1,851 research outputs found

    Anomalous behaviour detection using heterogeneous data

    Get PDF
    Anomaly detection is one of the most important methods to process and find abnormal data, as this method can distinguish between normal and abnormal behaviour. Anomaly detection has been applied in many areas such as the medical sector, fraud detection in finance, fault detection in machines, intrusion detection in networks, surveillance systems for security, as well as forensic investigations. Abnormal behaviour can give information or answer questions when an investigator is performing an investigation. Anomaly detection is one way to simplify big data by focusing on data that have been grouped or clustered by the anomaly detection method. Forensic data usually consists of heterogeneous data which have several data forms or types such as qualitative or quantitative, structured or unstructured, and primary or secondary. For example, when a crime takes place, the evidence can be in the form of various types of data. The combination of all the data types can produce rich information insights. Nowadays, data has become ‘big’ because it is generated every second of every day and processing has become time-consuming and tedious. Therefore, in this study, a new method to detect abnormal behaviour is proposed using heterogeneous data and combining the data using data fusion technique. Vast challenge data and image data are applied to demonstrate the heterogeneous data. The first contribution in this study is applying the heterogeneous data to detect an anomaly. The recently introduced anomaly detection technique which is known as Empirical Data Analytics (EDA) is applied to detect the abnormal behaviour based on the data sets. Standardised eccentricity (a newly introduced within EDA measure offering a new simplified form of the well-known Chebyshev Inequality) can be applied to any data distribution. Then, the second contribution is applying image data. The image data is processed using pre-trained deep learning network, and classification is done using a support vector machine (SVM). After that, the last contribution is combining anomaly result from heterogeneous data and image recognition using new data fusion technique. There are five types of data with three different modalities and different dimensionalities. The data cannot be simply combined and integrated. Therefore, the new data fusion technique first analyses the abnormality in each data type separately and determines the degree of suspicious between 0 and 1 and sums up all the degrees of suspicion data afterwards. This method is not intended to be a fully automatic system that resolves investigations, which would likely be unacceptable in any case. The aim is rather to simplify the role of the humans so that they can focus on a small number of cases to be looked in more detail. The proposed approach does simplify the processing of such huge amounts of data. Later, this method can assist human experts in their investigations and making final decisions

    Deep Time-Series Clustering: A Review

    Get PDF
    We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Visualization of analytic provenance for sensemaking

    Get PDF
    Sensemaking is an iterative and dynamic process, in which people collect data relevant to their tasks, analyze the collected information to produce new knowledge, and possibly inform further actions. During the sensemaking process, it is difficult for the human’s working memory to keep track of the progress and to synthesize a large number of individual findings and derived hypotheses, thus limits the performance. Analytic provenance captures both the data exploration process and and its accompanied reasoning, potentially addresses these information overload and disorientation problems. Visualization can help recall, revisit and reproduce the sensemaking process through visual representations of provenance data. More interesting and challenging, analytic provenance has the potential to facilitate the ongoing sensemaking process rather than providing only post hoc support. This thesis addresses the challenge of how to design interactive visualizations of analytic provenance data to support such an iterative and dynamic sensemaking. Its original contribution includes four visualizations that help users explore complex temporal and reasoning relationships hidden in the sensemaking problems, using both automatically and manually captured provenance. First SchemaLine, a timeline visualization, enables users to construct and refine narratives from their annotations. Second, TimeSets extends SchemaLine to explore more complex relationships by visualizing both temporal and categorical information simultaneously. Third, SensePath captures and visualizes user actions to enable analysts to gain a deep understanding of the user’s sensemaking process. Fourth, SenseMap visualization prevents users from getting lost, synthesizes new relationship from captured information, and consolidates their understanding of the sensemaking problem. All of these four visualizations are developed using a user-centered design approach and evaluated empirically to explore how they help target users make sense of their real tasks. In summary, this thesis contributes novel and validated interactive visualizations of analytic provenance data that enable users to perform effective sensemaking

    Interactive visualization of large image collections

    Get PDF

    NarDis:Narrativizing Disruption -How exploratory search can support media researchers to interpret ‘disruptive’ media events as lucid narratives

    Get PDF
    This project investigates how CLARIAH’s exploratory search and linked open data (LO D) browser DIVE+ supports media researchers to construct narratives about events, especially ‘disruptive’ events such as terrorist attacks and natural disasters. This project approaches this question by conducting user studies to examine how researchers use and create narratives with exploratory search tools, particularly DIVE+, to understand media events. These user studies were organized as workshops (using co-creation as an iterative approach to map search practices and storytelling data, including: focus groups & interviews; tasks & talk aloud protocols; surveys/questionnaires; and research diaries) and included more than 100 (digital) humanities researchers across Europe. Insights from these workshops show that exploratory search does facilitate the development of new research questions around disruptive events. DIVE+ triggers academic curiosity, by suggesting alternative connections between entities. Beside learning about research practices of (digital) humanities researchers and how these can be supported with digital tools, the pilot also culminated in improvements to the DIVE+ browser. The pilot helped optimize the browser’s functionalities, making it possible for users to annotate paths of search narratives, and save these in CLARIAH’s overarching, personalised, user space. The pilot was widely promoted at (inter)national conferences, and DIVE+ won the international LO DLAM (Linked Open Data in Libraries, Archives and Museums) Challenge Grand Prize in Venice (2017)
    • …
    corecore