
VU Research Portal

The control of the reach-to-grasp movement

Smeets, Jeroen B.J.; Brenner, Eli

published in
Reach-to-Grasp Behavior
2018

DOI (link to publisher)
10.4324/9780429467875

document version
Peer reviewed version

Link to publication in VU Research Portal

citation for published version (APA)
Smeets, J. B. J., & Brenner, E. (2018). The control of the reach-to-grasp movement. In D. Corbetta, & M.
Santello (Eds.), Reach-to-Grasp Behavior: Brain, Behavior, and Modelling Across the Life Span (pp. 177-196).
(Frontiers in Developmental Science). Routledge. https://doi.org/10.4324/9780429467875

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303686771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4324/9780429467875
https://research.vu.nl/en/publications/b018ef75-401a-4394-9495-5205e4bcabb6
https://doi.org/10.4324/9780429467875


In: Reach-to-grasp behavior: Brain, Behavior and Modelling Across the Life Span, edited 
by Corbetta D, and Santello M. New York: Routledge, 2018, p. 177-196. 

 

177 

8 
THE CONTROL OF THE REACH-TO-GRASP 
MOVEMENT 
Jeroen B. J. Smeets and Eli Brenner 

8.1 Kinematics of Reaching to Grasp: Movements of the Digits 
in Space 

The description of how we move when reaching to grasp an object started with 
the work of Marc Jeannerod (Jeannerod 1981, 1984, 1986). He and many 
others describe grasping in terms of coordinating the movement of the hand 
towards the object (i.e., movement of the hand relative to the object) with the 
pre-shaping and closing of the hand (i.e., movement of the digits relative to 
each other). In this chapter, we choose a different approach. We focus on the 
trajectories of the digits relative to the object, and relate them to the sensory 
information that is used to generate these trajectories. We have discussed at 
several places why we think this is both a very efficient way of describing 
grasping and one that is closely related to the way grasping is controlled 
(Smeets and Brenner 1999, 2016). 

In this chapter, we divide the problem of making a reach-to-grasp move-
ment into two phases. First, grasping points on the object are selected. These 
are the positions at which the digits will make contact with the object’s surface. 
Subsequently, the movement trajectories towards the grasping points are 
shaped. 

We limit ourselves to describing grasping with the finger and thumb, often 
referred to as a “precision grip.” As our description is in terms of individual 
fingers, one can easily extend it to more than two digits. However, for the 
selection of grasping points, one has to realize that the thumb often opposes 
all the other fingers, because the anatomy of the hand often suggests such a 
configuration. When grasping with more than two digits, one can take this into 
account and simplify the selection problem by combining the fingers into 
a single “virtual finger.” One can subsequently choose positions for the 
individual fingers that comply with this virtual finger position (Baud-Bovy and 
Soechting 2001; Iberall et al. 1986). The digits are then each guided to their 
chosen positions. 
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8.2 Selection of Grasping Points 

8.2.1 Object Shape and Orientation 

When choosing grasping points for the digits, one has to make sure that the 
object will not slip when one starts to exert grip and lift forces. For this, there 
are two requirements: the sum of the moments of these vectors should be zero, 
and each force vector should be within the cone of friction. All combinations 
of positions of the digits with associated force vectors that fulfill these 
conditions will lead to a stable grasp. In order to use this grasp to lift the object 
without it tipping, the line connecting the digits (opposition axis) should pass 
through or above the object’s center of mass. The area on the object that can 
be used for this is sometimes referred to as opposition space (Iberall et al. 
1986; Jeannerod 1999; Stelmach et al. 1994). 

If the opposition axis does not pass through or above the center of mass, 
one can exert torques to prevent the object from rotating. Therefore, subjects 
usually choose a grasping axis that passes near the center of mass (Lederman 
and Wing 2003). However, this choice is systematically biased in several 
ways. For instance, when grasping a 10 cm bar with the right hand, subjects 
grasp about 5 mm to the right of the center of mass, and when grasping with 
the left hand, there is a similar bias to the left (Paulun et al. 2014). Visual 
illusions that influence the perceived location of the center of mass add a bias 
that corresponds to the effect of the illusion (Ellis et al. 1999). 

