97 research outputs found

    A Novel Framework for Robustness Analysis of Visual QA Models

    Full text link
    Deep neural networks have been playing an essential role in many computer vision tasks including Visual Question Answering (VQA). Until recently, the study of their accuracy was the main focus of research but now there is a trend toward assessing the robustness of these models against adversarial attacks by evaluating their tolerance to varying noise levels. In VQA, adversarial attacks can target the image and/or the proposed main question and yet there is a lack of proper analysis of the later. In this work, we propose a flexible framework that focuses on the language part of VQA that uses semantically relevant questions, dubbed basic questions, acting as controllable noise to evaluate the robustness of VQA models. We hypothesize that the level of noise is positively correlated to the similarity of a basic question to the main question. Hence, to apply noise on any given main question, we rank a pool of basic questions based on their similarity by casting this ranking task as a LASSO optimization problem. Then, we propose a novel robustness measure, R_score, and two large-scale basic question datasets (BQDs) in order to standardize robustness analysis for VQA models.Comment: Accepted by the Thirty-Third AAAI Conference on Artificial Intelligence, (AAAI-19), as an oral pape

    VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation

    Full text link
    Rich and dense human labeled datasets are among the main enabling factors for the recent advance on vision-language understanding. Many seemingly distant annotations (e.g., semantic segmentation and visual question answering (VQA)) are inherently connected in that they reveal different levels and perspectives of human understandings about the same visual scenes --- and even the same set of images (e.g., of COCO). The popularity of COCO correlates those annotations and tasks. Explicitly linking them up may significantly benefit both individual tasks and the unified vision and language modeling. We present the preliminary work of linking the instance segmentations provided by COCO to the questions and answers (QAs) in the VQA dataset, and name the collected links visual questions and segmentation answers (VQS). They transfer human supervision between the previously separate tasks, offer more effective leverage to existing problems, and also open the door for new research problems and models. We study two applications of the VQS data in this paper: supervised attention for VQA and a novel question-focused semantic segmentation task. For the former, we obtain state-of-the-art results on the VQA real multiple-choice task by simply augmenting the multilayer perceptrons with some attention features that are learned using the segmentation-QA links as explicit supervision. To put the latter in perspective, we study two plausible methods and compare them to an oracle method assuming that the instance segmentations are given at the test stage.Comment: To appear on ICCV 201

    Multimodal Attention in Recurrent Neural Networks for Visual Question Answering

    Get PDF
    Visual Question Answering (VQA) is a task for evaluating image scene understanding abilities and shortcomings and also measuring machine intelligence in the visual domain. Given an image and a natural question about the image, the system must ground the question into

    Robust explanations for visual question answering

    Get PDF
    In this paper, we propose a method to obtain robust explanations for visual question answering(VQA) that correlate well with the answers. Our model explains the answers obtained through a VQA model by providing visual and textual explanations. The main challenges that we address are i) Answers and textual explanations obtained by current methods are not well correlated and ii) Current methods for visual explanation do not focus on the right location for explaining the answer. We address both these challenges by using a collaborative correlated module which ensures that even if we do not train for noise based attacks, the enhanced correlation ensures that the right explanation and answer can be generated. We further show that this also aids in improving the generated visual and textual explanations. The use of the correlated module can be thought of as a robust method to verify if the answer and explanations are coherent. We evaluate this model using VQA-X dataset. We observe that the proposed method yields better textual and visual justification that supports the decision. We showcase the robustness of the model against a noise-based perturbation attack using corresponding visual and textual explanations. A detailed empirical analysis is shown. Here we provide source code link for our model \url{https://github.com/DelTA-Lab-IITK/CCM-WACV}.Comment: WACV-2020 (Accepted
    • …
    corecore