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ABSTRACT

This paper presents the paradigm of interactive and co-
operative sensing and control as a fundamental mecha-

nism of integrating and fusing the strengths of man and

machine for advanced teleopemtion. The interactive and

cooperative sensing and control is considered as an ex-

tended and generalized form of traded and shared con-

trol. The emphasis of interactive and cooperative sensing

and control is given to the distribution of mutually non-
exclusive subtasks to man and machine, the interactive

invocation of subtasks under the man/machine symbiotic

relationship, and the fusion of information and decision-
making between man and machine according to their

confidence measures. The proposed interactive and co-

operative sensing and control system is composed of

such major functional blocks as the logical sensor sys-

tem, the sensor-based local autonomy, the virtual envi-

ronment formation, and the cooperative decision-malting
between man and machine. The Sensing-Knowledge.-

Command (SKC) fusion network is proposed as a fmgla-

mental architecture for implementing cooperative and in-

teractive sensing and control. Simulation results are
shown.

INTRODUCTION

Early attempts on teleoperation were based on tight cou-

pling between the manipulator and the operator through

mechanical linkagesor steel tapes, as is the case of the
AEC Argonne Laboratory series 1, or electrical or hy-

draulic connections, as is the case of the GE telemanipu-

lators built by Mosher 2.

The telemanipulation based on the direct coupling be-

tween man and machine severely limits its performance
: it neither accommodates the desirable mechanical dex-

terity due to the difficulty of manuaily coordinating mul-

tiple joints, nor allows high task complexity due to the

difficulty of achieving required compliance. It gives an

excessive burden on the operator, which may cause long

task completion time with a high failure rate.

The need to improve mechanical dexterity in teleopera-

lion and achieve desirable compliance during telcopera-

lion, so as to deal with more complex tasks under a

partially constraint environment but with the comfort of

human operator, has prompted the development of the
following teleoperation paradigms :

1) The generalized bilateral telemanipulation 3, 4,

5, 6 in which the light and one-directional cou-

pling between the master and the slave is re-

placed by loose and two-directional coupling

characterized by computer-based bilateral infor-
mation transformation and exchange. This al-

lows that the slave arm may not need to be the

exact kinematic replica of the master ann, and

that the operator can feel the contact force felt by

the slave arm through force feedbacks, which al-

lows human to execute compliance control

2)The supervisorycontrolwith sharedand trad-

ed control7,8, inwhich a taskisdecomposed

into temporarily(tradedcontrol)or spatially

(sharedcontrol)disjointsubtasksthatarc tobe

distributedtoman and machine.For instance,the

operatorcan be supportedby softwarejigsor

spatialsupportmeans 9,Iowhich takeadvantages

of spatialconstraintsin the task to allow the

slave manipulatorto controlthose degreesof

freedom specifiedby the motion constraint,

while theoperatorcontrolstherestofdegreesof

freedom.Or,theslaveann with force/torquesen-

sors is responsiblefor automatic compliance

control,whiletheoperatorisresponsibleforthe

motion control.The supervisionof telemanipu-

lalion11 isdone by the supervisoryloop closed

through the human operator, for which visual

and graphic displays and force reflections from

the remote site play an important role.
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The recent advancement in the theory and practice of ro-
boties and intelligent systems makes it necessary to ex-
ploit new generation of teleopemtion which fully utilizes
the high degreeof mechanical dexterity providedby re-
dundant and multiple arms and the capability of a robot
performing sensor-based local autonomy. Especially, the
role of man and machine should be redefined for ad-

vanced teleoperation in such a way that the slave armbe-
comes an active partner of the human operator,
supporting perception, decision-making, and coopera-
tive task execution. To achieve this requires to explore a
fundamental mechanism of integrating and fusing the
strengths of man and machine for advanced teleopera-
tion-

This paper presents a paradigm of interactive and coop-
erative sensing and control as the fundamental mecha-
nism of integrating and fusing the strengths of man and
machine for advanced teleoperation. The interactive and
cooperative sensing and control is considered as an ex-
tended and generalized form of traded and shred control.
The emphasis of interactive and cooperative sensing and
control is given to the distribution of mutually nonexclu-
sive subtasks to man and machine, the interactive invo-
cation of subtasks to achieve the man/machine symbiotic
relationship, and the fusion of information and decision-
making between man and machine according to their
confidence measures.