 
FIGURE 8.1 An object with two possible opposition axes (dashed and dashed-

dotted lines), and one set of grasping points (circles connected by 
dotted line) that will slip in the direction of the arrows if a grip force 
is applied and the friction is low 

x
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For objects with a circular shape, there are an infinite number of opposition 
axes that are equivalent in terms of opposition space. Nevertheless, subjects 
have a very clear preference for a certain grip orientation (Rosenbaum et al. 
2001; Schot et al. 2010). Such preference has been interpreted in terms of 
striving for comfort (Cruse et al. 1993). The preferred orientation is 
presumably based on physical experience, and is therefore based on the 
anatomy of the arm and hand. When choosing an orientation, one does not 
actually compare the comfort of the two configurations, but must associate 
visual information on the opposition axes with memory of earlier experiences 
using the corresponding postures (Rosenbaum et al. 2001). Although one 
might think that it is useful to be able to see a grasping point before moving to 
it, the visibility of grasping points does not affect the choice between possible 
opposition axes, so apparently the posture is more important (Voudouris et al. 
2012a). 

When an object is not circular-symmetric, there are generally several 
possible opposition axes. The various options might differ in their stability. A 
stable opposition axis allows for more variations in finger placement while 
leaving the ability to lift the object intact (e.g., the dotted line in Figure 
8.1illustrates a more stable opposition axis than does the continuous line). For 
an elliptical object, there are two stable opposition axes: the principle axes. 
Grasping along the short axes is more stable than grasping along the long axis. 
When allowed to choose, subjects do indeed have a preference for the short 
one. However, this preference is not absolute, as it decreases if the short axis’ 
orientation differs considerably from the anatomically preferred orientation 
(Cuijpers et al. 2004). 

Is this choice of grasping point really made before the movement starts, or 
does it evolve during the execution of the grasp? One of the findings on 
grasping elliptical objects is that subjects do not grasp exactly along one of the 
principle axes of the ellipse, but have a systematic bias. One might interpret 
this as an indication that the contact points are not fully planned, but that 
subjects adjust their plan based on the comfort they experience during 
execution. However, this interpretation is incorrect, because the deviation is 
already clear early in the movement, so the planned grip is not restricted to one 
of the principle axes (Cuijpers et al. 2006). One might argue that such a choice 
must be due to a misperception of spatial properties (i.e., object shape). In a 
study that explicitly addressed the question of whether movements are planned 
in advance, subjects had to grasp circular and elliptical objects (Hesse et al. 
2008). As mentioned in the previous paragraph, a circular object is normally 
grasped with the digits in a preferred orientation. Nevertheless, when subjects 
had viewed an elliptical object more than 2 seconds before viewing the circular 
target, their grasp angle was clearly influenced by the orientation of the 
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elliptical object, showing that the grip orientation is indeed planned well in 
advance (Hesse et al. 2008). 

When grasping an object along a given opposition axis, there are still two 
possibilities: the thumb can be positioned at either of the two ends. In 
anatomical terms, it can be grasped with the lower arm pronated or supinated. 
Subjects generally have a clear preference for one of the two, depending on 
the object’s orientation, with only a small range of orientations for which both 
options are equally likely (Stelmach et al. 1994). If the visual information is 
biased (due to a visual illusion) it is the illusory orientation that determines the 
choice (Crajé et al. 2008). This suggests that choosing grasping points is based 
on the same processing of visual information as perceptual judgments. 
However, two tasks being based on the same processing of visual information 
does not imply that one should be able to perform both tasks, as they may differ 
in other aspects. Indeed, there are neurological patients that can perceptually 
discriminate object shapes without being able to choose adequate grasping 
points and vice versa (Goodale et al. 1994b). 

Thus, the choice of contact points is determined in advance, considering the 
stability of the grip. However, people do not always choose the most stable 
grip orientation, because the comfort of the required posture is also considered, 
as well as other task demands. This is possible because the digits are soft and 
flexible, so their placement is often not extremely critical, making it possible 
to trade off grip stability and required grip force against using a comfortable 
posture and the extent to which dexterity is required. 

