Usability Evaluation

We conducted a usability study to answer the following questions:

• Is the use of multiple-source links visualization better for testers to find solu-

tions to their problems than using a single-source-visualization?

• Does the use of TCTracVis tool help to enhance the overall browsing, compre-

hension, and maintenance of test-to-code traceability links of a system?

The solution used in this study is the UnitTestExample solution mentioned in Sec-

tion 4.4. It is worth mentioning that our tool is robust to support large projects,

however we selected the UnitTestExample as its small size makes the manual eval-

uation much easier for the participants.

72

5.2. Study Context 73

5.2 Study Context

To answer the questions above, we defined a set of tasks to be performed using our

visualization traceability tool. These tasks have been also performed manually in or-

der to measure TCTracVis added value to traditional software engineering processes

in manual tracing. These tasks are shown in Table 5.1.

Table 5.1: Evaluation Tasks

ID Task’ description Motivation Concern

T1

Understand the structure of HR system

(e.g. number of classes, number of methods

and test cases, classes type,),

and the convention used in

the system to organize unit tests

Developer needs to understand

the structure of the system, how

the classes and test classes are organized.

Test classes are usually organized according

to a specific convention of a project. Being

able to comprehend, one can make maintenance

more efficient and improve the built/maintained system.

Structural comprehension

T2
Analyze the change impact of class

issue-register, in terms of its related unit tests

Change impact analysis enables an estimation

of how a change to a part of the system affects

the rest of the system. it’s widely used

in maintenance activities. Provides an idea

of system quality. A part of the system that

needs significant change may be a proper

candidate for refactoring.

Change Impact Analysis

T3
Find a class with the highest number

of linked unit tests

A class can be tested by multiple test classes

Refactoring of code needs refactoring of

dependent units’ test to maintain

the consistency between units test and classes.

Design Assessment

T4
Identify a unit test with the highest

number of linked classes

A unit test can be used to detect multiple classes.

Refactoring of code can be translated to regression

testing which is required to make sure that

a change code does not impact the existing features

of a product.

Design Assessment

5.3 Study Subjects

A group of 24 subjects with varying levels of expertise in software development and

unit testing were assigned for the evaluation of our tool and for performing the tasks.

Among the subjects were 17 students, 3 from industry, and 4 academics (see Figure
November 24, 2020

5.4. Study Results 74

5.1). We divide the subjects into two groups: a control group and an experimental

group. The former group is assigned to perform the tasks manually, while the latter

group is assigned to perform the tasks using TCTracVis tool.

At the beginning, we provided the subjects with a brief introduction to help them

to get familiar with our approach and tasks After the tasks completion, a set of

questions on our tool have been answered by them.

Figure 5.1: Types of Subjects

5.4 Study Results

During the execution of tasks, we recorded the time needed and the number of steps

performed to complete each task in each group. It is to be noted that the time

factor of the evaluation process was done by using a stopwatch, as the time needed

to understand the tasks was taken into consideration. As illustrated in Figure 5.2,

the time taken to complete all tasks using our tool varying from (5) minutes to (10)

minutes. While the same tasks completed manually with times varying from (45)

minutes to (60) minutes. The time varies depending on subjects’ experience in soft-

ware development and, for the experimental group, how often they use traceability

tools.

7 of the 12 subjects in the experimental group completed the first task in less than
November 24, 2020

5.4. Study Results 75

5 minutes, 3 spent 8 minutes, and 2 took 10 minutes to complete the task. As we

observed, the subjects who spent 8 and 10 minutes practiced a little to get familiar

with the tool before carrying out the four tasks. The subjects managed to easily

understand how the system is structured by using the “statistics “area and statistics

charts. Moreover, they easily defined the specific conventions used to organize the

unit tests by browsing the “class view” and looking at the NC approach. In contrast,

in the control group, the subjects spent around one hour to complete the first task

manually.

Figure 5.2: Average Time to Complete Tasks

In the second task, we asked 4 subjects in the experimental group to use only

a single link source to perform the task, they used “base code to test dependency”.

While the other subjects were asked to use all sources. The motivation behind this

is to evaluate the efficiency of visualization traceability links inferred from multi-

ple sources compared to a single source. In the experimental group, the subjects

completed the second task with times varying from 1 to 3 minutes, as the subjects

became more familiar with our tool, whereas, in the control group, the subjects took

45-65 minutes to complete their task. We observed that in the manual evaluation,

the subjects made great efforts in analyzing the change impact of issue-register class

and detecting its related test cases.

The third task was completed within 5 and 10 minutes by the experimental group,

November 24, 2020

5.4. Study Results 76

while the average time in the manual evaluation was 48 minutes. In the experimental

group, the subjects easily found a class in a “class view” and identified the number

of its linked test cases by using “base class-to-test case dependency” function which

displays “base class-to-test case dependency diagram”. This took 1 minute or less to

complete for a single class. On the other hand, in the control group, as the developer

of UnitTestExample followed a specific naming convention, this helped the subjects

more to identify the test cases that linked to the classes. nonetheless, this task was

tedious for the subjects and required a great effort to complete it manually.

Task 4 was as hard as the task 3 in the control group. The subjects took from 50

to 90 minutes to complete. Whereas in the experimental group, this task was com-

pleted easier and faster, and the times varied from 5 to 10 minutes. In the latter,

the subjects selected LCBA method to recover the test cases links with the classes

and managed to easily identify test cases, display the hierarchical tree of their links,

and then identify the number of their linked classes.

Figure 5.3: Number of Steps to Perform the Tasks

In Figure 5.3, it can be seen that the number of steps needed to perform the

tasks manually is much more than the number of steps needed to perform the tasks

using our visualization traceability tool, the subjects in the control group took more

steps in performing the four tasks compared to the experimental group. During the

manual evaluation, subjects often switched between source code files and test cases
November 24, 2020

5.4. Study Results 77

files to read, perform the task and write down the notes about the artifacts, the

links, the time and the number of steps to perform each task. While our tool can

effectively provide all required information in a single view.

Table 5.2: Questionnaire used in the experiment

ID Question

Q1 TCTracVis trace" is easy to use

Q2
Using the TCTracVis tool one can

efficiently and easily visualize the class tree of a project.

Q3
TCTracVis trace tool" has the ability to show detailed

statistics of various components of a program (classes, methods, unit tests, etc.)

Q4
TCTracVis trace tool" provides clear-cut visualization of "Test-to- code"

Traceability links" using various recovery approaches. (NC, LCBA, and SCG)

Q5

In TCTracVis Trace tool it is easy to detect base class’s dependency on test

cases”, thus It provides a rich set of initiations that makes visualization easier

to understand.

