88,346 research outputs found

    Multimodal Classification of Urban Micro-Events

    Get PDF
    In this paper we seek methods to effectively detect urban micro-events. Urban micro-events are events which occur in cities, have limited geographical coverage and typically affect only a small group of citizens. Because of their scale these are difficult to identify in most data sources. However, by using citizen sensing to gather data, detecting them becomes feasible. The data gathered by citizen sensing is often multimodal and, as a consequence, the information required to detect urban micro-events is distributed over multiple modalities. This makes it essential to have a classifier capable of combining them. In this paper we explore several methods of creating such a classifier, including early, late, hybrid fusion and representation learning using multimodal graphs. We evaluate performance on a real world dataset obtained from a live citizen reporting system. We show that a multimodal approach yields higher performance than unimodal alternatives. Furthermore, we demonstrate that our hybrid combination of early and late fusion with multimodal embeddings performs best in classification of urban micro-events

    Large-Scale Mapping of Human Activity using Geo-Tagged Videos

    Full text link
    This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to accurately map activities both spatially and temporally. We also demonstrate the advantages of using the visual content over the tags/titles.Comment: Accepted at ACM SIGSPATIAL 201

    Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    Get PDF
    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler radar product with signal and data processing algorithms which detect realistic microburst hazards and has demonstrated those algorithms produce no false alerts (or nuisance alerts) in urban airport ground moving vehicle (GMTI) and/or clutter environments

    Crowd-sourced Photographic Content for Urban Recreational Route Planning

    Get PDF
    Routing services are able to provide travel directions for users of all modes of transport. Most of them are focusing on functional journeys (i.e. journeys linking given origin and destination with minimum cost) while paying less attention to recreational trips, in particular leisure walks in an urban context. These walks are additionally predefined by time or distance and as their purpose is the process of walking itself, the attractiveness of areas that are passed by can be an important factor in route selection. This factor is hard to be formalised and requires a reliable source of information, covering the entire street network. Previous research shows that crowd-sourced data available from photo-sharing services has a potential for being a measure of space attractiveness, thus becoming a base for a routing system that suggests leisure walks, and ongoing PhD research aims to build such system. This paper demonstrates findings on four investigated data sources (Flickr, Panoramio, Picasa and Geograph) in Central London and discusses the requirements to the algorithm that is going to be implemented in the second half of this PhD research. Visual analytics was chosen as a method for understanding and comparing obtained datasets that contain hundreds of thousands records. Interactive software was developed to find a number of problems, as well as to estimate the suitability of the sources in general. It was concluded that Picasa and Geograph have problems making them less suitable for further research while Panoramio and Flickr require filtering to remove photographs that do not contribute to understanding of local attractiveness. Based on this analysis a number of filtering methods were proposed in order to improve the quality of datasets and thus provide a more reliable measure to support urban recreational routing
    corecore