8.2.2 Influence of the Trajectory 

In the previous section, we provided ample evidence that the choice of 
grasping points is based on visual judgments about the object combined with 
experience with the comfort of grasping postures. This description of the 
choice process neglects any influences or constraints on the movement of the 
hand before it reaches the target. This is clearly an over-simplification. For 
instance, when grasping a 4 cm diameter cylinder from various starting 
positions, a small (<20 percent) but systematic dependence of the grasp 
orientation on the initial orientation of the hand has been found (Hesse and 
Deubel 2009): the more clockwise the initial hand orientation, the more 
clockwise the grip when the cylinder was grasped. In addition to the initial 
orientation of the hand, its initial position also has a small effect on grip 
orientation (Schot et al. 2010). In these experiments, subjects were shown the 
target object while their hand was already at the starting position, so those 
postural parameters were available when selecting grasping points. 

Do subjects also take the planned trajectory into account? Voudouris and 
colleagues devoted several studies to this question. In one study (Voudouris et 
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al. 2012b), obstacles were placed near the trajectories towards the digits’ 
anticipated grasping points. The effect of these obstacles was surprisingly 
small. A consistent effect on the choice was only found for obstacles that were 
placed near the thumb. Interestingly, similar small effects on the contact points 
can be induced when the “obstacles” are actually only images in the 
background. When grasping a target disk that was placed on a screen 
displaying the images of four disks surrounding the target (roughly resembling 
the Ebbinghaus illusion, Figure 8.2), the placement of the digits on the target 
depended systematically on the locations of the images of the disks (de Grave 
et al. 2005). It was completely evident that the disks were just images, so the 
effect of obstacles on grasping might not be guided by an evaluation of the 
risks of colliding with the obstacles (which was zero for the images), but might 
rather be based on an automatic visuomotor association between visible 
structures and path selection. 

The movement of the hand on its way to the object does not seem to 
contribute to the grip orientation when grasping. The grip orientation was 
unaffected both when the movement of the hand was perturbed during the 
movement (Grea et al. 2000), and when the digits had to deviate from the 
planned movement due to obstacles (Voudouris et al. 2010). On the other hand, 
the planning does take future comfort into account: when picking up a bar in 
order to place it in a specific orientation elsewhere, the comfort at the moment 
of placement is more relevant for choosing a grip than the comfort when 
picking it up (Rosenbaum et al. 1992). A possible reason for this “end-state 
comfort” effect is that comfort corresponds to being able to perform precisely, 
and the motor constraints for successfully placing a bar are more severe than 
for successful grasping (Hughes et al. 2012). 

Occasionally, the situation that was considered when selecting the grasping 
points will have changed by the time the grasping movement starts. If one’s 
task is to grasp the lit object, and suddenly a different object is lit, it is clear 
that one has to reselect grasping points (Paulignan et al. 1991b). What happens 
if the changes are more subtle? To investigate this, subjects were asked to 
grasp a cube that was oriented in a way that made people tend to grasp it along 
one of the axes, but close to the border with orientations for which they would 
select the other axis. Once subjects started their reach-to-grasp movement, the 
cube rotated slightly so that it was now at an orientation for which the other 
grasping axis would normally be preferred. Although it was possible to stick 
to the chosen grasping axis, on many trials subjects switched grasping axes at 
a very short latency: 160 ms (Voudouris et al. 2013). This is in line with the 
suggestion that the selection of grasping points is an automatic process. 
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FIGURE 8.2 Grasping the central disk in a configuration resembling the 
Ebbinghaus illusion (de Grave et al. 2005). The images surrounding 
the central disk not only make the disk on the right appear larger than 
that on the left, but also influences the choice of grasping points 

Thus, the choice of grasping points can be changed in response to occurrences 
during the movement, and sometimes depends to a modest extent on the 
surrounding and on the path towards the object, but the choice appears 
primarily to depend on the object and the posture of the arm when making 
contact with it. 

8.2.3 Eye Movements 

Knowing the eye movements that are made during a task can provide insight 
into what information is deemed the most interesting at a certain time. As 
information about the target of a movement is needed before making the 
movement, knowing where people are looking might reveal how they plan 
their grasping movements. When grasping objects to place them elsewhere, 
subjects generally look at a position on the object near where their digit will 
make contact with it. At least, they do so if subjects can only see one grasping 
point. They direct their gaze near that point until just before making contact 
with the object (Johansson et al. 2001). 

