
View Recommendation for Visual Data
Exploration

Humaira Ehsan

Masters of Computer Science

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2019

School of Information Technology & Electrical Engineering

Abstract

The widespread use of digital systems has resulted in an exponential increase in the volume of available

data, with data being collected across all domains; from banking and finance to health and energy.

However, this data is only beneficial if it is unlocked to generate insights. Visual data exploration plays

an important role in this process of discovering insights. Typically, it involves an analyst going through

the following steps: 1) selecting a subset of data for analysis, 2) generating different visualizations of

that analyzed data, and 3) sifting through those visualizations for the ones which reveal interesting

insights. Based on the outcome of the last step, the analyst might have to refine their initial selection

of data so that the newly analyzed subset would show more interesting insights. This is clearly an

iterative process, where each selection of data (i.e., input query) is a springboard to the next one. For

this time-consuming process to be effective, a challenging combination of system and domain expertise

is required.

Motivated by the need for an efficient and effective visual data exploration process, several solutions

have been proposed towards automatically finding and recommending interesting data visualizations

(i.e., steps 2 and 3 above). The main idea underlying those solutions is to automatically generate all

possible aggregate views of data, and recommend the top-k interesting views, where an interestingness

of a view is quantified according to some utility function. Recent work provides strong evidence that a

deviation-based formulation of utility is able to provide analysts with interesting visualizations which

highlight some of the particular trends of the analyzed datasets. In particular, the deviation-based

metric measures the distance between the probability distribution of a specific dataset under analysis,

called target view, and that of a reference dataset, called comparison view. The underlying premise

is that visualizations with higher deviations are expected to reveal insights which are very particular

to the analyzed dataset. While the deviation-based notion of utility has been shown to be effective in

recommending views with categorical dimensional attributes, in this work we argue that it falls short

in capturing the requirements of numerical dimensions. Furthermore, such visualizations entail high

data processing costs because a large number of views are generated to evaluate their usefulness.

In this thesis, we propose novel view recommendation schemes, which incorporate a hybrid multi-

objective utility function that captures the impact of numerical dimension attributes. These schemes

help to address the challenges associated with high data processing cost and the presence of numerical

dimensional attributes. The first scheme, Multi-Objective View Recommendation for Data Exploration

(MuVE), adopts an incremental evaluation of our multi-objective utility function, which allows pruning

of a large number of low-utility views and avoids unnecessary objective evaluations. The second

scheme, upper MuVE (uMuVE), further improves the pruning power by setting the upper bounds on

the utility of views and allowing interleaved processing of views, at the expense of increased memory

usage. Finally, the third scheme, Memory-aware uMuVE (MuMuVE), provides pruning power close

to that of uMuVE, while keeping memory usage within a specified limit.

Moreover, existing solutions have been shown to be effective in recommending interesting views

under the assumption that the analyst is precise in their selection of analyzed data (i.e., step 1 above).

That is, the analyst is able to formulate a well-defined input query that selects a subset of data,

which contains interesting insights that can be revealed by the recommended visualizations. Such an

assumption is clearly impractical and severely limits the applicability of those solutions. In reality, it is

typically a challenging task for an analyst to select a subset of data that has the potential of revealing

interesting insights. Hence, it is a continuous process of trial and error, in which the analyst keeps

refining their selection of data manually and iteratively until some interesting insights are revealed.

In this work we argue that, in addition to the existing solutions for automatically recommending

interesting views, there is an equal need for solutions that can also automatically select subsets of data

that would potentially provide such interesting views. Motivated by the need for a query refinement

solution that is able to automatically modify the analyst’s initial input query into a new query, we

propose efficient Query Refinement for View Recommendation (QuRVe) schemes, which automatically

refine an input query to search for subsets of data having interesting views and recommend the top-k

views. However, uncontrolled refinement of queries can lead to problems such as dissimilar refined

queries from input query and statistically insignificant results. Therefore, a multi-objective function

is proposed to measure similarity, interestingness and significance of the refined queries and their

corresponding views. The principle idea underlying proposed QuRVe scheme is to incrementally

access the refined queries in order of their similarity with the original query, which allows an early

termination of search and results in pruning of a large number of views. Additionally, uQuRVe scheme

further reduces the cost by tightening the upper bounds on the utility of the views and short circuiting

unnecessary views. Extensive experimental evaluations also support the significant gains provided by

our proposed schemes.

Furthermore, the recommended aggregate views are based on the target views defined on subsets

of data selected by the refined queries and comparison views defined on the reference dataset The

interesting views revealed in such a manner can be considered as global interesting views. However, in

this work we argue that the assumption in the existing systems that the comparison views are always

defined on a specific reference dataset, which is typically the complete database, limits discovery of

interesting insights. Such systems fail to discover local interesting views, in which the comparison

views belong to subsets of data instead of the specified reference dataset. This discovery of local

interesting views is a non-trivial task as it increases the search space of views exponentially and more

importantly, may combinations of comparison and target views for aggregate views lack contextual

relationship with each other. We formulate the problem of refinement of reference dataset for view

recommendation and propose a baseline scheme to recommend locally interesting views. Moreover, in

this thesis we also present the design and implementation of a holistic prototype system View-360 for

view recommendation. Additionally, we also showcase the effectiveness of our schemes on real world

datasets along with in depth analysis for insights.

Declaration by author

This thesis is composed of my original work, and contains no material previously published or written

by another person except where due reference has been made in the text. I have clearly stated the

contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical

assistance, survey design, data analysis, significant technical procedures, professional editorial advice,

financial support and any other original research work used or reported in my thesis. The content of

my thesis is the result of work I have carried out since the commencement of my higher degree by

research candidature and does not include a substantial part of work that has been submitted to qualify

for the award of any other degree or diploma in any university or other tertiary institution. I have

clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available for

research and study in accordance with the Copyright Act 1968 unless a period of embargo has been

approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright

holder to reproduce material in this thesis and have sought permission from co-authors for any jointly

authored works included in the thesis.

Publications during candidature

• Humaira Ehsan, Mohamed A. Sharaf, and Panos K. Chrysanthis: Muve: Efficient multi-objective

view recommendation for visual data exploration. In the Proceedings of 32nd IEEE International

Conference on Data Engineering (ICDE), May 2016.

• Humaira Ehsan, Mohamed A. Sharaf, and Panos K. Chrysanthis: Efficient recommendation of

aggregate data visualizations. IEEE Transactions on Knowledge and Data Engineering, 30, 2,

2018.

• Humaira Ehsan and Mohamed A. Sharaf: Materialized View Selection for Aggregate View

Recommendation. In the Proceedings of Australasian Database Conference (ADC), January

2019.

Submitted manuscripts included in this thesis

• Humaira Ehsan, Mohamed A. Sharaf and Gianluca Demartini: QuRVe: Query Refinement

for View Recommendation in Visual Data Exploration. Submitted to Submitted to 35th ACM

Symposium On Applied Computing (ACM(SAC)), Mar 2020.