THEORY OF INTERACTIVE AND CO-

OPERATIVE SENSING AND CONTROL

The quality of teleoperation depends on the performance

of the operator in perceiving and understanding task
mechanisms correctly and in generating control corn-
man(is precisely in consistency with his/her perception
and intention. The quality of teleoperation also depends
on the performance of the machine (as a master-slave
system) in providing accurate and sensitive control
which is stable and robust under disturbances, system

nonlinearities, and time delays.

As a means of enhancing the performance of the opera-
tot, there have been developed methods for accomplish-
ing powerful telepresence based on sensory feedbacks
using visual displays and force reflections, as well as
methods for effectively training the operatorto achieve
the high level of expertise. On the other hand, the devel-

opment of advanced teleoperator controllers based on the
concept of impedance, passivity, dynamic coordination,
and predictive modeling has been pursued as a means of
improving the performance of the machine.

However, there exist fundamental limitations for the op-

erator to achieve accurate perception of task geometries
and control behaviors and, even more so, to accomplish
precise coordination between perception andaction. This
is mainly due to the impreciseness and low bandwidth in

human sensory-motor coordination: human depends
heavily on sensor-based adaptive motion corrections to
compensate for imprecise positioning and is unable to re-
spond to high bandwidth tasks. And, partly due to the dif-
ticulty of implementing powerful telepresence as well as
high performance of control.

The best way of relaxing the above limitations is to fully
utilize the strengths of man and machine in such a way as
to achieve the mutual compensation of individual weak-
nesses. The strength of human lies in understanding task
mechanisms, recognizing objects, generating task and
motion plans under global constraints, whereas the

strength of machine lies in precision positioning, quanti-
zation of primitive features, repetition of memorized
tasks, and sensor=hasedlocal reflex. Attempts have been
made to incorporate the strengths of man and machine in
teleoperation: traded control temporally decompose a
task and assigned to human and machine according to
whether human or machine fits for a give subtask, while
shared control spatially decompose a task into subtasks
to be carried out by man and machine simultaneously. An
instance of shared control is that compliance control is
automatically accomplished by machine based on sensed
forces, while position control is done through operator's
manual control.

Although traded control and shared control provide a
means of combining the strengths of man and machine,
they do not present a general and powerful methodology
of integrating man and machine. This is because traded

and shared control is based on clear-cut decomposition
of tasks into subtasks to be distributed individually to
man and machine, where such decomposition is often
difficult to achieve, resulting in overly simplified distri-
bution of a task. More importantly, such a clear-cut de-
composition eliminates the possibility of fusing multiple
sources of information and decision-making from man
and machine.

We propose interactive and cooperative sensing and con-
trol as a fundamental paradigm of integrating and fusing
the strengths of man and machine for teleoperation. The
interactive and cooperative sensing and control is an ex-
tended and generalized form of traded and shared con-

trol. The emphasis of interactive and cooperative sensing
and control is given to the distribution of mutually non-
exclusive subtasks to man and machine, the interactive

invocation of subtasks with symbiotic relationship, and
the fusion of information and decision-making from man
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and machine accordingto the degree of their confidence.

The interactive and coopomtive sensing and control con-

sists of the following major functional blocks : 1) logical

sensor system. 2) sensor-based local autonomy_3) virtual

environment formation. 4) cooperative decision-making

between man and machine.

vides an effective tool for the intelligent interface with

the operator performing interactive and cooperative

sensing. For instance, a logical sensor can be invoked by

the operator in response to the system's request for pro-

riding sufficient information for a sensor-based automat-

ic operation or a virtual envn'onment formation initiated

by the operator.

Logical Sensor System

A logical sensor represents, in an abstract form, one of

the many functional capabilities that the integrated sen-

sor system can provide. The distance sensor, the surface

orientation sensor, the force/torque sensor, the feature

finding sensor, etc. are a few examples of logical sensors.