If both grasping points are visible, many studies report a tendency to look 
near the grasping point for the index finger rather than the thumb for various 
types of objects and viewing geometries (Brouwer et al. 2009; Cavina-Pratesi 
and Hesse 2013; de Grave et al. 2008; Desanghere and Marotta 2011; 
Voudouris et al. 2016). This tendency is in some way related to grasping, as 
subjects (initially) direct their gaze to the center of the object during free 
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viewing or when required to make perceptual judgments (Brouwer et al. 2009; 
Desanghere and Marotta 2011). However, what aspect of grasping causes this 
tendency is not clear: many hypotheses could be rejected (Voudouris et al. 
2016). 

If a position on an object is relevant for grasping, and therefore generally 
fixated, occluding that part of the object does not keep subjects from fixating 
that location (de Grave et al. 2008). Apparently, the aim of these fixations is 
not to obtain detailed visual information about the contact position, but rather 
to obtain extra-retinal information on its location, a conclusion that is in line 
with the lack of effect of direct visibility on the choice of grasping points that 
we discussed in section 8.2.4. 

8.3 Shaping the Movements 

8.3.1 Basic Shape 

Once the grasping points are chosen, the digits move towards these points. 
They do not move along straight paths, but follow curved trajectories so that 
the digits first move away from the straight line to the grasping point to a 
position a few centimeters from the object’s surface, and then curve towards 
their grasping points. The points where the trajectories are furthest from a 
straight line correspond to the maximum grip aperture. 

A simple way to model the kinematics of these movements is by finding 
the smoothest possible movement trajectory that ends at the grasping point 
with zero velocity and a deceleration perpendicular to the orientation of the 
surface (Smeets and Brenner 1999). The location of the point at which this 
trajectory is furthest from a straight line follows directly from the model. When 
moving to position on a surface, the model predicts that the maximal deviation 
of the trajectory from a straight line scales with distance from the starting point 
from a plane through that surface (with a gain of 0.8). In other words: if a 
grasping point is moved by 1 cm perpendicular to the local surface orientation, 
the maximal deviation from a straight line will change by 0.8 cm. This is 
indeed how subjects behave (Smeets and Brenner 2001). When applied to both 
digits at the same time, the prediction is that maximum grip aperture scales 
with object size, with a slope of 0.8, again in line with experimentally observed 
behavior (reviewed by Smeets and Brenner 1999). 

Some features of grasping movements are not captured in this simple 
description. A first one is that maximum grip aperture is not only affected by 
the distance between the grasping points, but also by other dimensions of the 
target object. For instance, when grasping an ellipse along its minor axis, the 
maximum grip aperture is larger than when grasping a circular object with the 
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same size (Cuijpers et al. 2004). A second finding that is not captured by the 
simple description is that when starting with an open hand to grasp a large 
object, subjects start by closing the grip and subsequently reopening it (Hesse 
and Deubel 2009; Meulenbroek et al. 2001; Smeets and Brenner 2002). 

By using a dynamics-based model instead of a kinematic one, these 
additional features of grasping behavior can also be incorporated. In this 
model, the basic trajectory formation is caused by each digit being attracted 
towards its grasping point and repelled by other parts of the object (and by 
other objects), and by assuming that the digits have a preferred distance from 
each other (Verheij et al. 2012). In this model, the combination of the digits 
being repelled by other parts of the object and attracted to the grasping points 
gives rise to curved movements of the digits such that they approach the 
grasping points more or less perpendicularly (see Figure 8.3). Note that the 
attracting and repelling forces in this model describe the visuomotor 
interaction, but they are not directly measurable. This model can be used to 
make quantitative predictions for hitherto untested situations, such as for the 
effect of various object shapes on grip formation. Such experiments have been 
performed and confirmed the predictions to a large extent (Borchers et al. 
2014; Verheij et al. 2014a). 

