31 research outputs found

    Visual control of grasping and manipulation tasks

    Get PDF
    This paper discusses the problem of visual control of grasping. We have implemented an object tracking system that can be used to provide visual feedback for locating the positions of fingers and objects to be manipulated, as well as the relative relationships of them. This visual analysis can be used to control open loop grasping systems in a number of manipulation tasks where the finger contact, object movement, and task completion need to be monitored and controlled

    Biomechanical factors may explain why grasping violates Weber's law

    Get PDF
    Copyright © 2015. Published by Elsevier Ltd. Acknowledgments The experiment was part of N. Aschenneller’s MD thesis. The study was funded by the Staedtler Stiftung (Nuremberg, Germany).Peer reviewedPostprin

    The Effect of Pictorial Illusion on Prehension and Perception’,

    Get PDF
    Abstract The present study examined the effect of a size-contrast illusion (Ebbinghaus or Titchener Circles Illusion) on visual perception and the visual control of grasping movements. Seventeen right-handed participants picked up and, on other trials, estimated the size of "poker-chip" disks, which functioned as the target circles in a three-dimensional version of the illusion. In the estimation condition, subjects indicated how big they thought the target was by separating their thumb and fore nger to match the target's size. After initial viewing, no visual feedback from the hand or the target was available. Scaling of grip aperture was found to be strongly correlated with the physical size of the disks, while manual estimations of disk size were biased in the direction of the illusion. Evidently, grip aperture is calibrated to the true size of an object, even when perception of object size is distorted by a pictorial illusion, a result that is consistent with recent suggestions that visually guided prehension and visual perception are mediated by separate visual pathways

    Patient DF's visual brain in action : visual feedforward control in patient with visual form agnosia

    Get PDF
    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF’s grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF’s performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF’s grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets, while in a second, the feedback was of a constant intermediate width while the visual target varied trial by trial. Despite such false feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF’s spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing

    A systems engineering approach to robotic bin picking

    Get PDF
    In recent times the presence of vision and robotic systems in industry has become common place, but in spite of many achievements a large range of industrial tasks still remain unsolved due to the lack of flexibility of the vision systems when dealing with highly adaptive manufacturing environments. An important task found across a broad range of modern flexible manufacturing environments is the need to present parts to automated machinery from a supply bin. In order to carry out grasping and manipulation operations safely and efficiently we need to know the identity, location and spatial orientation of the objects that lie in an unstructured heap in a bin. Historically, the bin picking problem was tackled using mechanical vibratory feeders where the vision feedback was unavailable. This solution has certain problems with parts jamming and more important they are highly dedicated. In this regard if a change in the manufacturing process is required, the changeover may include an extensive re-tooling and a total revision of the system control strategy (Kelley et al., 1982). Due to these disadvantages modern bin picking systems perform grasping and manipulation operations using vision feedback (Yoshimi & Allen, 1994). Vision based robotic bin picking has been the subject of research since the introduction of the automated vision controlled processes in industry and a review of existing systems indicates that none of the proposed solutions were able to solve this classic vision problem in its generality. One of the main challenges facing such a bin picking system is its ability to deal with overlapping objects. The object recognition in cluttered scenes is the main objective of these systems and early approaches attempted to perform bin picking operations for similar objects that are jumbled together in an unstructured heap using no knowledge about the pose or geometry of the parts (Birk et al., 1981). While these assumptions may be acceptable for a restricted number of applications, in most practical cases a flexible system must deal with more than one type of object with a wide scale of shapes. A flexible bin picking system has to address three difficult problems: scene interpretation, object recognition and pose estimation. Initial approaches to these tasks were based on modeling parts using the 2D surface representations. Typical 2D representations include invariant shape descriptors (Zisserman et al., 1994), algebraic curves (Tarel & Cooper, 2000), 2 Name of the book (Header position 1,5) conics (Bolles & Horaud, 1986; Forsyth et al., 1991) and appearance based models (Murase & Nayar, 1995; Ohba & Ikeuchi, 1997). These systems are generally better suited to planar object recognition and they are not able to deal with severe viewpoint distortions or objects with complex shapes/textures. Also the spatial orientation cannot be robustly estimated for objects with free-form contours. To address this limitation most bin picking systems attempt to recognize the scene objects and estimate their spatial orientation using the 3D information (Fan et al., 1989; Faugeras & Hebert, 1986). Notable approaches include the use of 3D local descriptors (Ansar & Daniilidis, 2003; Campbell & Flynn, 2001; Kim & Kak, 1991), polyhedra (Rothwell & Stern, 1996), generalized cylinders (Ponce et al., 1989; Zerroug & Nevatia, 1996), super-quadrics (Blane et al., 2000) and visual learning methods (Johnson & Hebert, 1999; Mittrapiyanuruk et al., 2004). The most difficult problem for 3D bin picking systems that are based on a structural description of the objects (local descriptors or 3D primitives) is the complex procedure required to perform the scene to model feature matching. This procedure is usually based on complex graph-searching techniques and is increasingly more difficult when dealing with object occlusions, a situation when the structural description of the scene objects is incomplete. Visual learning methods based on eigenimage analysis have been proposed as an alternative solution to address the object recognition and pose estimation for objects with complex appearances. In this regard, Johnson and Hebert (Johnson & Hebert, 1999) developed an object recognition scheme that is able to identify multiple 3D objects in scenes affected by clutter and occlusion. They proposed an eigenimage analysis approach that is applied to match surface points using the spin image representation. The main attraction of this approach resides in the use of spin images that are local surface descriptors; hence they can be easily identified in real scenes that contain clutter and occlusions. This approach returns accurate results but the pose estimation cannot be inferred, as the spin images are local descriptors and they are not robust to capture the object orientation. In general the pose sampling for visual learning methods is a problem difficult to solve as the numbers of views required to sample the full 6 degree of freedom for object pose is prohibitive. This issue was addressed in the paper by Edwards (Edwards, 1996) when he applied eigenimage analysis to a one-object scene and his approach was able to estimate the pose only in cases where the tilt angle was limited to 30 degrees with respect to the optical axis of the sensor. In this chapter we describe the implementation of a vision sensor for robotic bin picking where we attempt to eliminate the main problem faced by the visual learning methods, namely the pose sampling problem. This paper is organized as follows. Section 2 outlines the overall system. Section 3 describes the implementation of the range sensor while Section 4 details the edge-based segmentation algorithm. Section 5 presents the viewpoint correction algorithm that is applied to align the detected object surfaces perpendicular on the optical axis of the sensor. Section 6 describes the object recognition algorithm. This is followed in Section 7 by an outline of the pose estimation algorithm. Section 8 presents a number of experimental results illustrating the benefits of the approach outlined in this chapter