There may or may not exist a direct association between

a logical sensor and a physical sensor, such that a logical

sensor can achieve its goal (to generate its output) based

on the outputs of other logical sensors ami/or physical

sensors.Logicalsemors can be hierarchicallyorganized

intoa logicalsensorsystembasedon theirfunctionalin-

terdependency.A logicalsensorsystemnotonlypro-

videsa symbolic listofthevariousperceptual

capabilitiesofa robot,but alsorepresentsa number of

differentways ofaccomplishingthegoalofalogicalsen-

sor.The latterisespeciallyusefulforsensorfusion.The

symbolic representationofa logicalsensorsystem pro-

Sensor-Based Automatic Operations

Sensor-based automatic operations are for providing the

manipulator with the capability of local autonomy, such

thatman/machine cooperativecontrolcan be accom-

plished.A listofsensor-basedautomaticoperationsare

predefined,outof which theoperatorcan selectand in-

voke a desiredsensor-basedautomaticoperation.Exam-

plesofsensor-basedautomaticoperationsinclude

automatictracking,automaticcentering,automatic

aligning,automaticcompliance,etc.Once invoked,itis

sent to the interpreter to transform it into a sequence of

actions executable by the manipulator; during the pro-

ce_ of interpretalion, the interpreter automatically in-

quires the logical sensor system and/or the operator for

the information necessary for the complete specification

of the corresponding sensor-based operation. The opera-

tor performs, if necessary, sensor planning and interac-
tive sensing, and invokes logical sensors.
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Virtual Environment Formation Information Flow

Virtual environment formations are for providing the op-

erator with an artificially created environment (called

virtual environment) which enhance the operator's un-
derstanding of control environment and task mechanism,

and, consequently, improve the fidelity of operator's
manual control. The generated virtual environment pro-

vides a guidance and assistance for operator's manual

control. A list of virtual environment operations are pre-
defined, out of which the operator can select and invoke

a desired virtual environment operation. VLrtual environ-

ment operations generates displays or refiects forces

which partially or fully inform the operator of the task

specifications obtained by logical sensors for sensor-

based automatic operations, or provide sensory feedback
indicating the discrepancy from the sensor-based auto-

matic operation. Examples include the surface normal

display, the virtual force field in free space, the display of
desired end effector orientations, etc. As is done for sen-

sor-based operations, once invoked, it is sent to the inter-

preter to transform it into a detailed sequence of

operations with interactive information collection. A vir-

tual environment formation may or may not accompany

with the corresponding sensor-based automatic opera-
tion_

Man/Machine Cooperative Decision.mak-

ing

Since it is allowed that sensor-based automatic opera-

lions and operator's manual operations carry out mutual-

ly non-exclusive tasks, we need to provide a mechanism

for fusing two different source of decisions, or, simply

decision fusion. The degree that individual decisions

contribute to the final (optimal) decision should depend

on their credibility. The credibility of decision by the ma-
chine can be estimated in terms of the certainties in-

volved in the sensor measurements, the decision-making

rules, and the constraints used in the decision making.

Whereas, the credibility of decision by the operator de-

pends on the level of expertise obtained by the experi-
ence. However, it should be noted that such credibilities

are subject to variation not only with respect to time but

also with respect to control situations: For instance, in

case a jamming situation occurred in the peg-hole inser-

tion process, the operator's capability of making an error

correction operation based on a global planning may be

more dependable than the solution based on the sensor-

based automatic insertion process. To handle this varia-

tions, the operator is allowed to set the degree of contri-

bution of individual decisions heuristically.

FigL illustrates the information flow between the major

functional blocks of the interactive and cooperatve sens-
ing and control system. The information flow can be
summarized as follows:

1) Given a task, the operator may invoke the
sensor-basod automatic operation and/or virtual

environment formation, by selecting a menu
from the prespecified lists.

2) The operator can also select the system control

mode as manual control, shared control, cooper-

ative control, or automatic control, by simply ad-
justing the relative weight between the sensor-

based automatic operation and the manual oper-
ation in cooperative decision-making. It should

be noted that the sensor-based automatic opera-
tions can be used solely for the purpose of virtual

environment formation, without participating in

cooperative control, in case the operator invokes

both the sensor-based automatic operation and

the virtual environment formation, but assigns

zero weight to the sensor-based automatic oper-
ation in cooperative decision-making.

3) Prior to the invocation of the sensor-based au-

tomatic operation module or the virtual environ-

ment formation module, the operator may need
to perform sensor planning to ensure that the in-

voked operation can retrieve correct information

from the logical sensor system. The interpreter of
the sensor-based automatic operation or the vir-

tual environment formation generates executable

commands by filling out the existing templates

through the interaction with the logical sensor
system and/or the operator.