Publications included in this thesis

The following publication has been incorporated as Chapter 3.

1. [1] Humaira Ehsan, Mohamed A. Sharaf, and Panos K. Chrysanthis, Muve: Efficient multi-

objective view recommendation for visual data exploration, In the Proceedings of 32nd IEEE Interna-

tional Conference on Data Engineering (ICDE), May 2016.

Contributor Statement of contribution %
Humaira Ehsan (candidate) Problem Formulation 80

Design of Algorithms 80
Experiments 100
Paper Writing 60
Proof Reading and Feedback 50

Mohamed A. Sharaf Problem Formulation 20
Design of Algorithms 20
Paper Writing 30
Proof Reading and Feedback 30

Panos K. Chrysanthis Paper Writing 10
Proof Reading and Feedback 20

2. [2] Humaira Ehsan, Mohamed A. Sharaf, and Panos K. Chrysanthis, Efficient recommendation

of aggregate data visualizations,IEEE Transactions on Knowledge and Data Engineering, 30, 2, 2018.

https://ieeexplore.ieee.org/document/7498285
https://ieeexplore.ieee.org/document/7498285
https://ieeexplore.ieee.org/abstract/document/8081825
https://ieeexplore.ieee.org/abstract/document/8081825

Contributor Statement of contribution %
Humaira Ehsan (candidate) Problem Formulation 80

Design of Algorithms 100
Experiments 100
Preparation of Figures 100
Paper Writing 70
Proof Reading and Feedback 50

Mohamed A. Sharaf Problem Formulation 20
Paper Writing 20
Proof Reading and Feedback 30

Panos K. Chrysanthis Paper Writing 10
Proof Reading and Feedback 20

3. [3] Humaira Ehsan and Mohamed A. Sharaf: Materialized View Selection for Aggregate View

Recommendation, In the Proceedings of Australasian Database Conference (ADC), January 2019.

Contributor Statement of contribution %
Humaira Ehsan (candidate) Problem Formulation 80

Design of Algorithms 100
Experiments 100
Preparation of Figures 100
Paper Writing 80
Proof Reading and Feedback 70

Mohamed A. Sharaf Problem Formulation 20
Paper Writing 20
Proof Reading and Feedback 30

The following publication has been incorporated as Chapter 4.

1.Humaira Ehsan, Mohamed A. Sharaf and Gianluca Demartini: QuRVe: Query Refinement for

View Recommendation in Visual Data Exploration. Submitted to 35th ACM Symposium On Applied

Computing (ACM(SAC)), Mar 2020.

Contributor Statement of contribution %
Humaira Ehsan (candidate) Problem Formulation 80

Design of Algorithms 100
Experiments 100
Preparation of Figures 100
Paper Writing 70
Proof Reading and Feedback 70

Mohamed A. Sharaf Problem Formulation 20
Paper Writing 20
Proof Reading and Feedback 20

Gianluca Demartini Paper Writing 10
Proof Reading and Feedback 10

https://link.springer.com/chapter/10.1007/978-3-030-12079-5_8
https://link.springer.com/chapter/10.1007/978-3-030-12079-5_8

Contributions by others to the thesis

My principle advisor, Dr. Mohamed Sharaf, has largely contributed towards the research problems

presented in this thesis. Dr. Sharaf assisted me by providing guidance and feedback on formulating

the problems and solutions in this thesis. He also reviewed, polished and assisted with the published

papers included as part of this thesis.

Statement of parts of the thesis submitted to qualify for the award

of another degree

No works submitted towards another degree have been included in this thesis.

Research Involving Human or Animal Subjects

No animal or human subjects were involved in this research.

Acknowledgments

My PhD work would not have been possible without the support of an incredible number of people

who have helped me navigate this path, and believed in me.

First and foremost, this PhD was impossible without the unwavering support of my PhD advisor

and mentor, Dr. Mohamed Sharaf. I would like to express my sincere gratitude to Sharaf for sharing

his immense knowledge about research and for pushing me to my limits to improve. Mohamed’s

patience, support and trust during this time has been instrumental in the completion of this thesis.

I also want to thank Professor Shazia Sadiq, and Dr. Gianluca Demartini for taking the time out

of their busy schedules to serve on my advisory committee. Your encouragement, and insightful

comments are greatly appreciated. I want to thank the co-author of my papers: Panos K. Chrysanthis

for his support, knowledge sharing and valuable feedback.

This PhD and everything else that I have achieved would not have been possible without the

prayers, love, and motivation of my parents. My husband, Ehsan, has been with me every day of this

journey and has many stories to tell! His encouragement, support, and patience kept me going. To

my beloved daughter Sualyha, I would like to express my thanks for being such a good girl always

cheering me up.

My PhD would not have been possible without the PhD wisdom of my dear friends, Amina and

Hina. My PhD experience would have been so much less fun and enriching without them. My

brother, Hammad, has been yet another rock of support for me and a place I have turned to for advice

and encouragement so many times. I also want to thank all my colleagues and friends at Data and

Knowledge Engineering (DKE) group for their support.

Financial support

This research was supported by IPRS Commonwealth Scholarship and Australian Government Re-

search Training Program Scholarship.

Keywords

Visual Data Exploration, View Recommendation, Query Refinement

Australian and New Zealand Standard Research Classifications

(ANZSRC)

ANZSRC code: 080604, Database Management, 100%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems, 100%

Dedicated to ...

All the women out there working hard to get ahead ...

