31 research outputs found

    Visualizing internetworked argumentation

    Get PDF
    In this chapter, we outline a project which traces its source of inspiration back to the grand visions of Vannevar Bush (scholarly trails of linked concepts), Doug Engelbart (highly interactive intellectual tools, particularly for argumentation), and Ted Nelson (large scale internet publishing with recognised intellectual property). In essence, we are tackling the age-old question of how to organise distributed, collective knowledge. Specifically, we pose the following question as a foil: In 2010, will scholarly knowledge still be published solely in prose, or can we imagine a complementary infrastructure that is ‘native’ to the emerging semantic, collaborative web, enabling more effective dissemination and analysis of ideas

    Visual overviews for discovering key papers and influences across research fronts

    Full text link
    Gaining a rapid overview of an emerging scientific topic, sometimes called research fronts , is an increasingly common task due to the growing amount of interdisciplinary collaboration. Visual overviews that show temporal patterns of paper publication and citation links among papers can help researchers and analysts to see the rate of growth of topics, identify key papers, and understand influences across subdisciplines. This article applies a novel network-visualization tool based on meaningful layouts of nodes to present research fronts and show citation links that indicate influences across research fronts. To demonstrate the value of two-dimensional layouts with multiple regions and user control of link visibility, we conducted a design-oriented, preliminary case study with 6 domain experts over a 4-month period. The main benefits were being able (a) to easily identify key papers and see the increasing number of papers within a research front, and (b) to quickly see the strength and direction of influence across related research fronts.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64320/1/21160_ftp.pd

    Scholarly publishing and argument in hyperspace

    Get PDF
    The World Wide Web is opening up access to documents and data for scholars. However it has not yet impacted on one of the primary activities in research: assessing new findings in the light of current knowledge and debating it with colleagues. The ClaiMaker system uses a directed graph model with similarities to hypertext, in which new ideas are published as nodes, which other contributors can build on or challenge in a variety of ways by linking to them. Nodes and links have semantic structure to facilitate the provision of specialist services for interrogating and visualizing the emerging network. By way of example, this paper is grounded in a ClaiMaker model to illustrate how new claims can be described in this structured way

    Modelling naturalistic argumentation in research literatures: representation and interaction design issues

    Get PDF
    This paper characterises key weaknesses in the ability of current digital libraries to support scholarly inquiry, and as a way to address these, proposes computational services grounded in semiformal models of the naturalistic argumentation commonly found in research lteratures. It is argued that a design priority is to balance formal expressiveness with usability, making it critical to co-evolve the modelling scheme with appropriate user interfaces for argument construction and analysis. We specify the requirements for an argument modelling scheme for use by untrained researchers, describe the resulting ontology, contrasting it with other domain modelling and semantic web approaches, before discussing passive and intelligent user interfaces designed to support analysts in the construction, navigation and analysis of scholarly argument structures in a Web-based environment

    Tools for knowledge acquisition within the NeuroScholar system and their application to anatomical tract-tracing data

    Get PDF
    BACKGROUND: Knowledge bases that summarize the published literature provide useful online references for specific areas of systems-level biology that are not otherwise supported by large-scale databases. In the field of neuroanatomy, groups of small focused teams have constructed medium size knowledge bases to summarize the literature describing tract-tracing experiments in several species. Despite years of collation and curation, these databases only provide partial coverage of the available published literature. Given that the scientists reading these papers must all generate the interpretations that would normally be entered into such a system, we attempt here to provide general-purpose annotation tools to make it easy for members of the community to contribute to the task of data collation. RESULTS: In this paper, we describe an open-source, freely available knowledge management system called 'NeuroScholar' that allows straightforward structured markup of the PDF files according to a well-designed schema to capture the essential details of this class of experiment. Although, the example worked through in this paper is quite specific to neuroanatomical connectivity, the design is freely extensible and could conceivably be used to construct local knowledge bases for other experiment types. Knowledge representations of the experiment are also directly linked to the contributing textual fragments from the original research article. Through the use of this system, not only could members of the community contribute to the collation task, but input data can be gathered for automated approaches to permit knowledge acquisition through the use of Natural Language Processing (NLP). CONCLUSION: We present a functional, working tool to permit users to populate knowledge bases for neuroanatomical connectivity data from the literature through the use of structured questionnaires. This system is open-source, fully functional and available for download from [1]

    Sequence and Emphasis in Automated Domain-Independent Discourse Generation

    Get PDF
    For humans to gain comprehensive views of large amounts of repository contents, they need to have insight into the relations among information objects. It is a challenge to automatically generate presentations of repository contents, through, for example, search results, which reveal such relations to readers. Such presentations must reflect properties of information objects such that large sets of information objects appear as a coherent whole. An approach to this is generation of discourse structures that convey such properties of information objects in presentations. Semantic Web technology provides a conceptual basis for generation of discourse in Web-based information environments. This paper describes automatic generation of sequence and emphasis in presentations of information objects. It shows generation of object sequences and emphasis in accordance with a user input of relevance of information attributes in our Topia architecture. The resulting presentations allow users to encounter informati

    Sequence and emphasis in automated domain-independent discourse generation

    Get PDF
    For humans to gain comprehensive views of large amounts of repository contents, they need to have insight into the relations among information objects. It is a challenge to automatically generate presentations of repository contents, through, for example, search results, which reveal such relations to readers. Such presentations must reflect properties of information objects such that large sets of information objects appear as a coherent whole. An approach to this is generation of discourse structures that convey such properties of information objects in presentations. Semantic Web technology provides a conceptual basis for generation of discourse in Web-based information environments. This paper describes automatic generation of sequence and emphasis in presentations of information objects. It shows generation of object sequences and emphasi

    Micropublications: a Semantic Model for Claims, Evidence, Arguments and Annotations in Biomedical Communications

    Get PDF
    The Micropublications semantic model for scientific claims, evidence, argumentation and annotation in biomedical publications, is a metadata model of scientific argumentation, designed to support several key requirements for exchange and value-addition of semantic metadata across the biomedical publications ecosystem. Micropublications allow formalizing the argument structure of scientific publications so that (a) their internal structure is semantically clear and computable; (b) citation networks can be easily constructed across large corpora; (c) statements can be formalized in multiple useful abstraction models; (d) statements in one work may cite statements in another, individually; (e) support, similarity and challenge of assertions can be modelled across corpora; (f) scientific assertions, particularly in review articles, may be transitively closed to supporting evidence and methods. The model supports natural language statements; data; methods and materials specifications; discussion and commentary; as well as challenge and disagreement. A detailed analysis of nine use cases is provided, along with an implementation in OWL 2 and SWRL, with several example instantiations in RDF.Comment: Version 4. Minor revision

    Micropublications: a semantic model for claims, evidence, arguments and annotations in biomedical communications

    Full text link
    corecore