4) The virtual environment formation module

provides the operator with the information repre-

senting the current control situation, especially
in terms of the deviation of manual control from

the sensor-based automatic operation, based on

the multi-media interface using graphic displays,

Cartesian space force fields at the operator's
hand, and sound. The virtual environment for-

marion offers, among other things, the visual ser-

voing guidance and the virtual compliance

which keep the manipulator from moving away
from the desirable pose.
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Scenario

To explain the above concept in more detail, a typical

scenario of interactive and cooperative sensing and con-

trol for advanced teleoperation is described in the follow-

ing based on the peg-hole insertion task:

- Let us assume that the manipulator in a remote

site has various sensors such as proximity sen-

sors, force/torque sensors, tactile sensors, and a
mini-camera mounted on the end effector, as

well as stereo cameras fixed in space for the pur-

pose of globally monitoring the task space. The

capabilities of the above sensors can be summa-

rized and organized in a logical sensor system,

e.g., as shown in Fig2. Each logical sensor has its

own sensing goal to be achieved through the log-

ical sensor hierarchy. The data that a logical sen-

sor represents is associated with a confidence
measure to be used in sensor fusion, which may

occur when multiple paths of achieving the sens-

ing goal exists in the logical sensor hierarchy,

and in cooperative decision-making.

- With the aid of the various sensors mounted on

the end effector, the manipulator is able to per-

form various simple sensor-based automatic op-

erations: maintaining orientations, tracking

predefined features, reaching identified posi-

tions, reacting to contact forces for compliance,

centering on a geometric feature, aligning to a
surface normal, etc. These sensor-based auto-

matic operation primitives require a minimal op-
erator intervention for interpretation- For

instance, the "Align Surface Normal" primitive

requires the operator to position the end-effector

near the corresponding surface prior to the invo-

cation of the primitive. The executable command
will then be automatically generated by the inter-

preter filling out the corresponding template

through the interaction with the logical sensor

system, and/or the human operator.

- Let us also assume that the system is capable of

providing the operator with virtual environments
based on visual displays using video images and

graphics, 3D force field at the operator's hand,
and sound. The virtual environment can be

formed by representing the discrepancy between
the sensor-based automatic operation and the op-

erator's manual operation- In fact, a sensor-based

automatic operation can be invoked solely for

the purpose of virtual environment formation,

should the operator desired to do so. Other list of
virtual environment include a force field about

surface normals, a graphic overlay of command-

ed manipulator configuration on the video im-

age, a graphic display of contact force and

moment, etc.

- Now, let us consider that the operator is given a

peg and hole insertion task, where the hole is as-
sumed to have very small tolerance. The major

difficulty of the above peg-hole teleoperation lies

in the operator's generation of accurate peg mo-

tion with correct peg orientation and position-

Especially, maintaining correct peg orientations

throughout the insertion process is considered

vital for avoiding jamming, but often not so easy

to be achieved by the human operator.

- Thus, the operator can invoke "Align Surface
Normal" for a sensor-based automatic operation

as well as a virtual environment formation, so

that not only the force field about the surface nor-
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mal, generated by the virtual environment for-

marion module, guides the orientation of the

operator's morion, but also control decision is

shared by the operator and the sensor-based au-

tomatic operation module according to their
strengths.

SENSING-KNOWLEDGE-COMMAND

FUSION

The mechanism of sensor data fusion 12,13,14,15,16,17 can

provide a fundamental means for achieving system inte-

gration since it combines multiple uncertain sensor data

into more accurate and reliable estimates, identifies

faulty sensors through consensus verification, and main-

tains consistency with existing constraints. We extend

the notion of"sensor data fusion" toward a more general

concept of "Sensing-Knowledge-Command(SKC) fu-

sion" to include the integration of feature transformation

and abstraction, data and concept fusion, knowledge

propagation for consistency satisfaction and cooperative

planning and decision-making.

The "SKC fusion network" provides a fundamental ar-

chitecture for implementing cooperative and interactive

sensing and control for advanced teleoperation system is.
The SKC fusion network establishes the mechanism of

achieving network consistency in real-time through dy-

namic evolution of network states: once invoked by in-

puts or stimuli, the SKC fusion process enforces the

network to converge to new equilibrium states through
the network dynamics of data fusion, feature transforma-

tion, and constraint propagation. The cooperative control

of man/machine systems is then accomplished through
the SKC fusion process invoked by stimuli from both hu-

man and machine, where sensing, knowledge, and com-

mand of a human and a machine are tapped into the
network to provide inputs or stimuli for the network.