    Proprioceptive Distance Cues Restore Perfect Size Constancy in Grasping, but Not Perception, When Vision Is Limited

    Get PDF
    Our brain integrates information from multiple modalities in the control of behavior. When information from one sensory source is compromised, information from another source can compensate for the loss. What is not clear is whether the nature of this multisensory integration and the re-weighting of different sources of sensory information are the same across different control systems. Here, we investigated whether proprioceptive distance information (position sense of body parts) can compensate for the loss of visual distance cues that support size constancy in perception (mediated by the ventral visual stream) [1, 2] versus size constancy in grasping (mediated by the dorsal visual stream) [3–6], in which the real-world size of an object is computed despite changes in viewing distance. We found that there was perfect size constancy in both perception and grasping in a full-viewing condition (lights on, binocular viewing) and that size constancy in both tasks was dramatically disrupted in the restricted-viewing condition (lights off; monocular viewing of the same but luminescent object through a 1-mm pinhole). Importantly, in the restricted-viewing condition, proprioceptive cues about viewing distance originating from the non-grasping limb (experiment 1) or the inclination of the torso and/or the elbow angle of the grasping limb (experiment 2) compensated for the loss of visual distance cues to enable a complete restoration of size constancy in grasping but only a modest improvement of size constancy in perception. This suggests that the weighting of different sources of sensory information varies as a function of the control system being used

    Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects

    Get PDF
    Our understanding of the neural underpinnings of perception is largely built upon studies employing 2-dimensional (2D) planar images. Here we used slow event-related functional imaging in humans to examine whether neural populations show a characteristic repetition-related change in haemodynamic response for real-world 3-dimensional (3D) objects, an effect commonly observed using 2D images. As expected, trials involving 2D pictures of objects produced robust repetition effects within classic object-selective cortical regions along the ventral and dorsal visual processing streams. Surprisingly, however, repetition effects were weak, if not absent on trials involving the 3D objects. These results suggest that the neural mechanisms involved in processing real objects may therefore be distinct from those that arise when we encounter a 2D representation of the same items. These preliminary results suggest the need for further research with ecologically valid stimuli in other imaging designs to broaden our understanding of the neural mechanisms underlying human vision

    The control of the reach-to-grasp movement

    Get PDF
    corecore