Contents

Abstract . ii

Contents xi

List of figures xiv

List of tables xvii

1 Introduction 1
1.1 Overview . 1

1.2 Thesis Contribution . 7

1.2.1 Efficient View Recommendation for Numerical Dimensions 7

1.2.2 Query Refinement for View Recommendation 8

1.2.3 View-360: A Prototype System for View Recommendation 9

1.3 Thesis Layout . 9

2 Related Work 11
2.1 Data Exploration . 11

2.2 Visual Data Exploration . 13

2.3 Visualization Recommendation . 15

2.3.1 Data-Driven Recommendation Systems . 16

3 Efficient Binned View Recommendation 23
3.1 Introduction . 23

3.2 Related Work . 26

3.3 Preliminaries . 27

3.3.1 View Recommendation . 27

3.3.2 Numerical Dimensions . 28

3.3.3 Binned Views . 29

3.4 Multi Objective View Recommendation . 31

3.4.1 Problem Definition . 31

3.4.2 Search Strategy Overview . 33
xi

xii CONTENTS

3.4.3 Baseline Schemes . 34

3.4.4 The MuVE Scheme . 35

3.4.5 The uMuVE Scheme: Upper Bound Based MuVE 38

3.4.6 The MuMuVE Scheme: Memory-aware uMuVE 40

3.4.7 Vertical Search Schemes . 43

3.4.8 Approximate Search Schemes . 45

3.4.9 Experimental Testbed . 47

3.4.10 Experimental Evaluation . 48

3.5 Materialized View Selection for Aggregate View Recommendation 56

3.5.1 Problem Definition . 56

3.5.2 mView: Greedy Approach . 59

3.5.3 Materialized views with MuVE . 61

3.5.4 Experimental Testbed . 62

3.5.5 Experimental Evaluation . 63

3.6 Summary . 64

4 Input Query Refinement for View Recommendation 67
4.1 Introduction . 67

4.2 Related Work . 70

4.2.1 Query Refinement . 70

4.2.2 Hypothesis Testing . 71

4.3 Preliminaries . 71

4.3.1 View Recommendation . 71

4.3.2 Query Refinement . 73

4.3.3 Hypothesis Testing . 74

4.4 Query Refinement for View Recommendation . 75

4.4.1 View Recommendation with Query Refinement 75

4.4.2 Problem Statement . 76

4.4.3 Similarity Aware Query Refinement . 77

4.5 Search Schemes . 77

4.5.1 Linear Scheme . 78

4.5.2 The QuRVe Scheme . 79

4.5.3 The uQuRVe Scheme . 82

4.5.4 The uQuRVe-range Scheme . 84

4.5.5 The QuRVe-Approximation . 85

4.6 Experimental Testbed . 86

4.7 Experimental Evaluation . 87

4.8 Summary . 92

5 View-360: A Prototype System for View Recommendation 93

CONTENTS xiii

5.1 Introduction . 93

5.2 Reference Dataset Refinement . 95

5.2.1 View Recommendation with Reference Dataset Refinement 96

5.3 View-360 . 97

5.3.1 General Settings . 98

5.4 Business Domain . 99

5.4.1 Flight Delays and Cancellations 2015 . 99

5.4.2 Data Pre-processing . 99

5.4.3 Experiments Settings . 101

5.4.4 Summary of Results . 102

5.5 Health Domain . 108

5.5.1 Diabetes Patients Dataset . 109

5.5.2 Data Pre-processing . 109

5.5.3 Experiment Settings . 111

5.5.4 Summary of Results . 113

5.6 Discussion . 122

6 Conclusions and Future Work 125
6.1 Summary of Contributions . 125

6.2 Future Work . 126

Bibliography 129

A Appendix 137

List of figures

1.1 Data exploration process- Key steps . 2

1.2 Non-Binned Aggregate View . 3

1.3 Binned Aggregate View . 3

1.4 View from Input Query Q (Lacks Deviation) . 5

1.5 View from Refined Input Query and Comparison View 6

2.1 Data exploration . 11

2.2 Data exploration Interface . 12

2.3 Components of Effective Visualization . 14

2.4 Visualization Recommendation Systems . 16

3.1 View on players of the GSW team (target view) . 24

3.2 View on all players in the 2015 NBA (comparison view) 24

3.3 Binned target view (i.e., GSW team) and comparison view (i.e., all NBA teams) 25

3.4 Horizontal and Vertical Searches for recommending top-k visualizations 34

3.5 Example: The MuVE Scheme . 37

3.6 Example: The uMuVE Scheme . 39

3.7 Example: The MuMuVE Scheme (Max-Bins) . 41

3.8 Example: The MuMuVE Scheme (Max-Utility) . 43

3.9 DIAB:Impact of αA and αD on cost, while αS = 0.2 . 49

3.10 Impact of αA and αD on fully probed views, while αS = 0.2 49

3.11 DIAB: Impact of αD and αS on cost, while αA = 0.2 49

3.12 Impact of k on Cost . 51

3.13 Priority Function Analysis . 51

3.14 NBA: Scalability . 52

3.15 DIAB: Progressive Results . 52

3.16 Impact of ML on MuMuVE Scheme . 52

3.17 NBA: Impact of additive range partitioning on cost . 54

3.18 NBA: Impact of additive range partitioning on fidelity 54

3.19 NBA: Impact of geometric range partitioning on cost 54
xiv

LIST OF FIGURES xv

3.20 NBA: Impact of geometric range partitioning on fidelity 55

3.21 DIAB: Impact of View Refinement and Skipping Approximations on Cost 55

3.22 Generating Vi,2 by performing aggregation on Vi,4 or Vi,8 56

3.23 Lattice for View Vi with B = 8 . 57

3.24 Example of Cost Model for HashAggregate Operator Where bm = 8 and b = 4 59

3.25 Impact of αA and αS on cost . 63

3.26 Impact of αA and αS on relative difference . 63

3.27 Impact of αA and αD on cost . 64

3.28 Impact of αA and αD on relative difference . 64

4.1 View from Refined Query Q1 (Far from Q) . 68

4.2 View from Refined Query Q2 (Close to Q) . 69

4.3 Query Space Q . 78

4.4 The QuRVe Scheme . 81

4.5 uQuRVe Example . 83

4.6 Pattern of Deviation . 84

4.7 uQuRVe-range Example . 85

4.8 Impact of αS and αD on Cost . 88

4.9 Impact of k . 89

4.10 Impact of Dimensions on Cost . 89

4.11 Impact of Grid Resolution on Cost (Log Scale) . 90

4.12 Impact of Grid Resolution on Overall Utility . 90

4.13 Impact of Approximation Schemes . 91

5.1 View-360: Recommended Views . 94

5.2 Flight Delays Dataset: Attributes Distribution . 101

5.3 Flight Delays Dataset: Hawaiian Airline (V1) . 102

5.4 Departure delay vs. Distance . 103

5.5 Flight Delays Dataset: Hawaiian Airline (V2) . 104

5.6 Flights Distribution . 104

5.7 Flight Delays Dataset: Hawaiian Airline (V3) . 105

5.8 Departure Delay vs. Arrival Delay for Hawaiian Airline 105

5.9 Scheduled Departure Time vs. Departure Delay . 106

5.10 Flight Delays Dataset: Busy Airports . 108

5.11 Diabetes Dataset: Attributes Distribution . 112

5.12 Diabetes Dataset: Age Group [10-20) V1 . 113

5.13 Diabetes Dataset: Age Group [10-20) V2 . 114

5.14 Diabetes Dataset: Primary Diagnosis Details . 114

5.15 Diabetes Dataset: Age Group [10-20) V3 . 115

5.16 Diabetes Type 250.0x vs. HbA1CResult . 116

xvi LIST OF FIGURES

5.17 Diabetes Type 250.0x vs. HbA1CResult . 116

5.18 Diabetes Types and Age group 70-80 . 117

5.19 Diabetes Types and Age group 70-80 . 117

5.20 Diabetes Dataset: Age Group [0-10) V1 . 118

5.21 Diabetes Dataset: Age Group [0-10) Bar Charts . 118

5.22 Diabetes Dataset: Age Group [0-10) V2 . 119

5.23 Diabetes Dataset: Age Group [0-10) V3 . 119

5.24 Diabetes Dataset: Re-admissions for Different Age Groups V1 120

5.25 Diabetes Dataset: Re-admissions for Different Age Groups V2 120

5.26 Diabetes Dataset: Re-admissions for Different Age Groups Bar Charts 121

5.27 Top-k List with Target View Refinement . 123

5.28 Top-k List with Comparison View Refinement . 123

List of tables

2.1 Summary of symbols . 18

2.2 Deviation-Based Data-Driven Visualization Recommendation Systems 20

3.1 Computing the probability distribution of the comparison view shown in Figure 3.3. . . 29

3.2 Details of Datasets . 47

4.1 Summary of symbols . 72

5.1 Flights Delay Dataset: Attributes Description . 100

5.2 Flights Delay Dataset: Nominal attributes . 101

5.3 Diabetes Dataset: Attributes Description [4] . 110

5.4 Diabetes Dataset: ICD-9-CM Diagnosis Codes [5] . 111

xvii

Chapter 1

Introduction

1.1 Overview

The amount of data being generated and collected daily is in the order of terabytes. However, this data