Q6
TCTracVis trace tool" saves your time in finding

Test-to-Code Traceability Links in a project

Q7
visualization of traceability links inferred from

multiple sources is more effective than a single source

Q8

Automated Recovery of Test-to-Code Traceability Links

helps developers and testers immensely in project

development and management than manual recovery methods

Q9
Automated Recovery of Test-to-Code Traceability Links helps

time savings in the project, thus, makes a project cost-effective

Q10
Overall, Test-2-Code would be strongly recommended

to a developer, a tester, or a researcher.

November 24, 2020

5.5. The Results of Questions 78

5.5 The Results of Questions

After the evaluation, the analysis of the main outcomes performed was on a number

of questions answered by the subjects in experimental group based on their experi-

ence of using our tool. The ten questions are shown in Table 5.1. The main purpose

of the questions is to assess the tasks performed by the subjects. Table 5.2 shows

the distribution of the questions over the four tasks. Questions 1, 3, and 4 aim to

assess the first task. The second task is assessed by questions 5 and 7. Questions 2

and 5 assess the third task. Questions 7 and 8 are concerned with the fourth task.

Whereas questions 9 and 10 aim to investigate the usefulness and the importance

of our approach from the subjects’ point of view.

Table 5.3: Distribution of Questions over Tasks

Tasks
Questions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

T1 x x x

T2 x x

T3 x x

T4 x x

The results of evaluation questions are shown in Figure 5.5. The questions are shown

on the x-axis intended closed answers on the Likert scale from (strongly agree) to

(strongly disagree). While the y-axis displays the number of participants and their

responses based on the Likert scale (strongly disagree, disagree, neither agree nor,

agree, strongly agree). The most interesting result that the majority of responses

provided were positive.

9 subjects (strongly) agreed that the tool is easy to use, the visualization of multi

sources links is better than single source links, and they highly recommended our

tool to developers, testers, and researchers. 6 of them also (strongly) agreed that

they could easily visualize a class tree of the traced solution and in an efficient way,

and the tool can help to save time needed to find traceability links and make a

November 24, 2020

5.5. The Results of Questions 79

project a lot more cost effective. Furthermore, 6 subjects (strongly) agreed that the

visualization of traceability links was clear, and they were able to show the statisti-

cal data of the program components easily using the tool.

Several participants gave the answer “agree”, and in each question around 1 or 2

participants answered “neither agree nor disagree”. 4 subjects (strongly) agreed

that they could easily detect the base code to test dependency and 3 agreed to this

question, but 4 subjects answered “disagree”. They responded that they did not

figure out that they should right-click on a class to show the dependency diagram,

they commented that this feature should be more prominent in the interface. 7

subjects (strongly agree) that the automated recovery approaches are better than

manual methods, whereas 1 participants answered (disagree) to this question. They

justified their answer that the manual methods cannot be avoided during project

development, it is often required to confirm vulnerabilities.

Figure 5.4: Evaluation Results

Overall, the results revealed that the participants strongly agreed that the visualiza-

tion of traceability link inferred from different sources is more efficient and helpful

than using a single source, and that, the results showed that the visualization tool

can efficiently support understanding, browsing, and maintaining of test to code

traceability links in software system.
November 24, 2020

5.6. Discussion 80

5.6 Discussion

The usability evaluation of TCTracVis gained promising results. It is achieved

much better results on recovering traceability links between units test and classes

than manually recovering links. The subjects were able to recover and visualize the

traceability links between test cases and production classes in a traced system effi-

ciently and effectively. The subjects also could easily and quickly browse the links

and find a specific artifact (i.e. class, method, test case). Furthermore, the tool

supported the comprehension of test-to-code traceability links.

We combined multiple recovery approaches to take advantage of the strengths of

each of them to improve the restrictions of each of them. We adopted hierarchy tree

technique to visualize the traceability information and display the detailed informa-

tion of a link of the selected node. Our tool made it simple for the participants to

understand the structure of the traced solution and an overview of the links in it.

The participants were satisfied with the combining of multiple recovery approaches

to retrieve the links. They thought that using multiple sources of links outperformed

using of a single source.

Based on our results, we observed that TCTracVis tool can provide the subjects

with following features and functions

• Directly identify a specific item in a traced program to show its related links.

• Easily visualize a class hierarchical tree of a program.

• Easily detect and visualize a class dependency on test cases.

• Easily retrieve the traceability links (i.e. the related classes and methods) for

a specific test case from multiple sources and visualize the retrieved links in

an efficient way.

• Support an overall overview of the program components by providing detailed

statistics of these components with visualization support for the statistics.

• Save the time needed in finding test-to-code traceability links in a project

efficiently and make the project cost-effective.

November 24, 2020

5.7. Threats to Validity 81

5.7 Threats to Validity

Some threats potentially affect the validity of our evaluation results. We have ex-

erted reasonable efforts to identify these threats and attempted to alleviate some of

them.

The first threat is that only one system has been used in the usability evaluation.

The min reason for using one system is manual evaluation. We drew attention that

the tool is a generic tool and supports C# solutions of varying sizes.

The second threat concerning the extent to which the results of our study can be

generalized; to alleviate this threat, we introduced the tool and the problem to differ-

ent subjects (evaluators) with varying levels of experience. Our evaluators included

students, academics, and industry experts who have familiarity with the necessary

software development skills.

The third threat is that some of the participants were unfamiliar with the concept

of traceability or visualization. To overcome this threat, we provided the subjects

with a precise description of the traceability and visualization, ran a demo, and

explained the tool. We allowed the subjects sufficient time to understand the func-

tionality or usability of the tool and practice visualization exercises on some sample

sets of problems before presenting the real problem to solve.

5.8 Summary

This chapter presents a usability evaluation of TCTraVis trace visualization tool.

The main target of this study is to assess the extent to which our tool can be helpful

and useful for the developers, testers, and even researchers in system development

process. The results of this evaluation show that our tool can efficiently and effec-

tively support understanding, browsing, and maintaining the test and code relations

in a software system.

The results achieved in this chapter satisfy two requirements given in Section 3.6:

Req 4. Easy to use and apply in practice. The subjects who evaluated our tool

“strongly agreed” that TCTracVis is easy to use and they recommended developers

and testers to use it.

November 24, 2020

5.8. Summary 82

Req 5. Provide an empirical evidence that the proposed approach is more efficient

than other approaches. Our tool provides three automated recovery approaches to

capture the links between tests and source code. The results of our evaluation il-

lustrated that the automated approaches are much better than the manual recovery

approaches in term of time and cost.

November 24, 2020

Chapter 6

Summary

In this thesis, we focus on the specific problem of recovering and visualizing the

traceability links between test cases and the related production classes. We provide

an innovative approach for automatically capturing the traceability links between

unit test and classes from multiple sources of links and visualizing these captured

links in order to help the testers and developers to get a bigger picture about what

is going on with the tests and understand the relationships between test cases and

the corresponding units under test.