SKC Fusion Network

"SKC fusion network" represents a fundamental robotic
architecture based on which the real-time connection be-

tween perception and action is accomplished. The SKC

fusion network is formed by the interconnection of four

basic modules: the data fusion module, the feature trans-

formation module, the constraint module, and the action

module, as shown in Fig. 3. A data fusion module(DFM)

takes one or more data representing an object feature and

produces the optimal estimate for the feature in coopera-
tion with the initial state of the module. A feature trans-

formation module(FTM) extracts a primitive features

from the raw sensory data or transforms a set of primitive

features into the more abstract, higher level features. An

action module(AM), as a special case of a feature trans-
formation module, issues the command to the environ-

ment based on the predefined laws triggered by a set of

features. A constraint module(CM) represents system

knowledge which put a constraint upon a set of feature

values associated with the knowledge: the feature values
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should be adjusted in such a way as to achieve a maxi-

mum consistency with the associated knowledge. The

output of each module indicates the current estimates of

the corresponding feature or knowledge, and is kept as
the current state of the module. The state transition of a

module propagates in both directions (forward and back-

ward), and invokes the state transition of other modules

having functional relationship with it. In this sense, the
interconnection among modules is considered bidirec-

tional, as represented in Fig. 3 by a feedback loop asso-
ciated with each module. The domain knowledge is

embedded in the network in two ways: explicitly by the
constraint module, and implicitly by the functions of
feature transformation modules as well as the network

structure.

Network Dynamics

The mechanism of SKC fusion network can be interpret-

ed in terms of two operational modes: the forward mode
and the backward mode. The forward mode first extracts

primitive features from sensor data through low level

feature transformation modules, and subsequently pro-

duces more abstract form of features through higher-lev-
el feature transformation modules. The forward mode

also allows the data and concept fusion to occur through

data fusion modules, whenever multiple and redundant

data are available for a single feature or concept. The
backward mode starts to operate upon the activation of a
constraint module: based on the error detected at the con-

straint module, all the feature values connected to that

constraint module are adjusted to satisfy consistency.

The new updated feature values (as the output of feature

transformation modules) in turn invokes the adjustment

of lower level features connected to the module. Through

a cycle of forward and backward information propaga-

lions, the network reaches an equilibrium state, i.e., all

the features and concepts have consistent estimates

which are optimal in the sense that redundant sources of

information are fused under the constraints provided by
system knowledge.

The entities of the SKC fusion network, such as data, fea-

tures, concepts, and knowledge, are represented by their

nominal values or equations and the degree of uncertain-

ties associated with the normal values or equations.

Thus, during a cycle of forward and backward informa-

tion propagations, not only the nominal values or equa-

tions but also the degree of their uncertainties need to be

adjusted. Probabilistic modeling and inference can pro-

vide a means of achieving the adjustment of the nominal

values or equations, and the degree of their uncertain-

ties. For instance, in the forward process, the output of a

FI'M can be characterized by a random variable, x,

Z

g(-)

L/ i
/Xl TX2 x30q O_X4

T T T T
Szo s2 0 s3 o s40

Fig, 4 A simple SKC Fusion Network used

for the Description of Network Dynamics

where the probability density function, p(x), of x is deter-

mined based on the input random variable, s, of a known

probability density function and the corresponding fea-

ture transformation function, x = t(s). The output, y, of a
DFM can be determined based on the maximum likeli-

hood estimate, the successive Bayes estimate, and the

minimum variance estimate.The backward process for a

CM or a FrM can be accomplished by the nonlinear op-
timization or the inverse mapping paradigm based on in-

put update rule. The backward process for a DFMcan be

accomplished simply by the direct piopagation of the

output to individual inputs. The problem associated with

the above approach based on successive computation of
forward and backward propagation is that it is not suit-

able for real-time implementation due to the computa-
tiona/complexity involved in the processes, as well as

the difficulty of processing non-Gaussian signals gener-

ated by non-linear transformations. Therefore, in this pa-

per, we present a new approach for accomplishing
forward and backward processes of individual modules

simultaneously and concurrently, based on the dynamic

evolution of the states of modules. The approach is based

on representing the SKC network as a dynamic system in

which the network dynamic state is evolving toward the

equilibrium state, once invoked by input stimuli, as de-

scribed in more detail in the following.

