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Abstract

In this paper, we present an overview of a number of existing flow visualization meth-
ods, developed by the authors in the recent past, that are specifically aimed at integrat-
ing and leveraging domain-specific knowledge into the visualization process. These
methods transcend the traditional divide between interactive exploration and feature-
based schemes and allow a visualization user to benefit from the abstraction properties
of feature extraction and topological methods while retaining intuitive and interactive
control over the visual analysis process, as we demonstrate on a number of examples.

1 Introduction
The visualization of numerical fluid flow datasets is essential to the engineering processes
that require their investigation through computational simulations. To address the need for
visual representations that convey insight and enable a precise understanding of flow struc-
tures, the discipline of Flow Visualization has devised many methods and efficient imple-
mentations that support a variety of visualization tasks. Nonetheless, the ever increasing
complexity of modern flow simulations puts an enormous demand on these methods, and
significant limitations remain.
To this date, two major paradigms can be seen as the basis of most methods developed in
flow visualization research. The first approach makes use of high-bandwidth and interac-
tive display to present users with as much information as possible, providing maximum
control in the selection and refined visual inspection of subsets that he deems interesting.
Methods falling in this category typically rely on geometric primitives derived from numer-
ical integration to interactively explore the dataset, using e.g. streamlines, stream surfaces,
and pathlines. In contrast, the second paradigm is built upon the notion of data abstraction.
To this end, a processing layer is added before the rendering stage to preselect significant
aspects of the data and reduce the volume information that is ultimately conveyed visually.
Prominent examples of this latter class of methods are topological methods and feature
extraction schemes.
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Both approaches have their specific weaknesses. Interactive exploration of datasets is based
on the assumption that displaying sparse and arbitrary subsets of the data can provide an
effective graphical representation that allows the user to make sense of the underlying phe-
nomenon. This visual exploration is often hampered both by the intrinsic complexity of the
data and by the geometric intricacy of corresponding visualizations. On the other hand, ab-
straction methods explicitly aim at solving these particular problems by de-correlating the
amount of information shown in the visual representation from the sheer size of the input
dataset. However, they are faced with the challenge of correctly identifying the character-
istics of the data that are indeed most meaningful to an analyst. Therefore, the difficulty
in adopting either of these two paradigms is that the responsibility for meaningful visual-
ization is either completely left in the hands of users or taken away from them entirely. In
the former scenario, users must make sense of a deluge of information that by all accounts
overwhelms human processing ability. In the latter, they must trust that the machinery run-
ning behind the scene is properly capturing the high-level meaning of the data to offer a
reliable picture of the considered phenomenon.
The intent of this paper is to provide and overview of several methods introduced by the
authors in recent years that strive to reach a middle ground by allowing the user to in-
teract with the data abstraction process and to leverage the resulting data abstraction as a
high-level contextual information for the interactive exploration of a flow. Our general ap-
proach couples interaction and abstraction in two different ways. After presenting some of
the basic principles and prior work in Section 2, we discuss the section plane methodology
(Section 3). It is geared toward the topological analysis of certain flow structures as well as
of user-prescribed subsets of a given dataset. By doing so we provide a user with the abil-
ity to leverage pre-existing domain-specific knowledge of the dataset under consideration
and the structures it contains. Furthermore, we demonstrate a number of approaches that
allow the user to explore subsets of a dataset on the basis of a pre-processing abstraction
step, thereby retaining the benefits of interactive exploration while simultaneously limit-
ing its complexity and providing required context. Section 4 demonstrates this idea based
on Lagrangian analysis, and in Section 5, we show how topological analysis of boundary
flow can serve as a building block for interactive visualization of volume flows. Both Sec-
tion 4 and Section 5 focus on the application domain-specific knowledge in the form of
typical structure interactions to simplify the visualization process. Finally, we conclude on
the presented material in Section 6.
Remark that due to a limitation in available space, we deliberately illustrate the general ap-
proach that we wish to advocate through methods that have been developed by the authors
(and previously published in [GTS04, TGK+04, GGTH07, WTS07a, WTS+07b]), even if
our discussion is meant to be general.