Our thesis consists of four main parts, namely background introduced in Chapter

2, state of the art in Chapter 3, trace visualization approach in Chapter 4, and

evaluation of trace visualization approach in Chapter 5.

Background

In Chapter 2, we presented general terms that are defined in the contexts of trace-

ability and visualization. Then we provided concise description about test-to-code

traceability. After, we introduced general information about using visualization in

representing software system. Furthermore, we presented the visualization tech-

niques used to visualize a source code. Then, we discussed the usage of visualization

with testing as well as, the visualization methods that usually employed to show

test related information.

83

Chapter 6. Summary 84

State-of-The-Art

In Chapter 3, we presented a systematic review that discussed the existing articles

and research concerning creating and visualizing traceability links between different

software artifacts, as well as, between test and code in specific.

The results of the systematic review obtained that visualization of test-code rela-

tions didn’t have much interest in practice despite of its importance in maintenance,

comprehension, evolution, and refactoring of a software system. We defined num-

ber of requirements for a new approach that supports visualization of test-to-code

traceability links.

These requirements are as follow:

Req 1 Create test-to-code traceability links automatically during the development

process.

Req 2 Support visualization of the created traceability links.

Req 3 Support tool or integrate the automatic traceability visualization and creation

with the development process to reduce the work effort required during the

development.

Req 4 Easy to use and apply in practice.

Req 5 Provide an empirical evidence that the proposed approach is more efficient

than other approaches.

Trace Visualization Approach

Chapter 4 presents a novel approach that combines different traceability recovery

methods to establish the links between unit test and its related classes. The ap-

proach supports visualization of the retrieved links from multiple sources links. A

visualization system, called “TCTracVis”, is developed to support our approach. TC-

TracVis employs three test-to-code traceability links naming [6]: Naming convention

November 24, 2020

Chapter 6. Summary 85

(NC), Last call Before Assert (LCBA), and Static call graph (SCG) to automati-

cally extract and establish the links between test cases and its classes which, in turn,

reduces the effort of manual recovering traceability links. Visualization support to

these links is provided with the use of hierarchal tree visualization techniques in

order to help developers automatically overview the links inferred by various tech-

niques and also to select the right relations for analyses.

In this chapter, we defined all methods that are used to recover the traceability

links between test and code. We also discussed visualization technique used to vi-

sualize traceability links in software system. Our contributions to this chapter are

the following:

1. Build an informative and generic tool for improved program comprehension,

browsing, and maintenance.

2. Displaying the hierarchical relationships of source code and units test recov-

ered by multiple sources for better system evolution analysis.

Evaluation for Trace Visualization Approach

In Chapter 5, We examined the usability of our visualization system and assessed

users’ interest. We conducted a usability study to evaluate the usability and useful-

ness of our traceability visualization tool. We prepared a set of questions to know

how the use of TCTracVis helps its end users in browsing, comprehension, and

maintenance of test-to-code traceability links of a software product or project. We

defined four tasks that were performed by a subset of subjects who have different

backgrounds in software developments skills. These tasks were performed in two

ways: manually and using our tool. Then, the subjects answered ten questions that

reflected their experience in using our tool and in order to analyze the results of our

usability evaluation.

The results of this evaluation show that our tool can be helpful and useful for the

developers, testers, and even researchers in system development process efficiently

November 24, 2020

Chapter 6. Summary 86

and can effectively support the software engineers in understanding, browsing, and

maintaining the test and code relations in a software system, and that, the results

revealed that the visualization of traceability link inferred from different sources is

more efficient and helpful than using a single source. The automated recovery ap-

proaches provided by our tool much better and faster in recovering test-to-code than

manual methods. The visualization method used in our tool provided promising re-

sults in comprehension, browsing, and maintenance the test and code traceability

links of traced system. The results obtained that our tool can be highly recom-

mended to use in software development process.

Future Work

Based on the results presented in this thesis, there are potential areas of future

work as follows:

Implement visualization traceability approach on other programming lan-

guage.

As we achieved good results during the evaluation of our traceability visualization

approach on C# solution files, our visualization system can be extended to support

further programming languages such as Java, C++, Python.

Support other types of traceability recovery approaches.

While the traceability visualization approach supports multiple sources of traceabil-

ity links, the visualization system was built supporting three types of traceability

recovery methods. We plan to implement our approach with further recovery ap-

proaches.

Support an overall overview visualization of project.

Currently, the traceability links for each node (i.e. node can be class, test case)

can be displayed on the method level. We plan to extend our visualization system

to include one overall overview visualization of all traceability links for the whole

project which, in turn, may need to support other types of visualization techniques.

A more thorough analysis of the use of traceability links during develop-

ment.

November 24, 2020

Chapter 6. Summary 87

In the current work, we looked at how the visualization of traceability links between

test cases and tested class can be used in comprehension support. There are other

usage scenarios of traceability links visualization during development need to be

studied in more details such as system evolution, code coverage, regression testing.

November 24, 2020

Bibliography

[1] Institute of Electrical and Electronics Engineers (1990), IEEE Standard Glos-

sary of Software Engineering Terminology, Office. vol. 121990, no. 1, p. 1.

1990. [Online]. Available: http://ieeexplore.ieee.org.

[2] S. B. I. Mohammad Hossein Abolghasem Zadeh . Mohammad Nazri Kama,

Pourya Nikfard (2013), Software Changes, Int. Conf. Adv. Comput. Netw -

ACN 2013, 2013.

[3] Hayes, J.H., Dekhtyar, A. and Janzen, D.S. (2009), Towards traceable test-

driven development, In 2009 ICSE Workshop on Traceability in Emerging

Forms of Software Engineering . pp 26-30. IEEE

[4] A. Qusef (2013), Test-to-code traceability: Why and how?, In 2013 IEEE Jor-

dan Conference on Applied Electrical Engineering and Computing Technologies

(AEECT). pp 1-8. IEEE

[5] Parizi, Reza Meimandi, Sai Peck Lee, and Mohammad Dabbagh (2014),

Achievements and challenges in state-of-the-art software traceability between

test and code artifacts, IEEE Transactions on Reliability 63, no. 4 (2014):

pp 913-926.

[6] Van Rompaey, B. and Demeyer, S. (2009), Establishing traceability links be-

tween unit test cases and units under test. In 2009 13th European Conference

on Software Maintenance and Reengineering.pp 209-218. IEEE.

[7] Qusef, A., Oliveto, R., and De Lucia, A. (2010), Recovering traceability links

between unit tests and classes under test: An improved method. In 2010 IEEE

International Conference on Software Maintenance. pp (1-10). IEEE.
88

Bibliography 89

[8] Roman, G. C., and Cox, K. C. (1992), Program visualization: The art of map-

ping programs to pictures. In Proceedings of the 14th international conference

on Software engineering. pp (412-420).

