13 research outputs found

    Visual Servoing for Nonholonomically Constrained Three Degree of Freedom Kinematic Systems

    Get PDF
    This paper addresses problems of robot navigation with nonholonomic motion constraints and perceptual cues arising from onboard visual servoing in partially engineered environments. We propose a general hybrid procedure that adapts to the constrained motion setting the standard feedback controller arising from a navigation function in the fully actuated case. This is accomplished by switching back and forth between moving down and across the associated gradient field toward the stable manifold it induces in the constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide conditions under which the new procedure brings initial configurations to within an arbitrarily small neighborhood of the goal. We summarize simulation results on a sample of visual servoing problems with a few different perceptual models. We document the empirical effectiveness of the proposed algorithm by reporting the results of its application to outdoor autonomous visual registration experiments with the robot RHex guided by engineered beacons

    Visual Registration and Navigation using Planar Features

    Get PDF
    This paper addresses the problem of registering the hexapedal robot RHex, relative to a known set of beacons, by real-time visual servoing. A suitably constructed navigation function represents the task, in the sense that for a completely actuated machine in the horizontal plane, the gradient dynamics guarantee convergence to the visually cued goal without ever losing sight of the beacons that define it. Since the horizontal plane behavior of RHex can be represented as a unicycle, feeding back the navigation function gradient avoids loss of beacons, but does not yield an asymptotically stable goal. We address new problems arising from the configuration of the beacons and present preliminary experimental results that illustrate the discrepancies between the idealized and physical robot actuation capabilities

    Perception Based Navigation for Underactuated Robots.

    Full text link
    Robot autonomous navigation is a very active field of robotics. In this thesis we propose a hierarchical approach to a class of underactuated robots by composing a collection of local controllers with well understood domains of attraction. We start by addressing the problem of robot navigation with nonholonomic motion constraints and perceptual cues arising from onboard visual servoing in partially engineered environments. We propose a general hybrid procedure that adapts to the constrained motion setting the standard feedback controller arising from a navigation function in the fully actuated case. This is accomplished by switching back and forth between moving "down" and "across" the associated gradient field toward the stable manifold it induces in the constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide conditions under which the new procedure brings initial configurations to within an arbitrarily small neighborhood of the goal. We summarize with simulation results on a sample of visual servoing problems with a few different perceptual models. We document the empirical effectiveness of the proposed algorithm by reporting the results of its application to outdoor autonomous visual registration experiments with the robot RHex guided by engineered beacons. Next we explore the possibility of adapting the resulting first order hybrid feedback controller to its dynamical counterpart by introducing tunable damping terms in the control law. Just as gradient controllers for standard quasi-static mechanical systems give rise to generalized "PD-style" controllers for dynamical versions of those standard systems, we show that it is possible to construct similar "lifts" in the presence of non-holonomic constraints notwithstanding the necessary absence of point attractors. Simulation results corroborate the proposed lift. Finally we present an implementation of a fully autonomous navigation application for a legged robot. The robot adapts its leg trajectory parameters by recourse to a discrete gradient descent algorithm, while managing its experiments and outcome measurements autonomously via the navigation visual servoing algorithms proposed in this thesis.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58412/1/glopes_1.pd

    Active Sensing for Dynamic, Non-holonomic, Robust Visual Servoing

    Get PDF
    We consider the problem of visually servoing a legged vehicle with unicycle-like nonholonomic constraints subject to second-order fore-aft dynamics in its horizontal plane. We target applications to rugged environments characterized by complex terrain likely to perturb significantly the robot’s nominal dynamics. At the same time, it is crucial that the camera avoid “obstacle” poses where absolute localization would be compromised by even partial loss of landmark visibility. Hence, we seek a controller whose robustness against disturbances and obstacle avoidance capabilities can be assured by a strict global Lyapunov function. Since the nonholonomic constraints preclude smooth point stabilizability we introduce an extra degree of sensory freedom, affixing the camera to an actuated panning axis mounted on the robot’s back. Smooth stabilizability to the robot-orientation-indifferent goal cycle no longer precluded, we construct a controller and strict global Lyapunov function with the desired properties. We implement several versions of the scheme on a RHex robot maneuvering over slippery ground and document its successful empirical performance. For more information: Kod*La

    A drift-diffusion model for robotic obstacle avoidance

    Get PDF
    We develop a stochastic framework for modeling and analysis of robot navigation in the presence of obstacles. We show that, with appropriate assumptions, the probability of a robot avoiding a given obstacle can be reduced to a function of a single dimensionless parameter which captures all relevant quantities of the problem. This parameter is analogous to the Peclet number considered in the literature on mass transport in advection-diffusion fluid flows. Using the framework we also compute statistics of the time required to escape an obstacle in an informative case. The results of the computation show that adding noise to the navigation strategy can improve performance. Finally, we present experimental results that illustrate these performance improvements on a robotic platform. For more information: Kod*La

    Repeatable Motion Planning for Redundant Robots over Cyclic Tasks

    Get PDF
    We consider the problem of repeatable motion planning for redundant robotic systems performing cyclic tasks in the presence of obstacles. For this open problem, we present a control-based randomized planner, which produces closed collision-free paths in configuration space and guarantees continuous satisfaction of the task constraints. The proposed algorithm, which relies on bidirectional search and loop closure in the task-constrained configuration space, is shown to be probabilistically complete. A modified version of the planner is also devised for the case in which configuration-space paths are required to be smooth. Finally, we present planning results in various scenarios involving both free-flying and nonholonomic robots to show the effectiveness of the proposed method