is only beneficial if it is unlocked to generate insights. Visual data exploration plays an important role in

discovering interesting insights. A typical data exploration process involves the analyst systematically

engaging in activities as shown in Figure 1.1. First, the analyst chooses a subset of data that might be

of interest by writing an input query or by using some graphical interface. Second, she analyses that

subset for discovering interesting insights, using various techniques such as tabular data, graphical

representations, statistical summaries etc. Finally, she refines the subset selection by modifying the

input query of first step and then repeating the process till some insights are revealed. This clearly

is a hit and miss process through which discoveries about the data are made. The effectiveness of

this process depends on the ability of the analyst, performance of the exploration techniques and the

complexity of the dataset. For this time-consuming process to be effective, a challenging combination

of system and domain expertise is required. Particularly, selecting a subset of data that would reveal

interesting insights requires domain knowledge and a comprehensive knowledge about the dataset.

Additionally, for complex data, it is infeasible for an analyst to manually generate and browse all

possible visualizations for insights. Therefore, there is a need for automated solutions that can

effectively recommend such visualizations.

Motivated by the need for an efficient and effective visual data exploration process, several

solutions have been proposed towards automatically finding and recommending interesting data

visualizations [6–12]. The main idea underlying those solutions is to automatically generate all

possible visualizations, and recommend the top-k interesting visualizations, where an interestingness

of a view is quantified according to some utility function. However, such solutions come at the

expense of high data processing costs, where a large number of visualizations are generated and their

interestingness is evaluated. Moreover, the hardest part of visualization recommendation is to quantify

what would be interesting for the analyst. Consequently, the visualization recommendation problem

has been approached from different angles, such as deviation-based/similarity-based methods that
1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Data exploration process- Key steps

quantify interestingness as a similarity/distance metric [6, 13–15], user-actions-based methods that

quantify interestingness in term of user’s intent, which is inferred by her present actions or by historic

data [7,16], perception-based methods, that learn human perception and use it to mine and recommend

interesting visualizations [10–12].

In particular, recent work provides strong evidence that a deviation-based formulation of utility

is able to provide analysts with interesting visualizations that highlight some of the particular trends

of the analyzed datasets. Specifically, the deviation-based metric measures the distance between the

probability distribution of the subset of data to be analyzed called the target dataset and that of a

reference dataset, which is typically the entire database from which that target dataset is extracted.

Moreover, the visual representation of these probability distributions is called an aggregate view,

which is then plotted using some of the popular visualization methods (e.g., bar charts, scatter plots,

etc.). The underlying premise is that a visualization that results in a higher deviation is expected to

reveal some interesting insights that are very particular to the analyzed dataset [6, 17]. The problem of

recommending top-k aggregate views from deviation-based utility metric is formally stated as:

Definition 1. Top-k View Recommendation: Given a database DB, a user-specified query Q which

selects a subset DQ from database DB, a deviation based utility function U, and a positive integer k,

find the k aggregate views over DQ, which have the highest deviation values.

The baseline solution to the problem defined in Def. 1 is that all possible aggregate views are

generated, deviation of each view is calculated and the the top-k views with highest deviation values

are recommended. However, while the deviation-based notion of utility has been shown to be effective

in recommending views with categorical dimensional attributes, in this thesis we argue that it falls short

in capturing the requirements of numerical dimensions [18, 19]. Particularly, in the presence of such

numerical dimensions, binned aggregation is required to group the numerical values along a dimension

into adjacent intervals. Given the large number of options for binning a numerical dimension, it is

expected that different binning configurations will result in different deviations, and in turn, different

levels of interestingness from the analyst point of view. For instance, in a view with small number of

bins, interesting insights are expected to remain hidden under a smooth and coarse visual representation.

Meanwhile, in a view that contains a large number of bins, insights might go unnoticed in a cluttered

or sparse visualization. Hence, the problem defined in Def. 1 is extended for view recommendation in

the presence of numerical dimensions as follows:

1.1. OVERVIEW 3

Figure 1.2: Non-Binned Aggregate View
Target view Vi(DQ) (income>50K) and Comparison view Vi(D′Q) (income≤50K)

Deviation= 0.17866330071272257

Figure 1.3: Binned Aggregate View
Target view Vi(D′Q) (income>50K) and Comparison view Vi(D′Q) (income≤50K)

Deviation= 0.2993347659872509

Definition 2. View Recommendation for Numerical Dimensions: Given a database DB, a user-

specified query Q which selects a subset DQ from database DB, a deviation based utility function U,

and a positive integer k, find the k binned aggregate views over DQ, which have the highest deviation

values.

To illustrate the impact of binning on numerical dimensions, consider the following example:

Example 1. Consider an analyst who wants to explore and find interesting insights in the U.S. Census

income dataset [20], which is stored in table C. She notices that the categorical attribute income

has two categories, that is income > 50K and income ≤ 50K. Her intuition is that analyzing the

two categories of income might reveal some interesting insights. Therefore, for her analysis, she

chooses the target dataset (DQ) consisting of those individuals who have income > 50K, by posing

the following input query Q:

Q: SELECT * FROM C WHERE income > 50K,

Similarly, for reference dataset, she chooses the individuals with income ≤ 50K, which is comple-

ment of DQ. Both target and reference datasets include dimension (e.g., gender, education, occupation,

etc.), and measure (e.g., final wages, capital gain, etc.) attributes.

To recommend interesting bar chart visualizations, different SQL aggregate functions are applied

on the views resulting from all the possible pairwise combinations of dimensions and measures, then

4 CHAPTER 1. INTRODUCTION

the most interesting views are presented to the analyst. Fig. 1.2 shows one of the top-k visualizations

defined on the dimension years of education (educationnum) with aggregate function COUNT.