Dynamics of SKC Fusion Network

For the clear description of the concept of dynamic evo-
lution of the SKC fusion network, let us consider a sim-

ple SKC fusion network illustrated in Fig. 4. Let us

assume that, upon the stimuli given to the network,

FI'M1 and FTM2 have new inputs S1 and s2, and s 3 and

s4, respectively. This involves the states of individual

modules simultaneously evolve toward the new equilib-
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rium states that maintains network consistency. We pro-

pose that the evolution of system states is governed by
the following dynamics:

1) The DFM-CM dynamics:

Yi =- x yi {Yi- n(xit, x2t)}-

_yi v¢ {z° - g(Yi,Y2)} (i)

2)the FTM-DFM dynamics:

x1 _- k xlIXl - tl(s 1, s2))-

'lxi v¢ { Yi - n(xi, x_} (2)

variation of Yl due to the backward process should be
determined in terms of the uncertainty associated with

the forward process and the backward process. These
variations can be controlled by the ratio between the co-

emcients, _yl, 'YvI,_xl and 'Yx2"It is possible that the
above dynamic h)efficients can be assigned in such a

way that the result of dynamic evaluation approximately
matches the result from a prohabflistic model. In fact, the

above dynamic equations can be considered as a general
form of the minimum variance estimate described previ-

ously. This observation allows not only to obtain the op-
timal dynamic coefficients but also to update the

uncertainties (represented by covariance matrices) in-
volved in individual states.

x2=- _ x2{x2-t2(s3,s4)}-

'fx2vqb{Yl"fl(Xl,x2)}

where the initial conditions are given by the equilibrium
states.

(1) and (2) represent a set of fundamental dynamic equa-

tions governing the behavior of the SKC fusion network

in reaching a new network equilibrium state. The first

term of a dynamic equation represents the forward pro-

cess, whereas the second term represents the backward

process. To deal with more complex networks, we need

to simply repeat the same form of dynamic equation used
for (1) and (2) for individual module of network with the

proper assigmmm of module fun_ons and coefficients.

The variation of Yl due to the forward process and the

SIMULATION

To demonstrate the operation of the SKC fusion network

based on network dynamics given by (1) and (2), we

chose the following simple example. A robot is given a

task to pick up a fight triangle among many different
shapes of triangles. The robot is assumed to have two

logical seiners: 4 one for the measurement of edge nor-

reals (called the "edge-normal sensor") and the other for

the measurement of internal angles (called the "angle
sensor"). The angle sensor is easier to handle, but has

more uncertainty than the edge-normal sensor. For a giv-
en triangle, the robot measures each angle twice with the

angle sensor and takes the average of two measurements.

On the other hand, the robot measures the edge normals

with the edge-normal sensor, and computes the internal
anglesf3"omthemeasured edge normals.Then,adecision
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ismadeon the size of emch angle based on data from both

sensors. If any of three angles is a right angle, the "pick-

up" command is issued. The sum of three internal angles

is subject to be 180 degrees. It is assumed that the sensor
data have the known, independent Gaussian distribu-

tions.

For the task described above, we can organize the SKC

fusion network as shown in Fig. 4. The two sensed data

from tbe angle sensor,saI and Sbl, arc fused into Yi,

through DFIvlil. FI'M i takes the edge normals sn i as its

input, and computes the internal angle, x i, between those

two edges. Through the feature transformation equation,

these x i and Yi are in turn fused into the angle estimates,

zi, through the higher level DFMih. CM checks if z i sat-

isfy the constraint, i.e., the sum of internal angles is 180
degrees. As mentioned in section 3, if an error is detected

in CM, it is used to adjust zi, and propagated backward

to adjust x i and Yi"The variances of xi, Yi, and z i can be

computed from those of sensor data, based on the as-

sumption of the independent, Gaussian distribution. The

feature transformation function in FTMi, ti(. ) is defined

as"

ti(sn)= (180- (sni- s_)) MOD 360)

where sn i and snj arc two edge normals, and we simply

use the averaging function as the datafusion function,

f_(.), i.e.,

l_(s) = (_j=I,M sj)/M

wbere s is the input vector with dimension NL

Based on (1) and (2), the dynamic equation for z i is for-

mulated as:

zi = -Tzi z i + (xi+Yi)/2 + Ozi * (180- 2 j=l,3 zj),

for i=1,2,3.

