557 research outputs found

    Visual Overlay on OpenStreetMap Data to Support Spatial Exploration of Urban Environments

    Get PDF
    Increasing volumes of spatial data about urban areas are captured and made available via volunteered geographic information (VGI) sources, such as OpenStreetMap (OSM). Hence, new opportunities arise for regional exploration that can lead to improvements in the lives of citizens through spatial decision support. We believe that the VGI data of the urban environment could be used to present a constructive overview of the regional infrastructure with the advent of web technologies. Current location-based services provide general map-based information for the end users with conventional local search functionality, and hence, the presentation of the rich urban information is limited. In this work, we analyze the OSM data to classify the geo entities into consequential categories with facilities, landscape and land use distribution. We employ a visual overlay of heat map and interactive visualizations to present the regional characterization on OSM data classification. In the proposed interface, users are allowed to express a variety of spatial queries to exemplify their geographic interests. They can compare the characterization of urban areas with respect to multiple spatial dimensions of interest and can search for the most suitable region. The search experience is further enhanced via efficient optimization and interaction methods to support the decision making of end users. We report the end user acceptability and efficiency of the proposed system via usability studies and performance analysis comparison. Document type: Articl

    From open geographical data to tangible maps: improving the accessibility of maps for visually impaired people

    Get PDF
    International audienceVisual maps must be transcribed into (interactive) raised-line maps to be accessible for visually impaired people. However, these tactile maps suffer from several shortcomings: they are long and expensive to produce, they cannot display a large amount of information, and they are not dynamically modifiable. A number of methods have been developed to automate the production of raised-line maps, but there is not yet any tactile map editor on the market. Tangible interactions proved to be an efficient way to help a visually impaired user manipulate spatial representations. Contrary to raised-line maps, tangible maps can be autonomously constructed and edited. In this paper, we present the scenarios and the main expected contributions of the AccessiMap project, which is based on the availability of many sources of open spatial data: 1/ facilitating the production of interactive tactile maps with the development of an open-source web-based editor; 2/ investigating the use of tangible interfaces for the autonomous construction and exploration of a map by a visually impaired user

    Designing Multi-Scale Maps: Lessons Learned from Existing Practices

    Get PDF
    International audienceMapping applications display multi-scale maps where zooming in and out triggers the display of different maps at different scales. Multi-scale maps strongly augmented the potential uses of maps, compared to the traditional single-scaled paper maps. But the exploration of the multi-scale maps can be cognitively difficult for users because the content of the maps can be very different at different scales. This paper seeks to identify the factors in the design of map content and style that increase or decrease the exploration cognitive load, in order to improve multi-scales map design. We studied sixteen existing examples of multi-scale maps to identify these factors that influence a fluid zooming interaction. Several different analyses were conducted on these sixteen multiscale maps. We first conducted a guided visual exploration of the maps, and a detailed study of the scales of the maps, to identify general trends of good practices (e.g. the WMTS standard that defines zoom levels is widely used) and potential ways of improvement (e.g. a same map is often used at multiple successive zoom levels). Then, we focused on the visual complexity of the multi-scale maps by analyzing how it varies, continuously or not, across scales, using clutter measures, which showed a peak of complexity at zoom level 12 of the WMTS standard. Finally, we studied how buildings and roads are subject to abstraction changes across scales (e.g. at what zoom level individual buildings turn into built-up areas), which can be one of the causes of exploration difficulties. We identified some good practices to reduce the impact of abstraction changes, for instance by mixing different levels of abstraction in the same map.Les applications cartographiques actuelles affichent des cartes multi-échelles, dans lesquelles une interaction de zoom avant ou arrière déclenche l'affichage d'une nouvelle carte à plus grande ou plus petite échelle. Ces cartes multi-échelles permettent des utilisations beaucoup plus vastes et diverses que les traditionnelles cartes topographiques imprimées sur papier. Mais l'exploration interactive de ces cartes peut entrainer une charge cognitive assez lourde car le contenu des cartes peut varier très fortement entre les différentes échelles, et il devient difficile de se repérer. Cet article cherche à identifier les facteurs du design cartographique qui influent sur cette charge cognitive lors d'un changement d'échelle, avec pour objectif à long terme d'améliorer les pratiques de conception de cartes multi-échelles. Nous avons ainsi étudié seize exemples de cartes multi-échelles pour identifier les facteurs permettant d'influer sur la fluidité du zoom. Plusieurs analyses différentes ont été menées sur ces seize cartes. Nous avons d'abord réalisé une analyse visuelle de ces cartes selon divers critères, et une étude détaillée des différentes échelles utilisées, afin d'identifier des tendances (comme l'utilisation massive du standard WMTS), ou des pistes d'amélioration (par exemple, l'utilisation d'une même carte à plusieurs échelles parait sous-optimale). Nous avons ensuite mesuré la variation de complexité visuelle des cartes quand les échelles varient à l'aide de mesures de l'effet de ≪ clutter ≫ ce qui a notamment montré un pic de complexité pour les cartes présentées au niveau de zoom n∘12 du standard WMTS. Enfin, nous avons étudié les changements de niveau d'abstraction spécifiquement sur les thèmes ≪ bâti ≫ et ≪ routes ≫ (par exemple à quelle échelle la représentation des bâtiments individuels est remplacée par une représentation de l'aire urbaine), ce qui a permis de mettre en valeur une cause possible de ces difficultés d'exploration. Des bonnes pratiques ont été identifiées pour une meilleure transition entre les niveaux d'abstraction, notamment en les combinant dans une même carte à une échelle de transition

    Mapping the visual magnitude of popular tourist sites in Edinburgh city

    Get PDF
    There is value in being able to automatically measure and visualise the visual magnitude of city sites (monuments and buildings, tourist sites) – for example in urban planning, as an aid to automated way finding, or in augmented reality city guides. Here we present the outputs of an algorithm able to calculate visual magnitude – both as an absolute measure of the façade area, and in terms of a building’s perceived magnitude (its lesser importance with distance). Both metrics influence the photogenic nature of a site. We therefore compared against maps showing the locations from where geo-located FlickR images were taken.  The results accord with the metrics and therefore help disambiguate the meaning  of FlickR tags

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection

    Get PDF
    This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience

    Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps

    Get PDF
    Publisher Copyright: © 2022 by the authors.Environmental problems due to human activities such as deforestation, urbanisation, and large scale intensive farming are some of the major factors behind the rapid spread of many infectious diseases. This in turn poses significant challenges not only in as regards providing adequate healthcare, but also in supporting healthcare workers, medical researchers, policy makers, and others involved in managing infectious diseases. These challenges include surveillance, tracking of infections, communication of public health knowledge and promotion of behavioural change. Behind these challenges lies a complex set of factors which include not only biomedical and population health determinants but also environmental, climatic, geographic, and socioeconomic variables. While there is broad agreement that these factors are best understood when considered in conjunction, aggregating and presenting diverse information sources requires effective information systems, software tools, and data visualisation. In this article, weargue that interactive maps, which couple geographical information systems and advanced information visualisation techniques, provide a suitable unifying framework for coordinating these tasks. Therefore, we examine how interactive maps can support spatial epidemiological visualisation and modelling involving distributed and dynamic data sources and incorporating temporal aspects of disease spread. Combining spatial and temporal aspects can be crucial in such applications. We discuss these issues in the context of support for disease surveillance in remote regions, utilising tools that facilitate distributed data collection and enable multidisciplinary collaboration, while also providing support for simulation and data analysis. We show that interactive maps deployed on a combination of mobile devices and large screens can provide effective means for collection, sharing, and analysis of health data.Peer reviewe
    corecore