4,673 research outputs found

    Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy

    Get PDF
    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction (U-CBED) with a nanoscale probe beam for the quantitative retrieval of the time-dependent local distortion tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels

    New Light on Molecular and Materials Complexity: 4D Electron Imaging

    Get PDF
    In this Perspective, 4D electron imaging is highlighted, after introducing some concepts, with an overview of selected applications that span chemical reactions, molecular interfaces, phase transitions, and nano(micro)mechanical systems. With the added dimension of time in microscopy, diffraction, and electron-energy-loss spectroscopy, the focus is on direct visualization of structural dynamics with atomic and nanoscale resolution in the four dimensions of space and time. This contribution provides an expose of emerging developments and an outlook on future applications in materials and biological sciences

    Experimental studies on shock wave interactions with flexible surfaces and development of flow diagnostic tools

    Get PDF
    Nowadays, light-weight composite materials have increasingly used for high-speed flight vehicles to improve their performance and efficiency. At supersonic speed, sonic fatigue, panel flutter, severe instabilities, and even catastrophic structural failure would occur due to the shock wave impingement on several flexible components of a given structural system either internally or externally. Therefore, investigation on shock wave interaction with flexible surfaces is crucial for the safety and performance of high-speed flight vehicles. This work aims to investigate the mechanism of shock wave interaction with flexible surfaces with and without the presence of the boundary layer. The first part involves the shock wave generated by supersonic starting jets interaction with flexible surfaces and the other one focuses on shock wave and boundary layer interaction (SBLI) over flexible surfaces. A novel miniature and cost-effective shock tube driven by detonation transmission tubing was designed and manufactured to simulate the supersonic starting jet and investigate the interaction of a supersonic starting jet with flexible surfaces. To investigate the characterization of this novel type shock tube, the pressure-time measurement in the driven section and the time-resolved shadowgraph were performed. The result shows that the flow structure from the open end of the shock tube driven by detonation transmission tubing agrees with that of conventional compressed-gas driven shock tubes. Moreover, this novel type of shock tube has good repeatability of less than 3% with a Mach number range of 1.29-1.58 when the weight of the NONEL explosive mixture varies from 3.6mg to 12.6mg. An unsteady background oriented schlieren (BOS) measurement system and a sprayable Polymer-Ceramic unsteady pressure sensitive paint (PC-PSP) system were developed. The preliminary BOS result in a supersonic wind tunnel shows that the sensitivity of the BOS system is good enough to visualize weak density variations caused by expansion waves, boundary layer, and weak oblique shocks. Additionally, compared with the commercial PC-PSP from Innovative Scientific Solutions Incorporated (ISSI), the in-house developed unsteady PSP system has higher pressure sensitivity, lower temperature sensitivity, and photo-degradation rate. To identify the shock movement, distortion and unsteadiness during the processes of the supersonic starting jet impingement and shock wave boundary layer interaction (SBLI) over flexible surfaces, an image processing scheme involving background subtraction in the frequency domain, filtering, resampling, edge detection, adaptive threshold, contour detection, feature extraction, and fitting was proposed and applied to process shadowgraph and schlieren sequences automatically. A large shadowgraph data set characterized by low signal to noise ratio (SNR) and small spatial resolution (312×260-pixel), was used to validate the proposed scheme. The result proves that the aforementioned image processing scheme can detect, track, localize, and fit shock waves in a subpixel accuracy. The mechanism of the interaction between the initial shock wave from a supersonic starting jet and flexible surfaces was investigated based on a square shock tube driven by detonation transmitting tube. Compared with that of the solid plate case, flexible surfaces can delay the shock reflection process because of the flexible panel deformation generated by the pressure difference between the top and the bottom. The delay time is around 8µs in the case of 0.1mm thick flexible surface, whereas it declines to around 4µs in the case of 0.3mm thick flexible surface because of the lower flexibility and deformation magnitude. However, interestingly, the propagation velocity of the reflected shock wave is basically the same for the solid plate and flexible panels, which means the flexible surface doesn’t reduce the strength of the reflection wave, although it delays its propagation. Also, there is not an apparent difference in the velocity of the reflected shock wave in the case of different incident shock Mach numbers when Ms varying from 1.22 to 1.54. These experimental results from this study are useful for validating numerical codes that are used for understanding fluid-structure interaction processes

    Transonic Dislocation Propagation in Diamond

    Full text link
    The motion of line defects (dislocations) has been studied for over 60 years but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motions between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We use femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions

    Simulating schlieren and shadowgraph images from LES data

    Get PDF
    Geometrical optics ray-tracing is used to derive schlieren and shadowgraph images from large-eddy simulation (LES) data of a jet in supersonic crossflow and to compare with experimental data. Including the components of the optical system that forms the image in the simulation is found to be important. The technique produces images that replicate flow physics more faithfully than straight-line path integration and other techniques, and more efficiently than physical-optics techniques. Applications of these simulated images are demonstrated in supersonic flows. Time-correlated pairs of shadowgraph images taken from the LES using this technique are used in conjunction with an image-correlation velocimetry technique to compare the estimated convection velocity field in the LES to that of experiments of the same flow. Agreement between the two is good with a maximum variance of 5% by some metrics. This technique can aid in the validation of LES results, allowing quantitative comparison between experiment and simulation, and to extract information unattainable by experiment alone. Comparisons of simulated and experimental jet penetration into the supersonic freestream are also made

    Pressure Gain Combustion: Fuel Spray and Shockwave Interaction

    Get PDF
    Pressure gain combustion can attain higher thermodynamic cycle efficiency in gas turbine power systems, resulting in the reduction of specific fuel consumption/fuel burn and Carbon dioxide emissions.There are many ways to achieve pressure gain and the present research investigates pressure gain through shock bubble (gas and liquid bubble) interaction (SBI) using computational fluid dynamics (CFD) simulations. The numerical simulations have been performed in 2D and 3D representations of the shock tube to depict the interaction of a planar shock wave with distinct gas and liquid inhomogeneities. The three scenarios considered cover the interaction of a planar shock wave in air with: spherical helium bubble (Mach number, Ma = 1.25); cylindrical helium bubble (Ma = 1.22) and cylindrical water bubble (Ma = 1.47). To perform these simulations, the Unsteady Reynolds-Averaged Navier-Stokes (URANS) mathematical model and the coupled level set and VOF method within the commercial CFD code, ANSYS FLUENT, have been applied. A finite volume method (FVM) is also employed to solve the governing equations. For the spherical and cylindrical gas bubble cases, various quantitative analyses are presented and compared to the experimental work of Haas and Sturtevant (1987). These include: refracted wave, transmitted wave, upstream interface, downstream interface, jet, vortex filament, non-dimensional bubble, and vortex velocities. The predicted non-dimensional bubble and vortex velocities have also been compared with experimental data, a simple model of shock- induced Rayleigh Taylor (RT) instability and other theoretical models. Comparisons are also shown between the predicted bubble length/width and the experimentally measured results to elucidate changes in the shape and size of the 2D and 3D bubbles. Additional quantitative analyses are also presented for the spherical bubble involving the size estimation of the vortex pair as well as their spacing. For the shock cylindrical water bubble interaction case, the quantitative predictions include: displacement/drift, acceleration, distortion in the lateral direction, distortion in flow direction, area variation from bubble distortion, as well as drag coefficient and are compared to the experimental measurements of Igra et al. (2002). It has been demonstrated that 3D simulations compare very well with the experimental data, suggesting that 3D simulations are necessary to capture SBI process accurately. Finally, comprehensive flow visualization has been used to elucidate the shock-bubble interaction (SBI) process from bubble compression to the formation of the vortex filaments (cylindrical helium bubble), vortex rings (spherical helium bubble), vortices (cylindrical water bubble) as well as the production and distribution of vorticity. It is demonstrated for the first time that turbulence is generated at the early phase of the SBI process, with the maximum turbulence intensity reaching about 20% around the vortex filaments/vortex rings regions for the cylindrical/spherical helium bubble cases respectively and about 22% for the cylindrical water bubble case at the later phase of the interaction process

    One-Dimensional Scanning Approach to Shock Sensing

    Get PDF
    Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique

    Flow visualization techniques, new developments and modernization of the existing Schlieren system in the Trisonic Wind Tunnel

    Get PDF
    Schlieren flow visualization methods are an important part of high speed wind tunnel testing, being a fast and reliable method of graphically presenting complex dynamic phenomena that occur in high subsonic, transonic and supersonic regimes. Images can be processed and effects of configuration changes can be understood faster. Quantitative variations of the Schlieren method enable CFD simulations to use real data, resulting in greater precision and thus help improve efficiency of the re-design phase for the aerodynamic object. A modification of the classic Schlieren system is proposed, that would enable extraction of such data with minimal cost
    corecore