Particularly, such visualization is equivalent to plotting the probability distributions of a view Vi(DQ)

defined on target dataset (target view) and a View Vi(D′Q) defined on reference dataset (comparison

view):

Vi(DQ):SELECT educationnum, COUNT(*) FROM C

WHERE income > 50K GROUP BY educationnum

Vi(D′Q): SELECT educationnum, COUNT(*) FROM C

WHERE !(income > 50K) GROUP BY educationnum

Hence, the deviation value shown in Fig. 1.2 is the distance between the probability distribution

of Vi(DQ) and Vi(D′Q). At first glance, comparing the two views fails to reveal clear insights about

compared income groups. However, binning the two views, as shown in Figure 1.3, reveals some very

interesting observation. Particularly, Figure 1.3 shows that more than 50% of individuals having

income > 50K have college education (i.e., educationnum≥12). However, 70% of the individuals

having income≤50K have education between 6-11 years. Clearly, this observation reflects that

generally people having income≤50K did not get college education.

As the above example shows, choosing the right binning is essential in the process of extracting

insights from the data, whether that process is performed manually or analytically. In Chapter 3, we

address the challenges introduced by binning. We propose a multi-objective function and novel suite of

search schemes for efficient recommendation of top-k aggregate data views for numerical dimensions.

Moreover, the proposed solutions [1–3, 6] are shown to be effective in recommending interesting

views under the assumption that the analyst is precise in their selection of analyzed data. That is, the

analyst is able to formulate a well-defined input query that selects a subset of data, which contains

interesting insights that can be revealed by the recommended visualizations. In reality, it is typically a

challenging task for an analyst to select a subset of data that has the potential of revealing interesting

insights. Hence, it is a continuous process of trial and error, in which the analyst keeps refining their

selection of data manually and iteratively until some interesting insights are revealed. Therefore, in this

work we argue that, in addition to the existing solutions for automatically recommending interesting

views, there is an equal need for solutions that can also automatically select subsets of data that would

potentially provide such interesting views. That is, there is a need for solutions in which the two tasks

of data selection as well as view recommendation are both automated and work together in synergy.

Hence, the problem formulated in Def. 2 can be expanded to include the above mentioned tasks of

data selection as:

Definition 3. Input Query Refinement for View Recommendation: Given a database DB, a user-

specified query Q which selects a subset DQ from database DB, a deviation based utility function U,

and a positive integer k, automatically refine Q, to generate a set Q of all possible refined queries Q j

such that Q j ∈Q and find the k aggregate views over all DQ j , which have the highest deviation values.

1.1. OVERVIEW 5

Figure 1.4: View from Input Query Q (Lacks Deviation)
Target View Vi(DQ): SELECT Hours per Week COUNT(*) FROM C

WHERE education ≥ 12 GROUP BY Hours per Week

Comparison View Vi(DB): SELECT Hours per Week COUNT(*) FROM C

GROUP BY Hours per Week

Deviation = 0.04598937500117262

To further illustrate the need for such solution, consider the following example.

Example 2. Consider Ex. 1 again, now the analyst knows that there is something interesting about

having higher education. Therefore, she decides to perform further analysis on subset of data of those

who have achieved a high level of education. Hence, she selects from the overall Census data that

particular subset in which everyone has completed their 12th year of education (i.e., graduated high

school) via the the following input query:

Q: SELECT * FROM C WHERE education ≥ 12,

To find top-k visualizations, she might use one of the existing approaches (e.g., [1, 6]), in which

the target and comparison views are generated and their deviation is computed by using a distance

function. Fig. 1.4 shows one of the top-k visualizations recommended by such approaches. Particularly,

the figure shows a bar chart in which the x-axis is defined on dimension Hours per week, and the

y-axis is the probability distribution of the aggregate function COUNT.

Moreover, it can be clearly seen from Fig. 1.4 that the target and comparison views are almost the

same, which is also reflected by the low-deviation value (i.e., deviation = 0.045989..). However, such

visualization would still be recommended by existing approaches because it achieves the maximum

deviation among all the views generated over the data subset selected by query Q, despite of that

maximum value being inherently low. That is, the subset of data selected by the analyst pertaining to

those who completed their 12th year of education falls short in showing any interesting insights.

The previous example illustrates a clear need for a query refinement solution that is able to

automatically modify the analyst’s initial input query into a new query, which selects a subset of data

that includes interesting insights. Those hidden insights are then easily revealed using existing solutions

which are able to recommend interesting visualizations. To that end, one straightforward and simple

approach would involve generating all the possible subsets of data by automatically refining all the

predicates of the input query. Consequently, for each subset of data selected by each query refinement,

generate all possible aggregate views. In addition to the obvious challenge of a prohibitively large

search space of query refinements, this naive approach would also lead to views that might appear

6 CHAPTER 1. INTRODUCTION

Figure 1.5: View from Refined Input Query and Refined Reference Dataset
Target View Vi(DQ1): SELECT Hours per Week COUNT(*) FROM C

WHERE education ≥ 14 GROUP BY Hours per Week

Comparison View Vi(DQ2): SELECT Hours per Week COUNT(*) FROM C

WHERE education ≤ 5 GROUP BY Hours per Week

Deviation = 0.23288980694954403

to be visually interesting but they are useless from the analyst’s perspective. Particularly, the naive

approach might lead to refined queries which are significantly dissimilar from the input query and

recommend views that are statistically insignificant. In Chapter 4, we formulate our problem of

query refinement for view recommendation, propose a multi-objective function and constraints to

measure similarity, interestingness and significance of the refined queries and their corresponding

views. Moreover, novel algorithms are proposed for the efficient navigation of the refined queries

search space for recommendation of data visualizations.

As mentioned earlier, in the recommended aggregate views, the target views are defined on subsets(

target datasets) selected by refined queries, while comparison views are defined on a reference dataset.

Particularly, the reference dataset can be the complete database as in Ex. 2 or complement of the

target dataset as in Ex. 1. Hence, the interesting views revealed in such a manner can be considered

as global interesting views, as the aggregate view generation involves the complete database (global)

one way or another. However, contrary to global interesting views, there can exist local interesting

views where the comparison views come from another subset of data instead of the given reference

dataset. In particularly, that means refining the reference dataset as well. Consequently, all possible

aggregate views, include all combinations of target views corresponding to all target datasets (i.e.,

refined queries) and comparison views from all refined reference datasets. Therefore, the problem

defined in Def. 3 can be extended and redefined as:

Definition 4. Reference Dataset Refinement for View Recommendation: Given a database DB, a

user-specified query Q which selects a subset DQ from database DB, a deviation based utility function

U, a positive integer k, and a set of automatically refined queries Q, automatically refine the reference
dataset and find the k global and local aggregate views, which have the highest deviation values.