The second term of the right hand side comes from the

forward process through DFMi, whereas the third term

from the error in CM. Since the standard deviation Ozi is

used for the coefficient of the CM output error, with a

smaller variance of z i is less affected by the output error

of CM. Similarly, the dynamic equations for xi and Yiare

formulated as:

sa2, sb_ _ sn 1

sn2 _ /60° rmal

_ sal, sb 1
sa3, sb3._ 300°

Fig. 5 The Sample Triangle and the sensing location

x i = -Xxi x i + ((180 - (sni-snj)) MOD 360) +

Oxi * (z i - Xi), for i=1,2,3

Yi= "l:yi Yi + (sai+sbj) / 2 + Oy i * (zi - Yi), for i=1,2,3

Note that the error is defined here as the difference of z i

from Yi and x i, since the input and output of DFM should

be equal when an equilibrium state is reached.

Although the SKC fusion network shows the different re-

suit according to the input, a typical result for a triangle

in Fig. 5 is shown in Fig. 6 with the sensor statistics and

data in Tab. 1 The initial equilibrium state is chosen as

the ideal data for the equilateral triangle in which all the

x, y, and z are [60.0 60.0 60.0] without any errors in CM

and DFMsl. The sensed edge-normal data vector, sn, is

quite accurate due to its small variance while the sensed

angle data vector deviates a lot from the actual data.

Starting from the initial equilibrium state, the top level
estimate vector of angles, x, converges to the equilibri-

um states, xe = [59.6 89.4 31.5], which is very close to

the real accurate value, [60.0 90.0 30.0] as shown in a).

The error between x and the real value decreases gradu-

ally and finally converges to a small value as shown in b)

The error in CM remains as almost zero all the time as

shown in c), and the errors in DFMs grow during the
transient state, and then converge to near zero as shown

in c) and d). Note that x and z are almost same in the new

equilibrium state while the deviation of y from z is big.
This is because there exist considerable errors in the data

from the angle sensor, but y has been adjusted toward the

real value in the new equilibrium state.

To explore the effect of the backward process, the above

simulation is repeated with change that tbe backward

process is invoked at time t=2, and its results arc shown
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Fig. 6 Simulation results for the triangle in Fig. 5

with the parameter in Tab.1.
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Fig. 7 Simulation results for the triangle in Fig. 5
with Backward Pro_ss started at t=2.
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Actual Values i=l 2 3

. Edge Normal, hi: 60 150 300

. Angle, O_i." 60 90 30

Sensed Data

. Edge Normal, sni: 59.5 151.0 298.5

. Angle, sai: 71.5 101.5 39.5

sbi: 68.5 98.4 41.5

Variance of Sensor angle:100, edge-normal:25

Time Constant: _= 17yi= 4, "_= 10

Tab. 1 Actual and Sensed Data, and Sensor Parameters

in Fig. 7. Only with the forward process, x converges to
equilibrium value which deviates from the real value
considerably. However, it moves to another equilibrium
value which is very close to the real value, just after the
beginning of the backward process, as shown in a). The
error between x and the real value is drawn in b) which
shows clearly the error correcting effect of the backward
process. The graphs in e), d) and e) also show the adjust-
hageffects of the backward process on the errors in CM
and DFMs.

CONCLUSION

This paper presents a theory of interactive and coopera-
tive sensing and control as a fundamental paradigm of

implementing advanced teleoperation. The proposed
paradigm was intended to take full advantage of the cur-
rent and future capabilities of a robot performing dex-
trous manipulation and sensor-based local autonomy.

A new method of achieving sensing-knowledge-com-
mand (SKC) fusion was presented as a basic computa-
tional mechanism for the proposed interactive and
cooperative sensing and control.

A system architecture and man/machine interface proto-
col was described to show the preliminary implementa-
tion of the proposed system.

There still remains much work to do to refine and consol-

idate theory and implementation of the proposed interac-
tive and cooperative sensing and control for advanced
teleoperation.
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