 
FIGURE 8.3 (A) Example of a force field that is the combination of a repelling 

force perpendicular to the surface (2 cm wide) and an attractive force 
towards the grasping point at its center. (B) Possible resulting 
movement trajectories. This is a caricature of the fields used by 
Verheij et al. (2012) to model grasping trajectories 
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Accuracy of grasping is limited by precision of visual localization of the 
grasping point and proprioceptive localisation of the digits (Smeets and 
Brenner 2008). However, as the movement is stopped by the grasping surface, 
the strategy to approach the surface closer to perpendicular can ensure a better 
precision on the grasping surface (Smeets and Brenner 1999). This is indeed 
what is observed. Moreover, an equivalent of Fitts’ law (Fitts 1954) has also 
been observed in grasping behavior: the smaller the contact area for the digits, 
the slower the movement (Zaal and Bootsma 1993). 

8.3.2 Individual Differences 

Most of the papers discussed in this chapter discuss grasping behavior as a 
behavior that is common to all humans. A few studies, however, have focused 
on variations in behavior. For instance, Bongers and colleagues reported that 
in addition to the gradual opening and closing of the hand that is reported in 
most studies, sometimes participants open their hand directly to a plateau 
value, and other trials show a more bumpy behavior (Bongers et al. 2012). 
Also the timing of opening of the hand and moving of the hand differs: some 
subjects keep their digits together during the initial part of the movement, and 
open their hand only during the second half of the movement, whereas others 
start opening their hand directly at movement onset (Cuijpers et al. 2004). 

These variations in movement patterns can be better understood when 
expressed as the movements of the individual digits through space. If one 
compares the movement trajectory of the tip of a digit when it is on its way to 
touch an object with the trajectory of that digit when reaching to grasp the 
object, they are remarkably similar (Smeets et al. 2010). If one combines a 
trajectory for the index-finger with one of the thumb, the timing of the pattern 
of opening and closing is governed by the trajectories of the individual digits. 
The idiosyncratic grasp formation corresponds to the idiosyncratic differences 
in the trajectories of the single-digit movements (Smeets and Brenner 2016). 

8.3.3 On-Line Control 

The stereotypical grasping pattern suggest that these movements are 
preprogrammed ballistic movements that are executed without peripheral 
feedback. This is definitely not the case: grasping movements are under visual 
control. The initial demonstration (Paulignan et al. 1991a, 1991b) showed 
responses to changing the illumination of objects that did not actually change 
size or position. The interpretation of these data is that the changes are not on-
line adjustments of the movements, but switches to newly planned movements 
to the alternative target location (Smeets et al. 2002), and thus reselection of 
grasping points, as discussed in section 8.2.2. 
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In addition to being able to reprogram movements when the situation 
changes substantially, one would expect goal-directed movements of the digits 
in grasping to continuously be adjusted to accommodate improved location 
information (de Brouwer et al. 2014) or compensate for any movement errors. 
Consequently, they should follow any changes in the grasping locations that 
occur during the movement with a very short latency (~100 ms; Smeets et al. 
2016), just as the digits do in other goal-directed movements. This is indeed 
what is found when an object rotates (Desmurget et al. 1996; Voudouris et al. 
2013), changes size (van de Kamp et al. 2009; van de Kamp and Zaal 2007) or 
changes position (Grea et al. 2002). Similar behavior has also been reported 
for responses to changes in object size in bimanual grasping (Zaal and Bongers 
2014). 

The responses to a perturbation of the location of a target of a goal-directed 
hand movement depends on the timing: the later the perturbation during the 
movement, the more vigorous the response (Liu and Todorov 2007; Oostwoud 
Wijdenes et al. 2011). Is this also the case in grasping? This has not been 
investigated directly, but indirect evidence can be found in reported latencies 
of adjustments. When using a conservative detection threshold to determine a 
latency, one will find shorter latencies for more vigorous responses (Oostwoud 
Wijdenes et al. 2014). Responses to perturbations of object size in 
grasping movements have been reported to have shorter latencies when 
applied later in the movement (Hesse and Franz 2009; van de Kamp et al. 
2009). We propose that this is because they are more vigorous. So the control 
of grasping is also similar to the control of goal-directed movements of the 
digits in this respect. 

