292 research outputs found

    REU Site: Supercomputing Undergraduate Program in Maine (SuperMe)

    Get PDF
    This award, for a new Research Experience for Undergraduates (REU) site, builds a Supercomputing Undergraduate Program in Maine (SuperMe). This new site provides ten-week summer research experiences at the University of Maine (UMaine) for ten undergraduates each year for three years. With integrated expertise of ten faculty researchers from both computer systems and domain applications, SuperMe allows each undergraduate to conduct meaningful research, such as developing supercomputing techniques and tools, and solving cutting-edge research problems through parallel computing and scientific visualization. Besides being actively involved in research groups, students attend weekly seminars given by faculty mentors, formally report and present their research experiences and results, conduct field trips, and interact with ITEST, RET and GK-12 participants. SuperMe provides scientific exploration ranging from engineering to sciences with a coherent intellectual focus on supercomputing. It consists of four computer systems projects that aim to improve techniques in grid computing, parallel I/O data accesses, high-resolution scientific visualization and information security, and five computer modeling projects that utilize world-class supercomputing and visualization facilities housed at UMaine to perform large, complex simulation experiments and data analysis in different science domains. SuperMe provides a diversity of cutting-edge research opportunities to students from under-represented groups or from universities in rural areas with limited research opportunities. Through interacting directly with the participant of existing programs at UMaine, including ITEST, RET and GK-12, REU students disseminates their research results and experiences to middle and high school students and teachers. This site is co-funded by the Department of Defense in partnership with the NSF REU Site program

    Hydrolink 2015/3. SPH (Smoothed Particle Hydrodynamics) in Hydraulics

    Get PDF
    Topic: SPH (Smoothed Particle Hydrodynamics] in Hydraulic

    Curriculum Committee Report - January 27, 2022

    Get PDF

    Graduate Council Minutes - February 17, 2022

    Get PDF

    CIRA annual report FY 2013/2014

    Get PDF

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform
    • …
    corecore