1,158 research outputs found

    A tool for subjective and interactive visual data exploration

    Get PDF
    We present SIDE, a tool for Subjective and Interactive Visual Data Exploration, which lets users explore high dimensional data via subjectively informative 2D data visualizations. Many existing visual analytics tools are either restricted to specific problems and domains or they aim to find visualizations that align with user’s belief about the data. In contrast, our generic tool computes data visualizations that are surprising given a user’s current understanding of the data. The user’s belief state is represented as a set of projection tiles. Hence, this user-awareness offers users an efficient way to interactively explore yet-unknown features of complex high dimensional datasets

    View recommendation for visual data exploration

    Get PDF

    Interactive visual data exploration with subjective feedback : an information-theoretic approach

    Get PDF
    Visual exploration of high-dimensional real-valued datasets is a fundamental task in exploratory data analysis (EDA). Existing methods use predefined criteria to choose the representation of data. There is a lack of methods that (i) elicit from the user what she has learned from the data and (ii) show patterns that she does not know yet. We construct a theoretical model where identified patterns can be input as knowledge to the system. The knowledge syntax here is intuitive, such as "this set of points forms a cluster", and requires no knowledge of maths. This background knowledge is used to find a Maximum Entropy distribution of the data, after which the system provides the user data projections in which the data and the Maximum Entropy distribution differ the most, hence showing the user aspects of the data that are maximally informative given the user's current knowledge. We provide an open source EDA system with tailored interactive visualizations to demonstrate these concepts. We study the performance of the system and present use cases on both synthetic and real data. We find that the model and the prototype system allow the user to learn information efficiently from various data sources and the system works sufficiently fast in practice. We conclude that the information theoretic approach to exploratory data analysis where patterns observed by a user are formalized as constraints provides a principled, intuitive, and efficient basis for constructing an EDA system

    Interactive visual data exploration with subjective feedback : an information-theoretic approach

    Get PDF
    Visual exploration of high-dimensional real-valued datasets is a fundamental task in exploratory data analysis (EDA). Existing projection methods for data visualization use predefined criteria to choose the representation of data. There is a lack of methods that (i) use information on what the user has learned from the data and (ii) show patterns that she does not know yet. We construct a theoretical model where identified patterns can be input as knowledge to the system. The knowledge syntax here is intuitive, such as "this set of points forms a cluster", and requires no knowledge of maths. This background knowledge is used to find a maximum entropy distribution of the data, after which the user is provided with data projections for which the data and the maximum entropy distribution differ the most, hence showing the user aspects of data that are maximally informative given the background knowledge. We study the computational performance of our model and present use cases on synthetic and real data. We find that the model allows the user to learn information efficiently from various data sources and works sufficiently fast in practice. In addition, we provide an open source EDA demonstrator system implementing our model with tailored interactive visualizations. We conclude that the information theoretic approach to EDA where patterns observed by a user are formalized as constraints provides a principled, intuitive, and efficient basis for constructing an EDA system.Peer reviewe
    • …
    corecore