1,063 research outputs found

    Visualizing 2D Flows with Animated Arrow Plots

    Full text link
    Flow fields are often represented by a set of static arrows to illustrate scientific vulgarization, documentary film, meteorology, etc. This simple schematic representation lets an observer intuitively interpret the main properties of a flow: its orientation and velocity magnitude. We propose to generate dynamic versions of such representations for 2D unsteady flow fields. Our algorithm smoothly animates arrows along the flow while controlling their density in the domain over time. Several strategies have been combined to lower the unavoidable popping artifacts arising when arrows appear and disappear and to achieve visually pleasing animations. Disturbing arrow rotations in low velocity regions are also handled by continuously morphing arrow glyphs to semi-transparent discs. To substantiate our method, we provide results for synthetic and real velocity field datasets

    Visualizing simulated electrical fields from electroencephalography and transcranial electric brain stimulation: a comparative evaluation

    Get PDF
    pre-printElectrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques

    On the role of domain-specific knowledge in the visualization of technical flows

    Get PDF
    In this paper, we present an overview of a number of existing flow visualization methods, developed by the authors in the recent past, that are specifically aimed at integrating and leveraging domain-specific knowledge into the visualization process. These methods transcend the traditional divide between interactive exploration and featurebased schemes and allow a visualization user to benefit from the abstraction properties of feature extraction and topological methods while retaining intuitive and interactive control over the visual analysis process, as we demonstrate on a number of examples

    The State of the Art in Flow Visualization: Dense and Texture-Based Techniques

    Get PDF
    Flow visualization has been a very attractive component of scientific visualization research for a long time. Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods. Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualization, flow visualization, computational flow visualizatio

    Evolving time surfaces and tracking mixing indicators for flow visualization

    Get PDF
    The complexity of large scale computational fluid dynamic simulations (CFD) demands powerful tools to investigate the numerical results. To analyze and understand these voluminous results, we need to visualize the 3D flow field. We chose to use a visualization technique called Time Surfaces. A time surface is a set of surfaces swept by an initial seed surface for a given number of timesteps. We use a front tracking approach where the points of an in initial surface are advanced in a Lagrangian fashion. To maintain a smooth time surface, our method requires surface refinement operations that either split triangle edges, adjust narrow triangles, or delete small triangles. In the conventional approach of edge splitting, we compute the length of an edge, and split that edge if it has exceeded a certain threshold length. In our new approach, we examine the angle between the two vectors at a given edge. We split the edge if the vectors are diverging from one another. This vector angle criterion enables us to refine an edge before advancing the surface front. Refining a surface prior to advancing it has the effect of minimizing the amount of interpolation error. In addition, unlike the edge length criterion which yields a triangular mesh with even vertex distribution throughout the surface, the vector angle criterion yields a triangular mesh that has fewer vertices where the vector field is flat and more vertices where the vector field is curved. Motivated by the evaluation and the analysis of flow field mixing quantities, this work explores two types of quantitative measurements. First, we look at Ottino\u27s mixing indicators which measure the degree of mixing of a fluid by quantifying the rate at which a sample fluid blob stretches in a flow field over a period of time. Using the geometry of the time surfaces we generated, we are able to easily evaluate otherwise complicated mixing quantities. Second, we compute the curvature and torsion of the velocity field itself. Visualizing the distribution and intensity of the curvature and torsion scalar fields enables us to identify regions of strong and low mixing. To better observe these scalar fields, we designed a multi-scale colormap that emphasizes small, medium, and large values, simultaneously. We test our time surface method and analyze fluid flow mixing quantities on two CFD datasets: a stirred tank simulation and a BP oil spill simulation
    corecore