[9] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G. (2005), Adams re-

trace: A traceability recovery tool.In Ninth European Conference on Software

Maintenance and Reengineering. pp (32-41). IEEE.

[10] Merten, T., Jüppner, D., and Delater, A. (2011), Improved representation

of traceability links in requirements engineering knowledge using Sunburst

and Netmap visualizations.In 2011 4th International Workshop on Managing

Requirements Knowledge. pp (17-21). IEEE.

[11] Di Thommazo, A., Malimpensa, G., de Oliveira, T. R., Olivatto, G., and

Fabbri, S. C. (2012), Requirements traceability matrix: Automatic generation

and visualization. In 2012 26th Brazilian Symposium on Software Engineering.

pp (101-110). IEEE.

[12] Heim, P., Lohmann, S., Lauenroth, K., and Ziegler, J. (2008), Graph-based

visualization of requirements relationships. In 2008 Requirements Engineering

Visualization.pp (51-55). IEEE.

[13] Arbuckle, T., Balaban, A., Peters, D. K., & Lawford, M. (2007, July). Software

Documents: Comparison and Measurement. In SEKE (Vol. 7, pp. 740-745).

[14] Spanoudakis, G., and Zisman, A. (2005), Software traceability: a roadmap. In

Handbook Of Software Engineering And Knowledge Engineering. Vol 3: Recent

Advances. pp(395-428).

[15] Cleland-Huang, J., Gotel, O., and Zisman, A. (2012), Software and systems

traceability. Vol (2), No (3), pp (7-8). Heidelberg: Springer.

[16] COEST, Center of excellence for software traceability (coest). (2020).

[17] Gotel, O. C., and Finkelstein, C. W. (1994), An analysis of the requirements

traceability problem.In Proceedings of IEEE International Conference on Re-

quirements Engineering. pp (94-101). IEEE.
November 24, 2020

Bibliography 90

[18] Bani-Salameh, H., and Al jawabreh, N. (2015), Towards a comprehensive sur-

vey of the requirements elicitation process improvements. In Proceedings of

the International Conference on Intelligent Information Processing, Security

and Advanced Communication. pp (1-6).

[19] Maro, S. (2017), Addressing Traceability Challenges in the Development of

Embedded Systems.

[20] IEEE, IEEE Standard for Software Test Documentation, vol. 1998. 1998.

[21] Winkler, S., and von Pilgrim, J. (2010), A survey of traceability in require-

ments engineering and model-driven development. Software and Systems Mod-

eling, 9(4). pp (529-565).

[22] Hayes, J. H., Dekhtyar, A., and Osborne, J. (2003), Improving requirements

tracing via information retrieval. In Proceedings. 11th IEEE International Re-

quirements Engineering Conference, 2003. pp (138-147). IEEE.

[23] Tsuchiya, R., Washizaki, H., Fukazawa, Y., Kato, T., Kawakami, M., and

Yoshimura, K. (2015), Recovering traceability links between requirements and

source code using the configuration management log. it IEICE TRANSAC-

TIONS on Information and Systems, 98(4), 852-862.

[24] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K. (2006), Advancing candi-

date link generation for requirements tracing: The study of methods.IEEE

Transactions on Software Engineering, 32(1), 4.

[25] V. Friedman.(2008),Data Visualization and Infographics, in: Graphics, Mon-

day Inspiration.

[26] Knight, C., and Munro, M. (1999), Comprehension with [in] virtual environ-

ment visualisations.In Proceedings Seventh International Workshop on Pro-

gram Comprehension. pp (4-11). IEEE.

[27] Hendrix, T. D., Cross, J. H., Maghsoodloo, S., and McKinney, M. L. (2000),

Do visualizations improve program comprehensibility? Experiments with con-

November 24, 2020

Bibliography 91

trol structure diagrams for Java. In Proceedings of the thirty-first SIGCSE

technical symposium on Computer science education. pp (382-386).

[28] D. Gračanin, K. Matković, and M. Eltoweissy.(2005), Software visualization.

Innov. Syst. Softw. Eng., vol. 1, no. 2, pp (221–230).

[29] Caserta, P., and Zendra, O. (2010), Visualization of the static aspects of soft-

ware: A survey. IEEE transactions on visualization and computer graphics,

17(7), pp (913-933).

[30] Koschke, R. (2003), Software visualization in software maintenance, reverse

engineering, and re-engineering: a research survey. Journal of Software Main-

tenance and Evolution: Research and Practice, 15(2), pp (87-109).

[31] Diehl, S. (2007), Software visualization: visualizing the structure, behaviour,

and evolution of software. Springer Science and Business Media.

[32] Sillito, J., Murphy, G. C., and De Volder, K. (2006), Questions programmers

ask during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering. pp (23-34).

[33] Fritz, T., and Murphy, G. C. (2010), Using information fragments to answer

the questions developers ask. In 2010 ACM/IEEE 32nd International Confer-

ence on Software Engineering. Vol. 1, pp (175-184). IEEE.

[34] Merino, L., Ghafari, M., and Nierstrasz, O. (2016), Towards actionable vi-

sualisation in software development. In 2016 IEEE Working Conference on

Software Visualization (VISSOFT). pp (61-70). IEEE.

[35] Pinzger, M., Gall, H., Fischer, M., and Lanza, M. (2005), Visualizing multiple

evolution metrics. In Proceedings of the 2005 ACM symposium on Software

visualization. pp (67-75).

[36] Vilanova, A., Telea, A., Scheuermann, G., and Möller, T. Code Flows: Visu-

alizing Structural Evolution of Source Code.

November 24, 2020

Bibliography 92

[37] Wingkvist, A., Ericsson, M., Lincke, R., and Löwe, W. (2010), A metrics-based

approach to technical documentation quality. In 2010 Seventh International

Conference on the Quality of Information and Communications Technology.

pp (476-481). IEEE.

[38] Varet, A., and Larrieu, N. (2013), METRIX: a new tool to evaluate the quality

of software source codes. In AIAA Infotech@ Aerospace (I@ A) Conference .

(p. 4567).

[39] Bohnet, J., and Döllner, J. (2011), Monitoring code quality and development

activity by software maps. In Proceedings of the 2nd Workshop on Managing

Technical Debt. pp (9-16).

[40] Boccuzzo, S., and Gall, H. C. (2008), Software visualization with audio sup-

ported cognitive glyphs. In 2008 IEEE International Conference on Software

Maintenance. pp (366-375). IEEE.

[41] Denier, S., and Sahraoui, H. (2009), Understanding the use of inheritance with

visual patterns. In 2009 3rd International Symposium on Empirical Software

Engineering and Measurement. pp (79-88). IEEE.

