1,001 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationWith the ever-increasing amount of available computing resources and sensing devices, a wide variety of high-dimensional datasets are being produced in numerous fields. The complexity and increasing popularity of these data have led to new challenges and opportunities in visualization. Since most display devices are limited to communication through two-dimensional (2D) images, many visualization methods rely on 2D projections to express high-dimensional information. Such a reduction of dimension leads to an explosion in the number of 2D representations required to visualize high-dimensional spaces, each giving a glimpse of the high-dimensional information. As a result, one of the most important challenges in visualizing high-dimensional datasets is the automatic filtration and summarization of the large exploration space consisting of all 2D projections. In this dissertation, a new type of algorithm is introduced to reduce the exploration space that identifies a small set of projections that capture the intrinsic structure of high-dimensional data. In addition, a general framework for summarizing the structure of quality measures in the space of all linear 2D projections is presented. However, identifying the representative or informative projections is only part of the challenge. Due to the high-dimensional nature of these datasets, obtaining insights and arriving at conclusions based solely on 2D representations are limited and prone to error. How to interpret the inaccuracies and resolve the ambiguity in the 2D projections is the other half of the puzzle. This dissertation introduces projection distortion error measures and interactive manipulation schemes that allow the understanding of high-dimensional structures via data manipulation in 2D projections

    Finding and Visualizing Relevant Subspaces for Clustering High-Dimensional Astronomical Data Using Connected Morphological Operators

    Get PDF
    Data sets in many scientific areas are growing to enormous sizes. For example, modern astronomical surveys provide not only image data but also catalogues of millions of objects (stars, galaxies), each object with hundreds of associated parameters. Gene expression ex-periments produce data about the complete genome of an organism under different conditions and at a sequence of time points. Ex-ploration of such very high-dimensional data spaces poses a huge challenge. Subspace clustering is one among several approaches which have been proposed for this purpose in recent years. How-ever, many clustering algorithms require the user to set a large num-ber of parameters without any guidelines. Some methods also do not provide a concise summary of the datasets, or, if they do, they lack additional important information such as the number of clus-ters present or the significance of the clusters

    Information visualization for DNA microarray data analysis: A critical review

    Get PDF
    Graphical representation may provide effective means of making sense of the complexity and sheer volume of data produced by DNA microarray experiments that monitor the expression patterns of thousands of genes simultaneously. The ability to use ldquoabstractrdquo graphical representation to draw attention to areas of interest, and more in-depth visualizations to answer focused questions, would enable biologists to move from a large amount of data to particular records they are interested in, and therefore, gain deeper insights in understanding the microarray experiment results. This paper starts by providing some background knowledge of microarray experiments, and then, explains how graphical representation can be applied in general to this problem domain, followed by exploring the role of visualization in gene expression data analysis. Having set the problem scene, the paper then examines various multivariate data visualization techniques that have been applied to microarray data analysis. These techniques are critically reviewed so that the strengths and weaknesses of each technique can be tabulated. Finally, several key problem areas as well as possible solutions to them are discussed as being a source for future work

    Evaluating a Self-Organizing Map for Clustering and Visualizing Optimum Currency Area Criteria

    Get PDF
    Optimum currency area (OCA) theory attempts to define the geographical region in which it would maximize economic efficiency to have a single currency. In this paper, the focus is on prospective and current members of the Economic and Monetary Union. For this task, a self-organizing neural network, the Self-organizing map (SOM), is combined with hierarchical clustering for a two-level approach to clustering and visualizing OCA criteria. The output of the SOM is a topologically preserved two-dimensional grid. The final models are evaluated based on both clustering tendencies and accuracy measures. Thereafter, the two-dimensional grid of the chosen model is used for visual assessment of the OCA criteria, while its clustering results are projected onto a geographic map.Self-organizing maps, Optimum Currency Area, projection, clustering, geospatial visualization

    A Survey of Dimension Reduction Methods for High-dimensional Data Analysis and Visualization

    Get PDF
    Dimension reduction is commonly defined as the process of mapping high-dimensional data to a lower-dimensional embedding. Applications of dimension reduction include, but are not limited to, filtering, compression, regression, classification, feature analysis, and visualization. We review methods that compute a point-based visual representation of high-dimensional data sets to aid in exploratory data analysis. The aim is not to be exhaustive but to provide an overview of basic approaches, as well as to review select state-of-the-art methods. Our survey paper is an introduction to dimension reduction from a visualization point of view. Subsequently, a comparison of state-of-the-art methods outlines relations and shared research foci
    • 

    corecore