2 Background

2.1 Feature Extraction
The goal of feature-based visualization methods is to generate images that restrict the de-
piction of complex flow data to a limited set of points, lines, and volumes representing fea-
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tures of particular interest for the considered application. This yields fairly abstract pictures
that convey significant flow properties in a concise and compact form. The most prominent
examples of features in CFD applications include vortices, separation and attachment man-
ifolds, shock waves and recirculation zones. The loose, empiric nature of the definition of
those feature explains the variety of algorithms available to locate, identify, and visualize
them and requires the user to determine experimentally which method is best suited for
the needs of his particular application. Further restrictions on the type of method can be
imposed by the size or the structure of the data.

Vortices The extraction of vortical structures has been a major topic in visualization for
quite some time. Although a vortex is most intuitively conceived as the superposition of a
flow along an axis and a flow around this axis, there are few satisfying definitions that exists
for this flow pattern [Lug96, Hal05]. As a result, vortex extraction methods are essentially
characterized by the type of vortex criterion they are built on.
This are either region-based criteria (identifying regions of vortical flow behavior) or a
line-type description (focusing on the vortical axis or vortex core line). Region definitions
include high vorticity, helicity, low pressure. Most often used in engineering applications
is the λ2 definition by Jeong and Hussain [JH95]. The major limitation of λ2, however, lies
in its incapacity to isolate individual structures.
Among the line-type definitions, the approach of Sujudi and Haimes [SH95] is most widely
used. The idea here is to perform on a cell-wise basis the pattern matching of a rotation mo-
tion on the vector field and to extract locally sections of the rotation axis that can be patched
together to approximate the vortex core line. Because of the linear nature of the sought pat-
tern, the method has issues with vortex core lines that are strongly curved. Roth and Peikert
therefore proposed a higher-order scheme that can extract curved core lines reliably [RP98].
They also showed in a subsequent paper that this and other similar methods can be formu-
lated in a unified framework involving their parallel vector fields operator [PR00]. Most
recently, Weinkauf et al. extended this approach to the extraction of swirling particle motion
in unsteady flows [WSTH07].
While the above methods invoke a preprocessing step and present results in the form of
line segments or surfaces, there is another class of methods that try to identify a vortical or
swirling flow behavior by examining the trajectories of particles [JMT02]. Recently, Garth
et al. presented a more general stream surface-based approach [GTSS04] that allows for
the extraction of a vortex core line approximated as the medial axis of a stream surface that
undergoes vortical motion.

Separation and Attachment Lines Separation and attachment lines are another ma-
jor feature type. They are defined as the lines along which the flow attaches or separates
from the surface of a flow-embedded object. The analysis is focused on the non-zero, tan-
gential shear-stress vector field defined over the surface that exhibits the same flow patterns
as nearby located streamlines. In particular, flow separation and attachment induce the cre-
ation of curves of asymptotic streamline convergence in the shear stress vector field. The
corresponding three-dimensional flow pattern is characterized by the presence of a stream
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surface starting or ending along the feature line and swirling around a nearby located vor-
tex. As a consequence, flow separation and vortex genesis are closely related phenomena
(cf. [Dal85]).
Following the original idea of Sujudi and Haimes for vortex core lines, Kenwright et
al. proposed a simple and fast method for the extraction of separation and attachment
lines [KHL94]. Their basic observation is that these feature lines are present in two linear
patterns, namely saddle points and nodes, where they are aligned with an eigenvector of the
flow field Jacobian. The original method works on a cell-wise basis to extract this pattern
within each triangle. Hence it results in disconnected line segments, caused by the discon-
tinuity of the Jacobian. Yet, applying the parallel operator leads to the reformulation of the
features in terms of lines of zero curvature and yields connected lines. However this defi-
nition is quite restrictive because it assumes that separation resp. attachment lines always
have zero curvature. Moreover, since it requires derivative computation it is very sensitive
to noise. Consequently strong pre-smoothing of the data is often necessary which in turn
can deform and shift the features. Another approach was proposed earlier by Okada and
Kao [OK97] who extend the classical Line Integral Convolution (LIC) algorithm [CL93]
by color coding the flow direction so as to highlight the fast changes in flow direction that
occur as streamlines approach separation resp. attachment lines. The weakness of this ap-
proach lies in the heavy computation associated with LIC on one hand, and in the fact that
the geometry of the feature lines is not extracted. Instead, the method computes a density
function that indicates the proximity / likelihood of these feature lines. Using a releated
approach, Tricoche et al. recently proposed a scheme [TGS03] designed to overcome the
restrictions imposed by the purely local analysis used in the algorithms mentioned previ-
ously. Their method is built upon monitoring the convergence of streamlines in the shear
stress vector field and to determine streamlines of maximal local convergence or divergence
as separation or attachment lines.