[42] Cockburn, A., and McKenzie, B. (2002,. Evaluating the effectiveness of spatial

memory in 2D and 3D physical and virtual environments. In Proceedings of

the SIGCHI conference on Human factors in computing systems. pp (203-210).

[43] Wettel, R., and Lanza, M. (2008). CodeCity.

[44] Balogh, G., and Beszedes, A. (2013), CodeMetropolis-code visualisation in

MineCraft. In 2013 IEEE 13th International Working Conference on Source

Code Analysis and Manipulation (SCAM). pp (136-141). IEEE.

[45] Minecraft Official Website.http://minecraft.net/

[46] Khaloo, P., Maghoumi, M., Taranta, E., Bettner, D., and Laviola, J. (2017),

Code park: A new 3d code visualization tool. In 2017 IEEE Working Confer-

ence on Software Visualization (VISSOFT). (pp. 43-53). IEEE.

November 24, 2020

Bibliography 93

[47] Lewerentz, C., and Simon, F. (2002), Metrics-based 3D visualization of large

object-oriented programs. In Proceedings First International Workshop on Vi-

sualizing Software for Understanding and Analysis. (pp. 70-77). IEEE.

[48] Tamisier, T., Karski, P., and Feltz, F. (2013), Visualization of unit and se-

lective regression software tests. In International Conference on Cooperative

Design, Visualization and Engineering. (pp. 227-230). Springer, Berlin, Hei-

delberg.

[49] D’Ambros, M., Lanza, M., and Pinzger, M. (2007), " A Bug’s Life" Visualizing

a Bug Database. In 2007 4th IEEE International Workshop on Visualizing

Software for Understanding and Analysis. (pp. 113-120). IEEE.

[50] Araya, V. P. (2011), Test blueprint: an effective visual support for test cover-

age. In 2011 33rd International Conference on Software Engineering (ICSE).

(pp. 1140-1142). IEEE.

[51] Jones, J. A., Harrold, M. J., and Stasko, J. (2002), Visualization of test in-

formation to assist fault localization. In Proceedings of the 24th International

Conference on Software Engineering. ICSE 2002 (pp. 467-477). IEEE.

[52] Breugelmans, M., and Van Rompaey, B. (2008), Testq: Exploring structural

and maintenance characteristics of unit test suites. In WASDeTT-1: 1st Inter-

national Workshop on Advanced Software Development Tools and Techniques.

[53] Agrawal, H., Alberi, J. L., Horgan, J. R., Li, J. J., London, S., Wong, W. E.,

... and Wilde, N. (1998), Mining system tests to aid software maintenance.

Computer, 31(7), pp (64-73).

[54] Cornelissen, B., Van Deursen, A., Moonen, L., and Zaidman, A. (2007), Visu-

alizing testsuites to aid in software understanding. In 11th European Confer-

ence on Software Maintenance and Reengineering (CSMR’07). (pp. 213-222).

IEEE.

[55] Koochakzadeh, N., and Garousi, V. (2010), Tecrevis: a tool for test cover-

age and test redundancy visualization. In International Academic and Indus-
November 24, 2020

Bibliography 94

trial Conference on Practice and Research Techniques. (pp. 129-136). Springer,

Berlin, Heidelberg.

[56] Van Rompaey, B., and Demeyer, S. (2008), Exploring the composition of unit

test suites. In 2008 23rd IEEE/ACM International Conference on Automated

Software Engineering-Workshops. (pp. 11-20). IEEE.

[57] J. Filipe and L. A. Maciaszek,(2013), Evaluation of Novel Approaches to Soft-

ware Engineering.

[58] Balogh, G., Gergely, T., Beszédes, A., and Gyimóthy, T. (2016), Using the city

metaphor for visualizing test-related metrics. In 2016 IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering (SANER).

(Vol. 2, pp. 17-20). IEEE.

[59] Ghafari, M., Ghezzi, C., and Rubinov, K. (2015), Automatically identifying

focal methods under test in unit test cases. In 2015 IEEE 15th International

Working Conference on Source Code Analysis and Manipulation (SCAM). (pp.

61-70). IEEE.

[60] Asuncion, H. U., and Taylor, R. N. (2012), Automated techniques for captur-

ing custom traceability links across heterogeneous artifacts. In Software and

Systems Traceability. (pp. 129-146). Springer, London.

[61] Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., and Wood, M. (2009),

Use case to source code traceability: The developer navigation view point.

In 2009 17th IEEE International Requirements Engineering Conference. (pp.

237-242). IEEE.

[62] Sundaram, S. K., Hayes, J. H., Dekhtyar, A., and Holbrook, E. A. (2010), As-

sessing traceability of software engineering artifacts. Requirements engineering,

15(3), pp (313-335).

[63] N. Gesamtfakult and A. Delater, “INAUGURAL-DISSERTATION,” (2013).

November 24, 2020

Bibliography 95

[64] Marcus, A., and Maletic, J. I. (2003), Recovering documentation-to-source-

code traceability links using latent semantic indexing. In 25th International

Conference on Software Engineering, 2003. Proceedings. (pp. 125-135). IEEE.

[65] Chen, X., and Grundy, J. (2011), Improving automated documentation to

code traceability by combining retrieval techniques. In 2011 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011).

(pp. 223-232). IEEE.

[66] Chen, X., Hosking, J., Grundy, J., and Amor, R. (2018), DCTracVis: a system

retrieving and visualizing traceability links between source code and documen-

tation. Automated Software Engineering, 25(4), pp (703-741).

[67] Varun Kumar, S., and Kumar, M. (2010), Test case prioritization using fault

severity. IJCST, 1(1).

[68] Rees, M. J. (2002), A feasible user story tool for agile software development?.

In Ninth Asia-Pacific Software Engineering Conference, 2002. (pp. 22-30).

IEEE.

[69] Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., and Utting, M. (2005),

Requirements traceability in automated test generation: application to smart

card software validation. ACM SIGSOFT Software Engineering Notes, 30(4),

pp (1-7).

[70] Lormans, M., and Van Deursen, A. (2006), Can LSI help reconstructing re-

quirements traceability in design and test?. In Conference on Software Main-

tenance and Reengineering (CSMR’06). (pp. 10-pp). IEEE.

[71] Lucia, A. D., Fasano, F., Oliveto, R., and Tortora, G. (2007), Recovering

traceability links in software artifact management systems using information

retrieval methods. ACM Transactions on Software Engineering and Method-

ology (TOSEM), 16(4), 13-es.

[72] Fraser, G., and Arcuri, A. (2012), Whole test suite generation. IEEE Trans-

actions on Software Engineering, 39(2), pp (276-291).
November 24, 2020

Bibliography 96

[73] Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., ... and

Springsteel, F. (1991), IEEE standard computer dictionary: Compilation of

IEEE standard computer glossaries. IEEE Press.