    Raskaiden pyörällisten mobiilirobottien mallinnus, simulointi ja radanseuranta

    Get PDF
    Autonomous vehicles have been studied at least since the 1950s. During the last decade, interest towards this field of study has grown imposingly. Path-following control is one of the main subjects among autonomous vehicles. The focus in path-following control is in controlling of the pose of the vehicle to match with the desired pose, which is provided by a specified path or trajectory. Usually the pose is represented in a two-dimensional world frame by the means of x and y coordinates and angle of heading. The methods used in this thesis are modelling and simulation (M&S). M&S of physical systems is a well-recognized field of expertise among engineering sciences. Rapid system prototyping, control designing, or studying an existing system by the means of M&S provide possibilities for observing, developing, and testing under risk-free environment. In this thesis, using the M&S methods provides possibilities for fast and economical evaluation of the designed algorithms before considering prototype testing with actual systems under real environments. Objectives of the thesis are to implement dynamic robot models of two vehicles, design high-level controller structures for their actuators, implement a path-following controller, and study the behaviour of the robots during various autonomous path-following scenarios. The vehicles to be modelled are Ponsse Caribou S10 and Haulotte 16RTJ PRO. The exact study vehicles are owned by Tampere University of Technology. Results from closed loop path-following control of the modelled robots denoted accurate path-following under well-behaved path curvatures, generally with a mean absolute lateral position error less than 0.1 m. In the best simulation results, mean position errors were under of 0.05 m. The implemented controllers proved to be effective at the whole velocity range of the forwarder Ponsse Caribou S10. The implemented high-level inverse kinematic controllers succeeded in synchronous commanding of the robots’ actuators. Due to the forming of the inverse kinematics, the path-following controller was able to output identical control signals independent of the steering structure of the vehicle, thus permitting a possibility for future development among more advanced path-following control

    Reimagining Robotic Walkers For Real-World Outdoor Play Environments With Insights From Legged Robots: A Scoping Review

    Get PDF
    PURPOSE For children with mobility impairments, without cognitive delays, who want to participate in outdoor activities, existing assistive technology (AT) to support their needs is limited. In this review, we investigate the control and design of a selection of robotic walkers while exploring a selection of legged robots to develop solutions that address this gap in robotic AT. METHOD We performed a comprehensive literature search from four main databases: PubMed, Google Scholar, Scopus, and IEEE Xplore. The keywords used in the search were the following: “walker”, “rollator”, “smart walker”, “robotic walker”, “robotic rollator”. Studies were required to discuss the control or design of robotic walkers to be considered. A total of 159 papers were analyzed. RESULTS From the 159 papers, 127 were excluded since they failed to meet our inclusion criteria. The total number of papers analyzed included publications that utilized the same device, therefore we classified the remaining 32 studies into groups based on the type of robotic walker used. This paper reviewed 15 different types of robotic walkers. CONCLUSIONS The ability of many-legged robots to negotiate and transition between a range of unstructured substrates suggests several avenues of future consideration whose pursuit could benefit robotic AT, particularly regarding the present limitations of wheeled paediatric robotic walkers for children’s daily outside use. For more information: Kod*lab (link to kodlab.seas.upenn.edu

    Modular Underwater Robots - Modeling and Docking Control

    Get PDF

    DECENTRALIZED TRAFFIC MANAGEMENT OF MULTI-AGENT SYSTEMS

    Get PDF
    Autonomous agents and multi-agent systems (MASs) represent one of the most exciting and challenging areas of robotics research during the last two decades. In recent years, they have been proposed for several applications, such as telecommunications, air traffic mangement, planetary exploration, surveillance etc.. MASs offer many potential advantages with respect to single-agent systems such as speedup in task execution, robustness with respect to failure of one or more agents, scalability and modularity. On the other hand, MASs introduce challenging issues such as the handling of distributed information data, the coordination among agents, the choice of the control framework and of communication protocols. This thesis investigates some problems that arise in the management of MASs. More specifically it investigates problems of designing decentralized control schemes to manage collections of vehicles cooperating to reach common goals, while simultaneously avoiding collisions. An existing decentralized policy for collisions avoidance, already proved safe for a system with three agents, has been extended up to five agents. A new decentralized policy, the Generalized Roundabout Policy, has been designed and its properties analyzed. Specifically safety and liveness properties have been studied. The first one has been proved formally, while the second has been addressed by means of probabilistic approaches. Moreover, it is addressed the problem of optimization of autonomous robotic exploration. The problem is clearly of great relevance to many tasks, such as e.g. surveillance or exploration. However, it is in general a difficult problem, as several quantities have to be traded off, such as the expected gain in map information, the time and energy it takes to gain this information, the possible loss of pose information along the way, and so on. Finally, software and hardware simulation tools have been developed for the analysis and the verification of the decentralized control policies. Such instruments are particularly useful for the verification of multi-agent systems which could be overwhelmingly complex to be addressed purely by a theoretical approach
    corecore