2.2 Topological Flow Analysis
Vector field topology is a powerful approach for the visualization of flows. Topology-based
methods leverage basic results of the qualitative theory of dynamical systems to generate
effective depictions characterized by a high level of abstraction and an accurate segmenta-
tion of the domain in regions where the flow exhibits a uniform behavior. Unfortunately, the
application of this methodology to three-dimensional problems has not so far demonstrated
the same usefulness in visualization applications as it does for two-dimensional flow fields.
Two independent problems can be named to explain this discrepancy. First, the topology of
volume flows involve stream surfaces that are plagued by self-occlusion and visual com-
plexity. Secondly, a lack of connection between topological structures and major features of
interest in fluid dynamics problems, as described in the previous section, make topological
methods less useful for 3D flow visualization. Neither vortices nor separation lines can be,
in general, reliably located as elements of flow topology. However, work in this direction
is underway [SJH07].
In the following we provide a short introduction to essential notions of vector field topology.
Our presentation is driven by the needs of visualization algorithms discussed in this paper.
For a more complete survey of existing methods in topology-based flow visualization, we
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refer the reader to [ST05].

Topological Graph The topology of a vector field is the decomposition of its phase
portrait into regions where all streamlines have the same limit sets. The notion of phase
portrait considers all points located along the same streamline as a single equivalence class.
The critical points of a steady vector field are the locations where the field magnitude van-
ishes, and in the non-degenerate, linear case, the nature of a critical point can be classified
by the eigenvalues of the vector field Jacobian matrix. For the work presented here, we are
mostly interested in spiral-type critical points that induce a spiraling behavior in the vector
field trajectories. Besides critical points, cycles are closed streamlines that correspond to
periodic trajectories.
These limit sets present in a vector field induce a segmentation of the domain into regions
where all streamlines share the same limit sets for forward and backward integration. The
boundaries between such regions are called separatrices. The topological graph then con-
sists of all limit sets and the separatrices connecting them.
Computationally, many algorithms exist to extract the topological graph of a vector field
in both two- and three-dimensions (e.g. [GLL91]). They mostly differ by the vector field
representation they are based on.

Parametric Topology and Bifurcations In the case where a vector field depends
on a parameter (e.g. time), changes in the parameter value induce changes to its topology.
These transformations are called bifurcations and exist in an infinite variety. Their common
property nonetheless is to replace a stable structural configuration by another stable con-
figuration through an instantaneous, unstable pattern. In this context, stability is defined
with respect to the ability of a given structure to remain qualitatively unchanged after a
small but arbitrary modification of the vector field. Bifurcations are either local or global
depending on the extent of the region they impact. Basic classification of such bifurcations
is possible in both two- and three-dimensions, however, we will not go into detail here and
instead refer the reader to [GH83]. In between such bifurcation events, the critical points
may move through the domain of the vector field. Together with bifurcations, the paths of
critical points form the structural graph of a parametric vector field.
An algorithmic solution to track the continuous evolution of the topology and detect the
associated bifurcations was proposed by Tricoche et al. in [TWSH02]. The method was de-
signed for two-dimensional parametric flows represented on a piecewise linear mesh, and
an extension of this scheme to three-dimensional vector fields was described in [GTS04].
Another approach called Feature Flow Field exploits a different computational representa-
tion of the considered vector field (cf. [TS03]).

2.3 Lagrangian Analysis
The finite-time Lyapunov exponent (FTLE) is a computational tool that can be used to
define and extract coherent structures in transient flows studied in a Lagrangian framework
(i.e. based on particle trajectories). It has been the object of a growing interest in fluid
dynamics research over the last few years and has been successfully applied to a variety of
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fluid dynamics problems. Its derivation and application to aperiodic time-dependent flows,
has been recently described by Haller [Hal01a]. We give a brief overview of this approach
in the following, with our presentation being voluntarily informal, and refer the reader
to [LSM06] for a comprehensive discussion.
Essentially, Lagrangian analysis methods are based on observing the behavior of particle
trajectories. In the specific case of the FTLE, one is interested in the exponential separation
rate of particle trajectories that start closely together and move apart after a finite time. The
regions of locally maximal exponential separation rate, i.e. the ridges of the scalar FTLE
field, are then called Lagrangian Coherent Structures, and one can show that they provide
a basic skeleton of an unsteady flow field [Hal01b, SLM05, LSM06].
While the computation of FTLE fields for a given flow volume is computationally tedious
due to the large number of particle advections required for the FTLE computation, sev-
eral approaches for an accelerated computation have recently been presented. Garth et
al. [GGTH07] make use of large-scale coherence of particle trajectories to adaptively ap-
proximate FTLE fields, while Sadlo et al. [SP07] focus more specifically on the direct
approximation of LCS by starting out with a coarse flow field sampling and then refining
in the vicinity of detected LCS.