[74] S. Demeyer, Object-oriented reengineering.(2008).

[75] Eagan Jr, J. R., Harrold, M. J., Jones, J. A., and Stasko, J. T. (2001), Visually

encoding program test information to find faults in software. Georgia Institute

of Technology.

[76] Van Deursen, A., Moonen, L., Van Den Bergh, A., and Kok, G. (2001), Refac-

toring test code. In Proceedings of the 2nd international conference on extreme

programming and flexible processes in software engineering (XP). pp (92-95).

[77] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. (2000),

Tracing object-oriented code into functional requirements. In Proceedings

IWPC 2000. 8th International Workshop on Program Comprehension. (pp.

79-86). IEEE.

[78] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. (2002),

Recovering traceability links between code and documentation. IEEE trans-

actions on software engineering, 28(10), pp (970-983).

[79] Marcus, A., Maletic, J. I., and Sergeyev, A. (2005), Recovery of traceability

links between software documentation and source code. International Journal

of Software Engineering and Knowledge Engineering, 15(05), pp (811-836).

[80] Abadi, A., Nisenson, M., and Simionovici, Y. (2008), A traceability technique

for specifications. In 2008 16th IEEE International Conference on Program

Comprehension. (pp. 103-112). IEEE.

[81] Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., and Panichella, S.

(2009), Traceability recovery using numerical analysis. In 2009 16th Working

Conference on Reverse Engineering. (pp. 195-204). IEEE.

November 24, 2020

Bibliography 97

[82] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K. (2006), Advancing candi-

date link generation for requirements tracing: The study of methods. IEEE

Transactions on Software Engineering, 32(1), 4.

[83] Cleland-Huang, J., Settimi, R., Duan, C., and Zou, X. (2005), Utilizing sup-

porting evidence to improve dynamic requirements traceability. In 13th IEEE

international conference on Requirements Engineering (RE’05). (pp. 135-144).

IEEE.

[84] Zou, X., Settimi, R., and Cleland-Huang, J. (2007), Term-based enhancement

factors for improving automated requirement trace retrieval. In Proceedings

of International Symposium on Grand Challenges in Traceability. (pp. 40-45).

ACM Press Lexington, Kentuky, USA.

[85] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A. (2000). Identifying

the starting impact set of a maintenance request: A case study. In Proceedings

of the Fourth European Conference on Software Maintenance and Reengineer-

ing. (pp. 227-230). IEEE.

[86] Yadla, S., Hayes, J. H., and Dekhtyar, A. (2005), Tracing requirements to

defect reports: an application of information retrieval techniques. Innovations

in Systems and Software Engineering, 1(2), pp (116-124).

[87] De Lucia, A., Oliveto, R., and Tortora, G. (2009), Assessing IR-based trace-

ability recovery tools through controlled experiments. Empirical Software En-

gineering, 14(1), pp (57-92).

[88] Lormans, M., van Deursen, A., and Gross, H. G. (2008), An industrial case

study in reconstructing requirements views. Empirical Software Engineering,

13(6), pp (727-760).

[89] De Lucia, A., Oliveto, R., and Sgueglia, P. (2006), Incremental approach and

user feedbacks: a silver bullet for traceability recovery. In 2006 22nd IEEE

International Conference on Software Maintenance. (pp. 299-309). IEEE.

November 24, 2020

Bibliography 98

[90] Gall, H., Hajek, K., and Jazayeri, M. (1998), Detection of logical coupling

based on product release history. In Proceedings. International Conference on

Software Maintenance. (Cat. No. 98CB36272) (pp. 190-198). IEEE.

[91] Kagdi, H., Maletic, J. I., and Sharif, B. (2007), Mining software reposito-

ries for traceability links. In 15th IEEE International Conference on Program

Comprehension (ICPC’07). (pp. 145-154). IEEE.

[92] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining

version histories to guide software changes. IEEE Transactions on Software

Engineering, 31(6), pp (429-445).

[93] Ying, A. T., Murphy, G. C., Ng, R., and Chu-Carroll, M. C. (2004). Predicting

source code changes by mining change history. IEEE transactions on Software

Engineering, 30(9), pp (574-586).

[94] Zaidman, A., Van Rompaey, B., Demeyer, S., and Van Deursen, A. (2008),

Mining software repositories to study co-evolution of production and test code.

In 2008 1st international conference on software testing, verification, and val-

idation. (pp. 220-229). IEEE.

[95] Egyed, A., and Grunbacher, P. (2002), Automating requirements traceability:

Beyond the record and replay paradigm. In Proceedings 17th IEEE Interna-

tional Conference on Automated Software Engineering,. (pp. 163-171). IEEE.

[96] Murphy, G. C., Notkin, D., and Sullivan, K. J. (2001), Software reflexion mod-

els: Bridging the gap between design and implementation. IEEE Transactions

on Software Engineering, 27(4), pp (364-380).

[97] Bruntink, M., and Van Deursen, A. (2004), Predicting class testability using

object-oriented metrics. In Source Code Analysis and Manipulation, Fourth

IEEE International Workshop on (pp. 136-145). IEEE.

[98] Bouillon, P., Krinke, J., Meyer, N., and Steimann, F. (2007), Ezunit: A

framework for associating failed unit tests with potential programming errors.

November 24, 2020

Bibliography 99

In International Conference on Extreme Programming and Agile Processes in

Software Engineering (pp. 101-104). Springer, Berlin, Heidelberg.

[99] Gaelli, M., Lanza, M., and Nierstrasz, O. (2005). Towards a Taxonomy of

SUnit Tests. In ESUG (pp. 99-119).

[100] Van Geet, J., Zaidman, A., Greevy, O., and Hamou-Lhadj, A. (2006). A

lightweight approach to determining the adequacy of tests as documentation.

In Proc. of the 2nd Workshop on Program Comprehension through Dynamic

Analysis. (pp. 21-26).

[101] Lago, P., Muccini, H., and Van Vliet, H. (2009), A scoped approach to trace-

ability management. Journal of Systems and Software, 82(1), pp (168-182).

[102] Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., and Romanova, E.

(2007). Best practices for automated traceability. Computer, 40(6), pp (27-35).

[103] Rodrigues, A., Lencastre, M., and Gilberto Filho, A. D. A. (2016, September),

Multi-VisioTrace: traceability visualization tool. In 2016 10th International

Conference on the Quality of Information and Communications Technology

(QUATIC). (pp. 61-66). IEEE.

[104] Gilberto Filho, A. D. A., and Zisman, A, D3TraceView: A Traceability Visu-

alization Tool.

[105] WMarcus, A., Xie, X., and Poshyvanyk, D. (2005, November). When and

how to visualize traceability links?. In Proceedings of the 3rd international

workshop on Traceability in emerging forms of software engineering. (pp. 56-

61).