To illustrate the impact of refinement of reference dataset, consider the following example:

1.2. THESIS CONTRIBUTION 7

Example 3. Consider the U.S. Census income dataset [20] and the input query of Ex. 2.

The view shown in Figure 1.5 is the top-1 view after the refinement of the input query and the

refinement of the reference dataset. Particularly, this aggregate view is generated by computing the

deviation between the probability distribution of a target view define on the refine query Q1 and a

comparison view defined on a refined reference dataset which is selected by query Q2.

Q1:SELECT * FROM C WHERE WHERE education ≥ 14

Q2: SELECT * FROM C WHERE WHERE WHERE education ≤ 5

Note that the view shown in in Figure 1.5 is more interesting than the view of Figure 1.4 and it is

also reflected by the deviation value. However, it is a locally interesting view where two subsets of

data are compared and insight is revealed about those two subsets.

The previous example illustrates clearly that refining the reference dataset can lead to more

interesting views. A naive approach would be to generate all possible combinations of target and

comparison views from refined queries and refined reference dataset and then recommend the top-k

views. In addition to a prohibitively large search space, the naive approach would also lead to views

that lack semantic value. Particularly, every possible combination of target and comparison view

might lead to aggregate views in which the compared comparison and target view has no contextual

connection to each other. In Chapter 5 we formulate the problem of reference dataset refinement for

view recommendation and include a baseline scheme. We also present a prototype system View-360

that recommends top-k aggregate view after considering all aspects of view recommendation.

Next, we present the contributions of this thesis.

1.2 Thesis Contribution

Motivated by the need to efficiently and effectively recommend aggregate views for visual data explo-

ration, we have addressed multiple aspects of view recommendation problem: 1) Recommendation of

top-k aggregate data views in the presence of numerical dimensions. 2) Automatically refining the

user’s initial input query and the reference dataset query to get to the aggregate visualizations that

are interesting. 3) View-360 a prototype system for aggregate view recommendation for visual data

exploration. 4) Effectiveness based analysis of two real world datasets.

1.2.1 Efficient View Recommendation for Numerical Dimensions

To address these challenges of view recommendation in the presence of numerical dimensions, we

introduce a novel hybrid multi-objective utility function, which captures the impact of numerical

dimension attributes in terms of generating visualizations that are: 1) interesting, 2) usable, and 3)

accurate. Combining these often conflicting objectives dramatically expands the search space of

possible visualizations (i.e., aggregate views). Moreover, it significantly increases the processing time

incurred to asses the overall utility of each view, which is assembled from the utility values of each of

the three objectives listed above.

8 CHAPTER 1. INTRODUCTION

Therefore, in this work, we present a novel suite of search schemes for efficient recommendation

of top-k aggregate data views.

Multi-Objective View Recommendation for Data Exploration (MuVE): We propose the Multi-

Objective View Recommendation for Data Exploration schemes [1, 2]. The main idea underlying

our first scheme Multi-Objective View Recommendation for Data Exploration (MuVE)) is to use an

incremental evaluation of the multi-objective utility function, where different objectives are computed

progressively. Our results in [1] show that MuVE is able to prune a large number of unnecessary

views, and in turn reduces the overall processing time for recommending the top-k views. However,

the pruning power is highly dependent on the order in which the views are presented to MuVE and

might often limit its performance gains.

upper MuVE (uMuVE): To address the limitation of MuVE, we propose our second scheme upper

MuVE (uMuVE), in which the goal is to provide a flexible navigation of the search space so that

high-utility views are discovered earlier. Particularly, uMuVE is based on setting upper bounds on

the utility of each possible view, which is then exploited to effectively guide the search process by

means of interleaving the evluation of the different objectives offered by the different views. Due to

that interleaved processing, at any point of time, uMuVE would typically have multiple views under

consideration, which requires significant amount of memory for storing their data.

Memory-aware uMuVE (MuMuVE): The improvement in uMuVE comes at the expense of high

memory usage. We propose another scheme MuMuVE that aims to provide a pruning power close to

that of uMuVE, while keeping memory usage within predefined constraint.

Materialized View Selection for Aggregate View Recommendation (mView): The most expensive

operation while computing the utility of views is the time spent in executing the queries related to

the views. To reduce the cost of this particular operation, we propose a novel technique mView ,

which instead of answering each query related to a view from scratch, reuses results from the already

executed queries. In particular, this is done by materializing views and answering queries from the

materialized views instead of the base table. Due to prohibitively large number of views, the blind

application of materialization may result in even further degradation of the cost. In this work we first

defines a cost benefit model to decide which views are the best to reuse. Later, we propose scheme

mView which materializes the best set of views in an optimal order and consequently reduces the

overall cost of the solution [3]. After analyzing the trade off between cost savings of mView and

MuVE scheme, we also propose extension of mView for MuVE Scheme.

1.2.2 Query Refinement for View Recommendation

In this work we argue that, in addition to the existing solutions for automatically recommending

interesting views, there is an equal need for solutions that can also automatically select subsets of data

that would potentially provide such interesting views. Particularly, we highlight the need for automatic

refinement solutions that are guided by the user’s preference. Consequently, we propose a novel suite

of schemes for automated query refinement for view recommendation in visual data exploration.

1.3. THESIS LAYOUT 9

Query Refinement for View Recommendation (QuRVe): The main idea underlying our QuRVe

schemes is to incrementally access the refined queries in order of their similarity with the original

query, which allows an early termination of search and results in pruning of a large number of views.

upper Query Refinement for View Recommendation (uQuRVe): The upper bound on deviation

used by QuRVe scheme to prune low utility views is a theoretical extreme value and it is oblivious to

the under consideration target and comparison view.The main idea of uQuRVe scheme is to provide

tighter upper bound on deviation of views by using the properties of deviation function and the already

executed comparison views.

upper Query Refinement for View Recommendation - range(uQuRVe-range): The main idea behind

uQuRVe-range is to reduce search time even further by having more control on the order in which

views are generated. Particularly, it prioritize to generate the views with the high utility first.

Query Refinement for View Recommendation (QuRVe)-Approximation: Approximation based

extension for uQuRVe and uQuRVe-range schemes are proposed to further improve performance, while

incurring negligible loss in the quality of recommendation.

1.2.3 View-360: A Prototype System for View Recommendation

In this work, we argue that in existing recommendation systems, the assumption that a comparison view

is generated from a default or predefined reference dataset, limits the discovery of interesting insights.

Therefore, the reference dataset should also be refined by refining the query that selects the reference

dataset, we name it the reference dataset refinement. The aggregate view recommendation with the

refinement of reference dataset is non-trivial as it increases the search space of views exponentially,

and more importantly all combinations of comparison views and target views in an aggregate view are

not comparable due to the lack of contextual connection between them. In this thesis, we define the

problem of reference dataset refinement for view recommendation and present a baseline scheme.