3 Moving Section Planes
The topological analysis of a vector field enables qualitative understanding of the dynam-
ical system generated by the field in terms of the phase portrait. However, a graphical
representation of the topological graph is necessary to convey the structural connections.
While such a representation is straightforward for a two-dimensional domain of definition,
with its topological graph consisting of points and lines, higher dimensions are much more
difficult to treat. There, the limit sets that constitute the topological graph may be of dimen-
sion greater than one. In three dimensions, for example, there are separation surfaces and
closed invariant tori. Even in simple cases, a straightforward depiction of the topological
graph is difficult as these surfaces, as opposed to curves, occlude each other. Furthermore,
a straightforward topological analysis of three-dimensional flow field datasets has proven
elusive. Here, we discuss a different approach and apply the notion of topology tracking as
a basis for the topological visualization of three-dimensional flow structures based on the
concept of moving section planes (cf. [TGB+04]).
In engineering practice, it is quite common to avoid occlusion problems in the visualization
of three-dimensional datasets by employing planar sections. Typically, color mapping is
used to depict scalar quantities of interest on the section plane. The central idea of the vec-
tor field visualization method described in this section is to extend these basic and widely
used planar sections as tool for exploring flow volumes of stationary flows. The planes
smoothly travel in a continuous way along curves that can be either obtained automatically
by standard feature extraction schemes or directly provided by the user to explore a particu-
lar region. For each point of the plane trajectory, the vector field is resampled and projected,
resulting in a two-dimensional vector field on the plane. As the plane moves, the changing
projected vector field can be expressed as a parameter-dependent two-dimensional vector
field and is hence amenable to topology tracking methods (cf. Section 2.2). The resulting
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Figure 1: Flow above a delta wing: parametric topology extracts the primary vortices. The
planes travel along the symmetry axis of the wing. Spiral-type critical points indicate rota-
tion centers (left). Automatic plane orientation shows not one but three vortices above the
wing (right). The interactions in the vortex system are clearly visible.

structural graph includes the paths of critical points, which are then mapped to the moving
section plane coordinate system for visualization purposes.
During our visualization experiments (described below), we have made use of several types
of trajectories that are based on specific knowledge about a dataset under consideration
and the structures contained in it, and accomodate different visualization aspects. Using
these or other trajectories, the section plane approach enables the user to introduce existing
knowledge of flow structures into the visualization process.

Straight Line A first type of trajectory is a user-selected straight line. This approach
has two major applications. First, if the focus is on large-scale vortical structures, the mean
flow direction in the corresponding region can be selected along with a convenient start
position. This technique can be used to explore datasets where application-specific knowl-
edge predetermines the location of vortices and vortex systems. The second application
arises when one is interested in structures that deviate from an overall dominating flow
component, such as e.g. the flow surrounding an embedded object. By using the section
plane approach and orienting the planes roughly orthogonal to the dominating flow direc-
tion, the latter is effectively discarded and visualization is focused on deviating structures.
Overall, this trajectory type reflects interactive exploration of a dataset with minimal prior
knowledge. In contrast to a fully three-dimensional approach, the resulting complexity is
much reduced. An examples is provided in Figure 1.

Vortex Core Lines A second idea is to select a vortex core line to serve as trajectory.
These feature lines are the center of the swirling flow and are therefore natural candidates
to capture the local symmetry of the flow. Essentially, if the section plane is parallel to the
plane of rotation, the component of the velocity field along the vortex core line is discarded,
and the rotational motion is captured in the form of a spiral-type critical point. In this way,
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Figure 2: Section planes applied to attachment line on a high-speed train wall. The identi-
fication of the correct separation angle (left) allows the seeding of the corresponding sepa-
ration surface (right).

interactions between different vortices may be visualized as they are captured by the plane
topology.