Goal-directed hand movements are not only adjusted when the target is 
perturbed, but also when feedback about the hand is perturbed (Brenner and 
Smeets 2003; Franklin and Wolpert 2008). Volcic and Domini (2016) 
performed a similar experiment in grasping. They changed the feedback of the 
hand subtly once grip aperture had reached the size of the object. When the 
hand opened further than the size of the object, the additional finger and thumb 
movement was either magnified or reduced. Subjects compensated for this 
manipulation, by moving the digits less far or further apart, respectively. This 
correction only happened when the viewing geometry allowed subjects to see 
the distance between their finger and the grasping surface. Thus, altogether, it 
is evident that grasping movements are under continuous visual control. 

8.3.4 Obstacles 

The repelling forces in the dynamic model are not only caused by other parts 
of the object that is grasped, but also by other objects near the grasping 
trajectory. The obstacles affect both the spatial and temporal aspects of the 
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movement. The temporal effect of an obstacle near the grasping location of a 
digit is to slow down the grasping movement (Biegstraaten et al. 2003; Mon-
Williams et al. 2001; Tresilian 1998; Voudouris et al. 2012b). As grasping with 
an obstacle near the grasping location requires a more accurate movement, this 
finding is in line with the well-known speed-accuracy trade-off. It can also be 
understood in terms of the dynamical model: obstacles correspond to a 
repelling force, so that the sum of the attracting and repelling force is smaller, 
leading to a slower movement. The second effect of an obstacle is that it 
changes the curvature of the digit’s path, leading to change in maximum grip 
aperture. This effect is easy to understand if we consider an obstacle as a 
repeller, although other model interpretations have also been proposed 
(Vaughan et al. 2001). 

We already mentioned in section 8.2.2 that pictorial elements that could be 
interpreted as obstacles influence the choice of grasping points (de Grave et al. 
2005). Such images that can be interpreted as obstacles also affect the 
trajectories of the digits towards grasping points: moving images of flankers 
in the Ebbinghaus illusion closer to the target results in a larger maximum grip 
aperture (Haffenden et al. 2001). In interpreting this experiment, it is difficult 
to separate the obstacle effect from the effect of the illusion itself (Kopiske et 
al. 2016), as will be discussed in section 8.3.6. 

The biggest obstacle for our hands in our daily office routines is the table. 
Does the table indeed influence our movements as an obstacle? One might 
think so, as our hand movements that start and end on a table curve 
upwards, away from the table. However, this interpretation is not valid. 
Verheij and colleagues removed (parts of) the table, and found virtually no 
effect, provided that the small horizontal surface near the start and the target 
object ensured an upward start and a target approach from above (Verheij et 
al. 2013b). An object in between these positions at table height did not affect 
the curvature. Only objects that were higher than the starting position affected 
the vertical curvature of the digits during a grasping movement (Verheij et al. 
2014b). An additional (minor) cause of the vertical curvature of grasping 
movements is gravity: this was shown by rotating the participant together with 
starting position and target relative to gravity. The curvature of the digits paths 
in the grasping movement was only mildly affected by this manipulation, 
corresponding to a direct (downward) effect of gravity (Verheij et al. 2013a). 

8.3.5 The Moment of Contact 

In our description of trajectory formation, the geometry around the grasping 
point plays an essential role: the digits are not just closing towards the grasping 
points, but tend to approach the local surface perpendicularly (Smeets and 
Brenner 1999), which can be interpreted as the surface acting as a repeller 
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(Verheij et al. 2012). A straightforward way to test this is to vary the 
orientation of the contact surface while keeping the grasping points constant. 
If one does so (and makes sure that the edges of the object do not act directly 
as obstacles), one finds that the trajectories of the digits vary with local surface 
orientation (Kleinholdermann et al. 2007). 

One might expect that both digits will contact the object at the same 
moment. However, this is not the case. Several studies report that the index 
finger makes contact tens of millimeters before the thumb (Biegstraaten et al. 
2006; Brouwer et al. 2009; Cavina-Pratesi and Hesse 2013; Reilmann et al. 
2001; Voudouris et al. 2012a). These studies report that the early arrival of the 
index finger is associated with a late departure. Such a tendency to synchronize 
movements of the digits rather than the moment of contact has also been 
reported for bimanual pointing movements (Boessenkool et al. 1999). 

