3,075 research outputs found

    Graphics simulation and training aids for advanced teleoperation

    Get PDF
    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations

    Man-machine interface issues in space telerobotics: A JPL research and development program

    Get PDF
    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years

    Graphic overlays in high-precision teleoperation: Current and future work at JPL

    Get PDF
    In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated

    An Open-Source 7-Axis, Robotic Platform to Enable Dexterous Procedures within CT Scanners

    Full text link
    This paper describes the design, manufacture, and performance of a highly dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided percutaneous needle biopsy. Direct CT guidance allows physicians to localize tumours quickly; however, needle insertion is still performed by hand. This system is mounted to a fully active gantry superior to the patient's head and teleoperated by a radiologist. Unlike other similar robots, this robot's fully serial-link approach uses a unique combination of belt and cable drives for high-transparency and minimal-backlash, allowing for an expansive working area and numerous approach angles to targets all while maintaining a small in-bore cross-section of less than 16cm216cm^2. Simulations verified the system's expansive collision free work-space and ability to hit targets across the entire chest, as required for lung cancer biopsy. Targeting error is on average <1mm<1mm on a teleoperated accuracy task, illustrating the system's sufficient accuracy to perform biopsy procedures. The system is designed for lung biopsies due to the large working volume that is required for reaching peripheral lung lesions, though, with its large working volume and small in-bore cross-sectional area, the robotic system is effectively a general-purpose CT-compatible manipulation device for percutaneous procedures. Finally, with the considerable development time undertaken in designing a precise and flexible-use system and with the desire to reduce the burden of other researchers in developing algorithms for image-guided surgery, this system provides open-access, and to the best of our knowledge, is the first open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201

    Performance evaluation of a six-axis generalized force-reflecting teleoperator

    Get PDF
    Work in real-time distributed computation and control has culminated in a prototype force-reflecting telemanipulation system having a dissimilar master (cable-driven, force-reflecting hand controller) and a slave (PUMA 560 robot with custom controller), an extremely high sampling rate (1000 Hz), and a low loop computation delay (5 msec). In a series of experiments with this system and five trained test operators covering over 100 hours of teleoperation, performance was measured in a series of generic and application-driven tasks with and without force feedback, and with control shared between teleoperation and local sensor referenced control. Measurements defining task performance included 100-Hz recording of six-axis force/torque information from the slave manipulator wrist, task completion time, and visual observation of predefined task errors. The task consisted of high precision peg-in-hole insertion, electrical connectors, velcro attach-de-attach, and a twist-lock multi-pin connector. Each task was repeated three times under several operating conditions: normal bilateral telemanipulation, forward position control without force feedback, and shared control. In shared control, orientation was locally servo controlled to comply with applied torques, while translation was under operator control. All performance measures improved as capability was added along a spectrum of capabilities ranging from pure position control through force-reflecting teleoperation and shared control. Performance was optimal for the bare-handed operator

    Interactive and cooperative sensing and control for advanced teleoperation

    Get PDF
    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decisionmaking between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. The Sensing-Knowledge-Command (SKC) fusion network is proposed as a fundamental architecture for implementing cooperative and interactive sensing and control. Simulation results are shown

    Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    Get PDF
    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance

    Displays for telemanipulation

    Get PDF
    Visual displays drive the human operator's highest bandwidth sensory input channel. Thus, no telemanipulation system is adequate which does not make extensive use of visual displays. Although an important use of visual displays is the presentation of a televised image of the work scene, visual displays are examined for presentation of nonvisual information (forces and torques) for simulation and planning, and for management and control of the large numbers of subsystems which make up a modern telemanipulation system
    • …
    corecore