View-360: The design and implementation of a holistic prototype system View-360 for view

recommendation is presented. Particularly, it includes all of the search schemes presented in this

thesis. Moreover, it also includes all aspects of aggregate view recommendation i.e, recommendation

based on categorical and numerical attributes, and recommendation based on refinement on target and

comparison queries.

Dataset analysis: We showcase the effectiveness of all of our proposed schemes in this thesis by

performing detailed analysis on real datasets from various domains. Particularly, we show all steps of

data analysis and insights discovery on two datasets: one from general domain and one from the health

domain.

1.3 Thesis Layout

The rest of the thesis is organized as follows: In Chapter 2, we present preliminaries and related work.

In Chapter 3, we present a suite of search schemes for efficient recommendation of top-k aggregate

10 CHAPTER 1. INTRODUCTION

data views. In Chapter 3.5, we present the schemes to solve the problem of materialized view selection

for binned aggregate views. In Chapter 4, we present a suite of efficient schemes that automatically

refine input query. In Chapter 5, we present the problem of reference dataset refinement and we show

application of our schemes on real world dataset from different domains. Finally, Chapter 6 concludes

this thesis and overviews future work.

Chapter 2

Related Work

2.1 Data Exploration

Traditionally databases have structures, precise data, clear input queries and specific users, makes

data analysis easy and efficient. However, with the revolution of Big Data we are forced to rethink

our theories and implementation of databases [21]. Now almost every domain has a huge volume,

velocity, variety and veracity of data. Addtionally, users with varying level of technical skills and

domain knowledge are performing analysis tasks. Therefore, there have emerged many new facets of

storage, retrieval, presentation and exploration of big data.

Particularly, data exploration can be performed in two ways:

• Open ended exploration: Data characteristics are hidden from the user and exploration can mean

finding interesting insights in data, investigating and seeking inspiration, and suggesting new

hypothesis.

• Targeted exploration: User is somewhat familiar with data characteristics and exploration is used

as a tool to evaluate the quality of the data, compare specific data, use data to make decisions,

and verify existing hypothesis.

Both open ended and targeted data exploration pose challenges that cannot be addressed through

traditional search and query mechanisms [22, 23]. Traditional data search relies heavily on the

Figure 2.1: Data exploration

11

12 CHAPTER 2. RELATED WORK

Figure 2.2: Data exploration Interface

database structure and built in queries. In contrast to traditional data search, any data exploration

process includes several iterations of following steps, as show in Figure 2.1:

1. issuing a query to the database

2. executing query and generating results

3. reviewing results

4. reformulating the next query

Although database is the key component of this exploration process, only step 2 of executing query

and generating results is database-centric. Whereas steps 1, 2 and 3 are user-centric. Hence, the

efficiency and effectiveness of the exploration process primarily depends on the user. The assumption

of traditional database systems, that the users can formulate structured queries to the underlying

database in order to achieve analysis tasks, is often not true for data exploration. Additionally, user-

centric processes, are inherently long and laborious which often end in undesired results. Therefore,

improving the user interactions with underlying database has been the spotlight of research recently.

There have been many research efforts to develop exploratory interfaces that create a layer between

the user and the database as shown in Figure 2.2. It facilitates the user in formulating input, for instance,

recent interface allow users to provide input in terms of keywords, uncertain queries, example tuples,

graphical parameters and the output can be displayed in the form of interesting visualizations which

aid steps of the result review and reformulation of the input for the next iteration. Key requirements of

the exploratory interface is that it should be simple enough to avoid complicate declarative languages

and, at the same time, it should have flexibility and expressiveness to satisfy complex information

needs [24]. Generally, exploratory interfaces can be divided into the following three categories [21]:

1. Example-driven exploration: Generally in the data-driven exploration, the user is unable to

express their data interests precisely, but she may have an idea of what an interesting result

will look like [24–28]. In such situations, the user can be aided with an interface to navigate

through subsets of data to find interesting insights. This can be done by showing the user a few

samples from the dataset, get feedback and find interesting objects based on presented samples.

For instance, AIDE [27, 29] predicts a query that retrieves user’s objects of interest. First it

prompts the user to label a set of sample objects as relevant or irrelevant, based on this feedback

it collects new set of sample objects. AIDE learns the user interests based on his relevance

2.2. VISUAL DATA EXPLORATION 13

feedback on strategically collected samples. Ymaldb [30] is another approach which presents

the users with additional items that are not part of the results of their original query but may

be of interest to them. The computation of such results is based on the frequency of the most

interesting (attribute, value) pairs in the user query result and in the database instance. In [28], it

is assumed that the user is aware of a few example tuples that should be present in the output

of the query and the proposed framework discovers the minimal project join queries based on

an example table. These systems at some level require the user to be familiar with the data

model they are exploring, which may not be true for the naive user. Therefore, these systems are

suitable for a particular set of users and usage scenarios.

2. Assisted Query Formulation: Numerous novel query interfaces have been proposed that assist

the user in formulating the target queries [31–37]. Particularly, user guided visual tools and

query recommendation tools have been developed for specifying relational queries for data

exploration. For instance, DataPlay [33] is a sophisticated query specification tool which

provides features like graphical specification of query and constraint recommendations for fine

tuning the query. Moreover, it also provides a feature to add or remove results and auto correct

the query accordingly. Snipsuggest [36] is a tool for non-expert database users, who need to

perform complex analysis. As the user starts typing a query, SnipSuggest proposes several

completions using relevant snippets collected from a log of past queries. The more a user writes,

the more accurate the suggestions get. Another query recommendation system Charles [37]

introduces a Segmentation Description Language (SDL). As the user provides a query, Charles

breaks its extent into meaningful segments and returns the subsequent SDL descriptions. This

provides insight into the set described and offers the user directions for further queries.

3. Visualization tools: Visualization has many faces in the context of data exploration. Visual-

ization tools effectively assist the users in formulating input, however, such tools come under

the category of assisted query formulation. Visualization also plays a key role in reviewing and

interpretation of results for data exploration. Moreover, there are even new types of interactions

proposed through visualization such as collaborative annotations and searches [38]. For the

purpose of effective and efficient data exploration, automatic recommendation of interesting

visualizations has been focus of research lately [6–9, 17], which is focus of this thesis as well.

The role of visualization in data exploration and the existing tools and techniques are reviewed

in the next section.