[106] Cleland-Huang, J., and Habrat, R. (2007), Visual support in automated trac-

ing. In Second International Workshop on Requirements Engineering Visual-

ization (REV 2007). (pp. 4-4). IEEE.

[107] Chen, X., Hosking, J., and Grundy, J. (2012, September). Visualizing trace-

ability links between source code and documentation. In 2012 IEEE Sympo-

November 24, 2020

Bibliography 100

sium on Visual Languages and Human-Centric Computing (VL/HCC). (pp.

119-126). IEEE.

[108] Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya, J., Bedford, G.,

... and Zou, X. (2006), Poirot: A distributed tool supporting enterprise-wide

automated traceability. In 14th IEEE International Requirements Engineering

Conference (RE’06). (pp. 363-364). IEEE.

[109] Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., & Binkley, D. (2011, Oc-

tober). Scotch: Slicing and coupling based test to code trace hunter. In 2011

18th Working Conference on Reverse Engineering (pp. 443-444). IEEE.

[110] Roman, G. C., and Cox, K. C. (1992), Program visualization: The art of map-

ping programs to pictures. In Proceedings of the 14th international conference

on Software engineering. (pp. 412-420).

[111] Wang, X., Lai, G., and Liu, C. (2009), Recovering relationships between docu-

mentation and source code based on the characteristics of software engineering.

Electronic Notes in Theoretical Computer Science, 243, 121-137.

[112] Settimi, R., Cleland-Huang, J., Khadra, O. B., Mody, J., Lukasik, W., and

DePalma, C. (2004), Supporting software evolution through dynamically re-

trieving traces to UML artifacts. In Proceedings. 7th International Workshop

on Principles of Software Evolution, 2004. (pp. 49-54). IEEE.

[113] RKonchady, M. (2008). Building Search Applications: Lucene, LingPipe, and

Gate. Lulu. com.

[114] Jirapanthong, W., and Zisman, A. (2009). Xtraque: traceability for product

line systems. Software and Systems Modeling, 8(1), 117-144.

[115] Bacchelli, A., Lanza, M., and Robbes, R. (2010, May). Linking e-mails and

source code artifacts. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering-Volume 1 (pp. 375-384).

November 24, 2020

Bibliography 101

[116] Bacchelli, A., D’Ambros, M., Lanza, M., and Robbes, R. (2009, October).

Benchmarking lightweight techniques to link e-mails and source code. In 2009

16th Working Conference on Reverse Engineering (pp. 205-214). IEEE.

[117] Egyed, A., Biffl, S., Heindl, M., and Grünbacher, P. (2005, November). A

value-based approach for understanding cost-benefit trade-offs during auto-

mated software traceability. In Proceedings of the 3rd international workshop

on Traceability in emerging forms of software engineering (pp. 2-7).

[118] Meszaros, G. (2007). xUnit test patterns: Refactoring test code. Pearson Ed-

ucation.

[119] Fewster, M., & Graham, D. (1999). Software test automation (pp. 211-219).

Reading: Addison-Wesley.

[120] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,

R. (1990). Indexing by latent semantic analysis. Journal of the American so-

ciety for information science, 41(6), 391-407.

[121] Qusef, A. (2011, October). Recovering test-to-code traceability via slicing and

conceptual coupling. In 2011 18th Working Conference on Reverse Engineering

(pp. 417-420). IEEE.

[122] Korel, B., & Laski, J. (1990). Dynamic slicing of computer programs. Journal

of Systems and Software, 13(3), 187-195.

[123] Wang, Q., Wang, W., Brown, R., Driesen, K., Dufour, B., Hendren, L., &

Verbrugge, C. (2003, June). EVolve: an open extensible software visualization

framework. In Proceedings of the 2003 ACM symposium on Software visual-

ization (pp. 37-ff).

[124] Bosch, R., Stolte, C., Tang, D., Gerth, J., Rosenblum, M., & Hanrahan,

P. (2000). Rivet: A flexible environment for computer systems visualization.

ACM SIGGRAPH Computer Graphics, 34(1), 68-73.

[125] Reed, D. A., Roth, P. C., Aydt, R. A., Shields, K. A., Tavera, L. F., Noe, R.

J., & Schwartz, B. W. (1993, October). Scalable performance analysis: The
November 24, 2020

Bibliography 102

Pablo performance analysis environment. In Proceedings of Scalable Parallel

Libraries Conference (pp. 104-113). IEEE.

[126] Nagel, W. E., & Arnold, A. (1994, May). Performance visualization of parallel

programs-the PARvis environment. In Proceedings (pp. 24-31).

[127] Nagel, W. E., Arnold, A., Weber, M., Hoppe, H. C., & Solchenbach, K. (1996).

VAMPIR: Visualization and analysis of MPI resources.

[128] Benbasat, I., Dexter, A. S., & Todd, P. (1986). The influence of color

and graphical information presentation in a managerial decision simulation.

Human-Computer Interaction, 2(1), 65-92.

[129] Li, Y., & Maalej, W. (2012, March). Which traceability visualization is suitable

in this context? a comparative study. In International Working Conference on

Requirements Engineering: Foundation for Software Quality (pp. 194-210).

Springer, Berlin, Heidelberg.

[130] Kaindl, H. (1993). The missing link in requirements engineering. ACM SIG-

SOFT Software Engineering Notes, 18(2), 30-39.

[131] Marchionini, G., & Shneiderman, B. (1988). Finding facts vs. browsing knowl-

edge in hypertext systems. Computer, 21(1), 70-80.

[132] Lange, D. B., & Nakamura, Y. (1997). Object-oriented program tracing and

visualization. Computer, 30(5), 63-70.

[133] Kamalabalan, K., Uruththirakodeeswaran, T., Thiyagalingam, G., Wi-

jesinghe, D. B., Perera, I., Meedeniya, D., & Balasubramaniam, D. (2015,

April). Tool support for traceability of software artefacts. In 2015 Moratuwa

Engineering Research Conference (MERCon) (pp. 318-323). IEEE..

[134] Reggio, G., Leotta, M., Ricca, F., & Clerissi, D. (2013). What are the used

UML diagrams? A Preliminary Survey. EESSMOD@ MoDELS, 1078(10).

[135] McGavin, M., Wright, T., & Marshall, S. (2006, January). Visualisations of

execution traces (VET) an interactive plugin-based visualisation tool. In Pro-
November 24, 2020

Bibliography 103

ceedings of the 7th Australasian User interface conference-Volume 50 (pp.

153-160).

[136] Long, L. K., Hui, L. C., Fook, G. Y., & Zainon, W. M. N. W. (2017). A Study

on the Effectiveness of Tree-Maps as Tree Visualization Techniques. Procedia

Computer Science, 124, 108-115.