It is well known that haptic (tactile) information is essential for object 
manipulation: haptic feedback ensures that contact forces are scaled to prevent 
slip and excessive forces (Johansson and Flanagan 2009). It is less well known 
that haptic feedback is essential to shape the digits movements in grasping. If 
one has to pantomime grasping, i.e., perform the action without any haptic 
feedback, the basic shape of the trajectories and properties such as the scaling 
with object size are different (Goodale et al. 1994a). If a real object is present, 
but variations in visual information on object shape are inconsistent with the 
haptically experienced shape, some subjects neglect the visual information 
(Cuijpers et al. 2008). The presence of veridical haptic feedback is also 
essential for a patient with a ventral lesion to be able to normally grasp objects 
(Schenk 2012). 

After contact, the digits start applying forces to the surface in order to 
provide adequate grip and lift forces to lift the object without it slipping. These 
lifting forces are not perpendicular to the surface, but directed a bit upward. 
One might expect that the movement of the digits just before contact is already 
aligned with this direction, and that variations in the approach direction 
correspond to variations in initial force direction. This is not the case: the initial 
contact force is directed downwards (Flanagan et al. 1999) and the direction 
of approach is not clearly correlated with the initial build-up of force 
(Biegstraaten et al. 2006). This independence is in line with switching between 
neural control strategies when transitioning from motion to force production 
(Venkadesan and Valero-Cuevas 2008). The (relative) timing of the digits’ 
movements and the forces exerted after contact are not accounted for by the 
above-mentioned models of grasping. 
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8.3.6 Illusions 

Since 1995, the study of grasping objects in an illusory context has become 
extremely popular. In that year, a paper was published that showed that the 
Ebbinghaus illusion affected perceptual judgments more than it influenced 
peak grip aperture in grasping (Aglioti et al. 1995). This result was interpreted 
by the authors as support for the idea that perception and action are based on 
two parallel visual processing streams, a ventral one that is susceptible to 
contextual illusions that underlies perceptual judgments and a dorsal one that 
neglects the context to control goal-directed movements. Other researches 
questioned this interpretation (Franz and Gegenfurtner 2008; Smeets and 
Brenner 2006). A first reason for questioning this interpretation is that the 
original paper showed that there was an effect of the illusion, so the claim in 
the title of the paper that the illusion did not deceive the hand is exaggerated. 
Moreover, as mentioned in section 8.3.4, the discussion as to whether there is 
an effect of the illusion is confounded with possible interpretations of any 
differences that are found in terms of obstacles. The second reason is that when 
appropriately matching the perceptual task to the grasping task, the effects 
appeared to be equal for both tasks (Franz et al. 2000; Pavani et al. 1999). We 
won’t go further into the specifics of this debate, but refer the reader to other 
reviews (Schenk et al. 2011; Westwood and Goodale 2011). 

Before discussing the third reason, we will discuss an attempt to settle the 
discussion on whether illusions affect the trajectories in grasping. It has been 
argued that illusions might affect the planning, but not the execution of the 
grasping movement, which would then result in a gradual decrease of the effect 
of illusions such as the Ebbinghaus illusion during the course of the movement 
(Glover and Dixon 2002). Although the experimental results seem to support 
this claim, their interpretation is not without pitfalls. In line with the need to 
precisely equate the tasks that was mentioned in the previous paragraph, 
one can only draw a definitive conclusion from the time course of the effect of 
the illusion if one can predict how a constant illusion effect would influence 
the trajectories of the digits. Doing so predicts that a constant illusion effect 
results in an illusion effect on the digits’ trajectories (and thus grip aperture) 
that gradually decreases as the movement unfolds (Smeets et al. 2003). 