Separation/Attachment Lines Similar to vortex core lines, surface feature lines such
as separation and attachment lines can serve as trajectories of moving section planes in
order to visualize the structure of flow separation over the surface. Furthermore, they can
serve as a tool to seed separation surfaces in a correct fashion [WTS07a], thereby linking
knowledge about surface features to volume flow visualization (see Figure 2).

Recirculation Bubble Axis A last type of trajectory is directly fitted to the visualiza-
tion of so-called recirculation zones. These structures essentially represent closed vortex
core lines and are typically difficult to extract reliably using vortex detection schemes. Such
structures can be visualized by rotating the section plane around an approximate symmetry
axis of the recirculation (cf. Figure 3).
In order to guarantee meaningful results in the purely exploratory case, the orientation of
the cutting plane along the path is either fully determined or must be chosen according
to the local flow structure. The first situation occurs e.g. during the investigation of flow
structures with a distorted geometry or when following a straight line to investigate large-
scale features. In the latter case the trajectory could provide the plane normal. However,
when dealing with e.g. with a vortex core line, a normal that does not coincide with the
axis of rotation may lead to an observed shift in the location of the planar rotation center.
To guarantee good results in these cases, the quality of a normal is evaluated with respect
to the amount flow crossing the corresponding plane, and the plane is oriented such that the
crossing flow is maximized.

3.1 In-Context Visualization using Volume Rendering
The sparse visual representation provided by the moving section plane topology is ideally
suited to a combination with other, dense representations. Such dense visualizations include
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Figure 3: Section plane topology of vortex breakdown bubbles. Section planes travel around
the rotational symmetry axis of the breakdown bubbles. Volume rendering of scalar flow
quantities provides context and allows correlation of the breakdown geometry with the
surrounding flow.

volume rendering of scalar fields. The context provided through this approach allows a bet-
ter interpretation of the true three-dimensional geometry of the flow structures encountered
by the moving section planes. Furthermore, the framework of multi-dimensional trans-
fer functions in volume rendering applications is extremely powerful in allowing for the
simultaneous and coherent representation of complementary derived quantities [KKH02],
and intuitive techniques for the manipulation of such transfer functions exist. Overall, these
methods are ideal companions for topological visualization in an interactive context, since
they allow a further incorporation of domain-specific knowledge of physically relevant
scalar flow quantities such as density, pressure, vorticity magnitude etc. [TGK+04]. An
example is given in Figure 3.

4 Lagrangian Analysis on Section Planes
Straightforward Lagrangian analysis and visualization based on the Finite-Time Lyapunov
Exponent provides a strong reduction in the complexity of (time-dependent) volumetric
flow analysis by essentially reducing a flow field to a scalar field that provides information
about the converging or diverging nature of pathlines. A further abstraction can be achieved
by computing the ridge lines of this scalar field, resulting in a skeleton of Lagrangian Co-
herent Structures. However, the complexity of typical flow structures makes it difficult to
isolate individual structures by means of automated methods (cf. [GGTH07, SP07]). We
instead propose to limit the computation of an FTLE field to a single section plane or to
multiple section planes.
Visualizing a Finite-Time Lyapunov Exponent field on a section plane essentially provides
a means to characterize the coherence of the particles that intersect the corresponding plane.
Compared to the three-dimensional case it reduces both the visual complexity and the typi-
cally great computational complexity of the associated computation, and is therefore much
more accessible in an interactive setting. Despite a lack of theoretical foundation, FTLE
fields on section plane are still a reliable tool for unsteady flow visualization since the La-
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(a) Separation and attachment structures
on the wing surface. Pathlines were seeded
from FTLE ridges on a plane parallel to the
wing.

(b) Pathline visualization supported by
section plane FTLE. Pathlines seeded ac-
cording to PDF in (c).

(c) Planar FTLE section perpendicular to the main flow direction. Darker regions correspond
to regions of high FTLE. Colored regions indicate user-guided PDFs (see (b)).

Figure 4: Fuzzy pathline visualization of flow structures above a delta wing. Pathlines are
seeded according to FTLE strength, FTLE ridge lines or through a user-guided Probability
Density Function.

grangian Coherent Structures they indicate are essentially preserved as cross-sections if the
section plane is approximately orthogonal to the flow direction along these structures (more
details are provided in [GGTH07]).
From a visualization perspective, the two-dimensional scalar field that results from the sec-
tion plane FTLE computation can further be made accessible to abstraction and interaction
(see examples provided in Figure 4).