[137] Card, M. (1999). Readings in information visualization: using vision to think.

Morgan Kaufmann.

[138] De Pauw, W., Lorenz, D. H., Vlissides, J. M., & Wegman, M. N. (1998, April).

Execution Patterns in Object-Oriented Visualization. In COOTS (Vol. 98, pp.

16-16).

[139] Marshall, S. (2001). Methods and tools for the visualization and navigation of

graphs. Dept. of Mathematics and Computer Science, University of Bordeaux,

France.

[140] Shneiderman, B., & Aris, A. (2006). Network visualization by semantic sub-

strates. IEEE transactions on visualization and computer graphics, 12(5), 733-

740.

[141] Johnson, B., & Shneiderman, B. (1999). Tree-Maps: A Space-Filling Approach

to the Visualization of Hierarchical. Readings in Information Visualization:

Using Vision to Think, 152-159..

[142] “Sunburst Chart | SpreadJS 13.” https://www.grapecity.com/spreadjs/docs/v13

/online/CreatingSunburstChart.html (accessed Jun. 23, 2020).

[143] Graham, H., Yang, H. Y., & Berrigan, R. (2004, January). A solar system

metaphor for 3D visualisation of object oriented software metrics. In Proceed-

ings of the 2004 Australasian symposium on Information Visualisation-Volume

35 (pp. 53-59).

[144] Mindek, P., & Kapec, P. (2011, April). Graph visualization using the metaphor

of biological neural nets. In Proceedings of the 27th Spring Conference on

Computer Graphics (pp. 141-148).
November 24, 2020

Bibliography 104

[145] Kahn, K. (1996). Drawings on napkins, video-game animation, and other ways

to program computers. Communications of the ACM, 39(8), 49-59.

[146] Wettel, R., & Lanza, M. (2007, June). Visualizing software systems as cities.

In 2007 4th IEEE International Workshop on Visualizing Software for Under-

standing and Analysis (pp. 92-99). IEEE.

[147] Dugerdil, P., & Alam, S. (2008, April). Execution trace visualization in a

3D space. In Fifth International Conference on Information Technology: New

Generations (itng 2008) (pp. 38-43). IEEE.

[148] Merino, L., & Nierstrasz, O. (2018). The medium of visualization for software

comprehension (Doctoral dissertation, Universität Bern).

[149] Keim, D. A. (2002). Information visualization and visual data mining. IEEE

transactions on Visualization and Computer Graphics, 8(1), 1-8.

[150] Bertini, E., Tatu, A., & Keim, D. (2011). Quality metrics in high-dimensional

data visualization: An overview and systematization. IEEE Transactions on

Visualization and Computer Graphics, 17(12), 2203-2212.

[151] Alkawaz, M. H., & Silvarajoo, A. (2019, December). A Survey on Test Case

Prioritization and Optimization Techniques in Software Regression Testing.

In 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC) (pp.

59-64). IEEE.

[152] Qusef, A., Bavota, G., Oliveto, R., Lucia, A. D., & Binkley, D. (2013). Evaluat-

ing test-to-code traceability recovery methods through controlled experiments.

Journal of Software: Evolution and Process, 25(11), 1167-1191.

[153] White, R., Krinke, J., & Tan, R. (2020). Establishing Multilevel Test-to-Code

Traceability Links. In 42nd International Conference on Software Engineering

(ICSE’20). ACM.

[154] Broberg, P., & Jahanshahi, S. (2019). Using eye tracking to study variable

naming conventions and their effect on code readability.

November 24, 2020

Bibliography 105

[155] Kugele, S., & Antkowiak, D. (2016, September). Visualization of trace links

and change impact analysis. In 2016 IEEE 24th International Requirements

Engineering Conference Workshops (REW) (pp. 165-169). IEEE.

[156] Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018, February). Software

Artefact Traceability Analyser: A Case-Study on POS System. In Proceed-

ings of the 6th International Conference on Communications and Broadband

Networking (pp. 1-5).

[157] https://openclover.org/

[158] Pietroszek, K., & Lee, N. (2019). Virtual Hand Metaphor in Virtual Reality.

[159] Kicsi, A., Vidács, L., Csuvik, V., Horváth, F., Beszédes, A., & Kocsis, F.

(2018, May). Supporting product line adoption by combining syntactic and

textual feature extraction. In International Conference on Software Reuse (pp.

148-163). Springer, Cham.

[160] Winkler, S., & von Pilgrim, J. (2010). A survey of traceability in requirements

engineering and model-driven development. Software & Systems Modeling,

9(4), 529-565.

[BNN01] Aljawabrah, Nadera, and Tamás Gergely. "Visualization of test-to-code rela-

tions to detect problems of unit tests.The 11th Conference of Phd Studentsin

Computer Science. 2018 pp (1-4).

[BNN02] Aljawabrah, N., Gergely, T., and Kharabsheh, M. (2019), Understanding

Test-to-Code Traceability Links: The Need for a Better Visualizing Model.In

International Conference on Computational Science and Its Applications, pp (428-

441). Springer, Cham.

[BNN03] Aljawabrah, Nadera, and Abdallah Qusef. "TCTracVis: test-to-code trace-

ability links visualization tool." In Proceedings of the Second International

Conference on Data Science, E-Learning and Information Systems, pp. 1-4.

2019.

November 24, 2020

Bibliography 106

[BNN04] Nadera Aljawabrah, AbdAllah Qusef, Tamás Gergely, and Adhyatmananda

Pati, Visualizing Multilevel Test-to-Code Relations.In 3rd International Con-

ference on Information and Communication Technology and Applications. Springer

(CCIS), 2020.

[BNN05] Nadera Aljawabrah, Tamás Gergely, Sanjay Misra, and Luis Fernandez-Sanz,

Automated Recovery and Visualization of Test-to-Code (TCT) Links: An

Evaluation, in the submission to IEEE access.

[BNN06] Otoom, Ahmed Fawzi, Maen Hammad, Nadera Al-Jawabreh, and Rawan

Abu Seini. "Visualizing Testing Results for Software Projects." In Proc. of

the 17th International Arab Conference on Information Technology (ACIT’16),

Morocco. 2016.

[BNN07] Hammad, Maen, Ahmed Fawzi Otoom, Mustafa Hammad, Nadera Al-Jawabreh,

and Rawan Abu Seini. "Multiview Visualization of Software Testing Results."

International Journal of Computing and Digital Systems 9, no. 1 (2020).

[BBN08] Bani-Salameh, H., and Al jawabreh, N. (2015), Towards a comprehensive

survey of the requirements elicitation process improvements. In Proceedings

of the International Conference on Intelligent Information Processing, Security

and Advanced Communication. pp (1-6).

November 24, 2020

