2,503 research outputs found

    The audiovisual structure of onomatopoeias: An intrusion of real-world physics in lexical creation

    Get PDF
    Sound-symbolic word classes are found in different cultures and languages worldwide. These words are continuously produced to code complex information about events. Here we explore the capacity of creative language to transport complex multisensory information in a controlled experiment, where our participants improvised onomatopoeias from noisy moving objects in audio, visual and audiovisual formats. We found that consonants communicate movement types (slide, hit or ring) mainly through the manner of articulation in the vocal tract. Vowels communicate shapes in visual stimuli (spiky or rounded) and sound frequencies in auditory stimuli through the configuration of the lips and tongue. A machine learning model was trained to classify movement types and used to validate generalizations of our results across formats. We implemented the classifier with a list of cross-linguistic onomatopoeias simple actions were correctly classified, while different aspects were selected to build onomatopoeias of complex actions. These results show how the different aspects of complex sensory information are coded and how they interact in the creation of novel onomatopoeias.Fil: Taitz, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Assaneo, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Elisei, Natalia Gabriela. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tripodi, Monica Noemi. Universidad de Buenos Aires; ArgentinaFil: Cohen, Laurent. Centre National de la Recherche Scientifique; Francia. Universite Pierre et Marie Curie; Francia. Institut National de la Santé et de la Recherche Médicale; FranciaFil: Sitt, Jacobo Diego. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Institut National de la Santé et de la Recherche Médicale; Francia. Universite Pierre et Marie Curie; FranciaFil: Trevisan, Marcos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    The Effect of Speaking Rate on Audio and Visual Speech

    Get PDF
    The speed that an utterance is spoken affects both the duration of the speech and the position of the articulators. Consequently, the sounds that are produced are modified, as are the position and appearance of the lips, teeth, tongue and other visible articulators. We describe an experiment designed to measure the effect of variable speaking rate on audio and visual speech by comparing sequences of phonemes and dynamic visemes appearing in the same sentences spoken at different speeds. We find that both audio and visual speech production are affected by varying the rate of speech, however, the effect is significantly more prominent in visual speech

    Articulatory features for robust visual speech recognition

    Full text link

    Language Identification Using Visual Features

    Get PDF
    Automatic visual language identification (VLID) is the technology of using information derived from the visual appearance and movement of the speech articulators to iden- tify the language being spoken, without the use of any audio information. This technique for language identification (LID) is useful in situations in which conventional audio processing is ineffective (very noisy environments), or impossible (no audio signal is available). Research in this field is also beneficial in the related field of automatic lip-reading. This paper introduces several methods for visual language identification (VLID). They are based upon audio LID techniques, which exploit language phonology and phonotactics to discriminate languages. We show that VLID is possible in a speaker-dependent mode by discrimi- nating different languages spoken by an individual, and we then extend the technique to speaker-independent operation, taking pains to ensure that discrimination is not due to artefacts, either visual (e.g. skin-tone) or audio (e.g. rate of speaking). Although the low accuracy of visual speech recognition currently limits the performance of VLID, we can obtain an error-rate of < 10% in discriminating between Arabic and English on 19 speakers and using about 30s of visual speech

    Classification of intended phoneme production from chronic intracortical microelectrode recordings in speech-motor cortex

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.3389/fnins.2011.00065.We conducted a neurophysiological study of attempted speech production in a paralyzed human volunteer using chronic microelectrode recordings. The volunteer suffers from locked-in syndrome leaving him in a state of near-total paralysis, though he maintains good cognition and sensation. In this study, we investigated the feasibility of supervised classification techniques for prediction of intended phoneme production in the absence of any overt movements including speech. Such classification or decoding ability has the potential to greatly improve the quality-of-life of many people who are otherwise unable to speak by providing a direct communicative link to the general community. We examined the performance of three classifiers on a multi-class discrimination problem in which the items were 38 American English phonemes including monophthong and diphthong vowels and consonants. The three classifiers differed in performance, but averaged between 16 and 21% overall accuracy (chance-level is 1/38 or 2.6%). Further, the distribution of phonemes classified statistically above chance was non-uniform though 20 of 38 phonemes were classified with statistical significance for all three classifiers. These preliminary results suggest supervised classification techniques are capable of performing large scale multi-class discrimination for attempted speech production and may provide the basis for future communication prostheses

    CLASSIFICATION OF VISEMES USING VISUAL CUES

    Get PDF
    Studies have shown that visual features extracted from the lips of a speaker (visemes) can be used to automatically classify the visual representation of phonemes. Different visual features were extracted from the audio-visual recordings of a set of phonemes and used to define Linear Discriminant Analysis (LDA) functions to classify the phonemes. . Audio-visual recordings from 18 speakers of Native American English for 12 Vowel-Consonant-Vowel (VCV) sounds were obtained using the consonants /b,v,w,ð,d,z/ and the vowels /ɑ,i/. The visual features used in this study were related to the lip height, lip width, motion in upper lips and the rate at which lips move while producing the VCV sequences. Features extracted from half of the speakers were used to design the classifier and features extracted from the other half were used in testing the classifiers.When each VCV sound was treated as an independent class, resulting in 12 classes, the percentage of correct recognition was 55.3% in the training set and 43.1% in the testing set. This percentage increased as classes were merged based on the level of confusion appearing between them in the results. When the same consonants with different vowels were treated as one class, resulting in 6 classes, the percentage of correct classification was 65.2% in the training set and 61.6% in the testing set. This is consistent with psycho-visual experiments in which subjects were unable to distinguish between visemes associated with VCV words with the same consonant but different vowels. When the VCV sounds were grouped into 3 classes, the percentage of correct classification in the training set was 84.4% and 81.1% in the testing set.In the second part of the study, linear discriminant functions were developed for every speaker resulting in 18 different sets of LDA functions. For every speaker, five VCV utterances were used to design the LDA functions, and 3 different VCV utterances were used to test these functions. For the training data, the range of correct classification for the 18 speakers was 90-100% with an average of 96.2%. For the testing data, the range of correct classification was 50-86% with an average of 68%.A step-wise linear discriminant analysis evaluated the contribution of different features towards the dissemination problem. The analysis indicated that classifiers using only the top 7 features in the analysis had a performance drop of 2-5%. The top 7 features were related to the shape of the mouth and the rate of motion of lips when the consonant in the VCV sequence was being produced. Results of this work showed that visual features extracted from the lips can separate the visual representation of phonemes into different classes
    corecore