A year after Aglioti et al.’s original publication, their interpretation that 
actions are immune to illusions was questioned by us (Brenner and Smeets 
1996). We showed that the Ponzo illusion (Figure 8.4) did not affect the 
movements of the digits towards the object, but did affect the forces used to 
lift the object. The third objection is thus that grip aperture might be immune 
to the illusion, but motor control is more than opening a hand. As grasping is 
moving digits to positions, there is no reason to expect an illusion that does 
not affect positions to influence the trajectories of the digits to these positions. 
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On the other hand, to lift an object, a visual estimate of weight is required, and 
size can provide such an estimate (Gordon et al. 1991). The lack of effect of 
the Ponzo illusion on grip aperture despite a clear effect on lift forces has been 
replicated and extended to grip force by Jackson and Shaw (2000). Several 
later studies confirmed the lack of effect of the Ponzo illusion on the trajectory 
of the digits (Ganel et al. 2008), although one study reported an effect in the 
first few trials (Whitwell et al. 2016). 

The Müller-Lyer illusion has been much more popular than the Ponzo 
illusion for studying grasping behavior. Most papers reported an effect of the 
illusion, but its effect on maximum grip aperture when grasping the central bar 
was much smaller that its perceptual effect. In their extensive review of this 
literature, Bruno and Franz (2009) argue that two factors might underlie this 
difference. The first is that one would not expect an equal effect, because (as 
discussed in section 8.3.1) a 1 cm real change in object size should only lead 
to a 0.8 cm larger grip aperture. The second is that in grasping you can correct 
your movements based on visual feedback during the movement. On the other 
hand, others have argued that the effects might not be due to the illusory size 
at all, but due to the fins being considered as obstacles that change the precision 
requirements. An argument for this account is based on the analysis of the 
trajectories near the moment of contact. If a larger-than-normal peak grip 
aperture were due to misperception of the bar’s size, one would expect a 
prolonged low velocity phase before contact, as contact would not have been 
obtained at the expected position. Such a prolonged deceleration phase was 
not observed (Biegstraaten et al. 2007). 

 

 

FIGURE 8.4 Two size illusions that have been used in grasping research. In the 
Ponzo illusion (left) and the Müler-Lyer illusion (right) the two 
horizontal lines are equally long, but the context lines make the upper 
line look larger than the lower line 
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Other illusions were tested to rule out the possibility that movement 
trajectories are only influenced by illusions because the latter are interpreted 
as obstacles. Neither the diagonal illusion (Stottinger et al. 2009; Stottinger 
and Perner 2006) nor the empty space illusion (Stottinger et al. 2012) affected 
peak grip aperture during grasping. To reconcile all these studies, one could 
argue that pure size illusions do not affect the movements of the digits in 
grasping (and thus peak grip aperture) because the digits move towards 
positions. The fact that some illusory figures affect grasping might be due to 
other effects, such as a misperception of the location of the grasping points or 
parts of the figures being treated as obstacles. 

8.3.7 Moving Targets 

Grasping moving targets or catching them has one additional factor which 
makes the task more complicated than grasping static target: there is no direct 
visual information about the location of the grasping points to guide your 
movement. In some way, predictive information has to be used. A seminal 
study is the experiment by Savelsbergh and colleagues, who studied the timing 
of the closing movements when catching an approaching ball (Savelsbergh et 
al. 1991). They manipulated one source of information (optical expansion) by 
sometimes letting the ball deflate as it approached, and found that subjects 
delayed their hand closure, as if they expected the ball to arrive later. Other 
sources of information about (motion in) depth such as binocular disparity and 
retinal size also play a role in this timing (van der Kamp et al. 1997). 

Despite differences between the sources of information and between the 
way in which the distance between target and hand is reduced (actively in 
grasping, passively in catching), the timing of events is remarkably similar 
(van de Kamp et al. 2010). Not only the temporal, but also the spatial aspects 
of the digits’ trajectories are very similar when grasping stationary and moving 
objects (Schot et al. 2011). This is not a coincidence, but related to the fact that 
the geometry of the task for the digits is very similar once the hand has started 
the reach-to-grasp movement: the hand and object are approaching each other, 
and the digits have to move in such a way that they will approach the object’s 
surface more or less orthogonally. 

8.4 Summary 

In this chapter, we showed that a close examination of the task geometry can 
explain how our digits move when we reach out to grasp an object. The laws 
that govern this behavior are similar to the ones that describe single-digit goal-
directed movements. As with any movement, the selection of endpoint 
depends on why one is making the movement, and the trajectory is under 
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continuous visual guidance, influenced by constraints imposed by obstacles 
and by the need to be precise. 
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