Ridge Lines In the original three-dimensional setting, Lagrangian Coherent Structures
appear as the ridges of the volumetric FTLE field. Therefore, using ridge line extraction
to isolate their corresponding sections on the plane allows a further abstraction step. These
ridges are most useful when used to seed integral surfaces and pathlines (Figure 4(a)).

Stochastic Particle Seeding An FTLE field may be interpreted as a Probability Den-
sity Function (PDF) for particle seed distribution. The rejection rule applied to this data is
then used to determine stochastically a set of seed points that overall emphasize regions
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Figure 5: Generalized streak lines in the flow past a cuboid. The streak line (blue) starts
from the moving swirl-type critical point on the cuboid boundary. As the critical point
reaches a bifurcation, the streak line is terminated and separates from the boundary.

Figure 6: Generalized streak line emanating from a swirl-type critical point in the flow
past an ellipsoid, in combination with volume rendering of λ2-criterion (left) and vorticity
(right).

of high FTLE values and as such of high structural coherence. The fuzziness of the result-
ing representation matches naturally the fuzziness of flow coherence and the uncertainty
involved in their computational characterization.

Image-based User Interface Planar FTLE sections provide the user with a look-up
map over which interesting regions that may be difficult or impossible to extract auto-
matically can be manually and selectively identified by simple brushing to provide a PDF
similar to the one mentioned previously but this time geared towards the specific focus
of the analysis. This reduces the visual complexity of the final image, to emphasize most
prominent aspects in the data, and it provides an intuitive interface to do so. Hence it is
an effective means to further support interactive exploration of a dataset by hinting at in-
teresting seed regions on the section plane. Furthermore, it enables to user to confirm an
interpretation of specific flow structures by visualizing the corresponding integral curves.
Conversely, it allows a straightforward and precise selection of those integral curves that
visualize a specific pattern or feature visible on the section plane (Figures 4(b) and 4(c)).

5 Shear Stress Topology and Generalized Streak
Lines

As discussed in Section 2, the topology of the wall shear stress vector field of an object
embedded in a surrounding flow can be used to infer flow structures that are close to the
boundary or originate on it. It was shown recently, that the combination of volumetric
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flow visualization methods with those that visualize boundary flow can be beneficial in
understanding these interactions (cf. [GLT+06]). In this section, we discuss an approach
to facilitate the direct application of the knowledge of boundary structures to visualize
volumetric flow structures in the case of vortices.
In [WTS+07b], two of the authors proposed a method to track the paths of critical points
on object boundaries over time in an unsteady dataset. This former is achieved by introduc-
ing a specific parameterization of an object boundary that simplifies the task of tracing the
critical points on a curved surface to the planar setting, where efficient algorithms are read-
ily available. The information obtained thereby is then used to facilitate three-dimensional
visualization of the vortices corresponding to spiral-type critical points in the following
ways.

Pathline Seeding A straightforward approach is to use information about critical
points on the boundary to allow automated seeding of pathlines in close proximity. Through
this, the tedious task of manual selection of such pathlines is greatly simplified. See Fig-
ure 7.

Generalized Streak Lines The paths of the tracked critical points can serve as exact
loci of particle placement. By continuously injecting particles into the flow as time evolves,
a generalized streak line is obtained, which visualizes the interrelation between wall shear
stress and three-dimensional flow. Figure 5 provides an example. This method proves es-
pecially effective by combining it with volume rendering techniques (cf. Figure 6 to depict
scalar flow quantities (as described in Section 3.1), thus providing necessary context and al-
lowing an application of domain-specific knowledge to understand the evolution of a vortex
as it progresses away from the surface.

6 Conclusion
In this paper, we have given an overview of a number of recently proposed visualization
techniques that exemplify the idea of bridging the traditional gap between visualization
techniques that focus on either interactive exploration or data abstraction. We have shown

Figure 7: Depictions of the flow on the boundary of an embedded cuboid. Stream surface
showing turbulent behavior behind cuboid (left). LIC and topological structures of shear
stress field on cuboid (middle). Swirling streamlines seeded close to a spiral critical point
indicate a vortex in the flow volume (right).
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that by combining their respective properties, a user is enabled to leverage domain-specific
knowledge about the visualization problem at hand. This approach can considerably sim-
plify the visualization task for practical datasets. Future research along these lines appears
promising as the path from data to knowledge becomes more and more challenging.
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