2.2 Visual Data Exploration

Data visualization is perhaps the most widely used tool in a data analyst’s toolbox [39]. Generally, gen-

erating a visualization involves specification of visualization type (e.g., bar chart, scatter plot), filtering

(e.g., selecting subset of data to visualize), transformation (e.g., aggregation on data), parameters

(e.g., assigning attributes to axes) and visual encodings (e.g., color, size). Range of visualization tools

14 CHAPTER 2. RELATED WORK

Figure 2.3: Components of Effective Visualization

are available with different features to create these data visualizations. Some of these tools are more

expressive, giving expert users more control for instance, ggplot2 , vega-Lite, D3 but require significant

programming skills, while others are easier to learn and faster to create visualizations such as Microsoft

Excel, Google Spreadsheets but still require mappings between data and visualizations [40].

The following key components are involved in creating an effective visualization (Figure 2.3):

• Data: What is the quality of data and what portion of data (tables, tuples, attributes) is visualized.

• Objective: What is goal of generating the visualization.

• Visual Encoding: What is the type, size, color and other attributes of the visualization, what

will be the mapping between attribute of data and axes of visualization

• User: What is the level of technical skills and domain knowledge of the user affects, additionally

what is the user expectation and preference from the visualizations.

Moreover, generating an effective visualization is highly challenging for big data due to a number

of factors such as, quality of data, volume of data, limitation of the tools, time constraints, varying

technical expertise and domain knowledge of the user.

The idea of the visual data exploration approach is to iteratively create and refine visualization

for the open ended or targeted data exploration goals. Recent years have seen the introduction of

many visual analytic tools such as Tableau, Qlik and Spotfire [41–43], particularly for the purpose of

visual data exploration. These tools aim to provide aesthetically high-quality visualizations and easy

interfaces for the analyst. However, as mentioned before, generating useful visualizations requires

complete knowledge about the data, clear objective of visualization, domain knowledge, expertise

in statistics and visualization design. Even super analysts face cognitive barriers in these settings.

Time pressures and data overload work against the analyst’s ability to rigorously follow effective

methods for generating, managing, and evaluating visualizations [44]. Additionally, the exploration

process by default has lack of clarity in terms of objective of exploration and for a non-expert user

visual data exploration becomes even more challenging and time-consuming. To speed up the data

2.3. VISUALIZATION RECOMMENDATION 15

exploration process, the visual exploration tools can be complemented with automated recommendation

of interesting visualizations.

2.3 Visualization Recommendation

The goal of visual recommendation is to aid the users in visualization design and in taking exploration

decisions by providing quick traversal through the space of visualizations. Particularly visualization

recommendation systems automatically generate visualizations, measure the utility of a visualization,

and recommend the interesting ones, in terms of the factors mentioned Figure 2.3. In design of

visualization recommendation systems, different systems may prioritize different factors depending on

the recommendation goals and intended applications. Accordingly the recommendations systems can

be mapped to the model displayed in the Figure 2.4. The three corners of the triangle are objective-

driven, interaction-driven and data-driven recommendations. The three corners are not mutually

exclusive, for instance, a data-driven recommendation need to have some online/offline interaction to

initiate the recommendation process and it also has, at the least, some open ended exploration objective.

Therefore, the existing systems are around the body of the triangle some are more towards one corner

while the others are on the other end. However, we categorize the existing work into one of the three

categories based on the contribution of the three categories in the recommendation of visualizations.

Below we list down the categories and we briefly mention the systems that belong to each category:

• Objective-Driven: Recommendation criteria is based on a particular objective such as missing

value, outlier, finding specific pattern, and analysis on particular attributes of data. For instance,

Profiler [8] automatically flags problematic data and recommends visualizations based on mutual

information metric. Semantic windows [34] is designed to find number of queries that find

rectangular regions of the data space the user is interested in. Rank-by-Feature Framework [45]

computes statistical summaries and ranking for histograms and scatter-plots.While visualizations

can be ranked by various features, the user still selects a ranking criterion according to the task

at hand, and then all possible projections are ranked by that criterion.

• Interaction-Driven: The recommendation criteria is based on online interaction with the user and

the user feedback is used to continuously improve the recommendation. AIDE [29] engages the

user in a conversation by getting feedback, while in the background the system builds user model

that predicts data matching user interest. INDIANA [22] assists the user in gaining insights

through an interactive and incremental process. Statistically grounded algorithms are proposed

to support interactive data exploration. ForeCache [46] is a tool for suggesting browsing patterns

on multi-dimensional numerical data to users; the recommendations are provided with different

levels of granularities by aggregating data, and are strongly focused on the user’s interests about

previously explored data.

• Data-Driven: Recommendation criteria is based on either data characteristics such as data

summaries, distributions, correlations, or some historical data, data collected from offline

16 CHAPTER 2. RELATED WORK

Figure 2.4: Visualization Recommendation Systems

interactions. We discuss the features, key issues and systems of this category in detail in the next

section.

2.3.1 Data-Driven Recommendation Systems

The main idea of data-driven recommendation systems is to automatically discover and recommend

visualizations based on properties of data, with minimal interaction with the user. These systems are

most suitable when the user lacks clear objective of exploration and has low level of familiarity with

the data. The key issues in designing such systems are:

1. Quantifying Interestingness: There is a lack of unified and consistent formulation of interest-

ingness measure. A number of methods have been proposed to quantify intrestingness such as,

deviation-based, similarity-based and perception-based [6, 10, 47].

2. User preferences: Different users may be interested in different attributes or visualizations.

Having user preference included in the recommendation scheme provides an important criteria to

evaluate which visualizations are useful for different users [39]. At the same time these systems

are targeted to keep the user interaction to the minimum so that users of all skill levels can use

them effectively.

3. Scalability: Data-driven recommendation system can be computationally expensive as it involves

generation and evaluation of huge number of visualization, therefore scalability becomes a

challenge. Even for a moderate size dataset the exploration may involve exponential space of

visualizations [39].

4. False Discoveries: The data-driven approach of recommendation significantly increases the

risk of finding false discoveries [48]. Therefore, the insights should be tested for statistical

significance.

2.3. VISUALIZATION RECOMMENDATION 17

5. Coverage: Covering all parts of dataset with every possible visualization is a non-trivial task.

Different systems focus on various levels of coverage. It is important to understand how much

of the space of potential visualizations is covered by the recommendation system [39].

The data-driven recommendation systems address these issues one way or another. However, the

focus of such systems is typically a subset of these factors. In terms of quantifying interestingness

and identifying visual encodings, the most recent research efforts have focused on learning human

perception. In particular, understanding which visualization and transformation is good under which

scenarios and using that learning to mine the interesting visualization. Moreover, such systems

involve heavy interaction with the user in the learning phase, hence these system can come under the

interaction-driven systems. However, focus of this interaction is off-line and the learning is taken as

input to the system like the data, therefore, the recommendation process is dominated by the data-

driven approach. The performance and capabilities of these systems can be improved by improving

the dataset of examples, which is used to train the models.

DeepEye [10] is a ML based system with online and offline components, the off-line component

trains two ML models. First model trains a decision tree to determine whether a given dataset and an

associated visualization is good or bad. Second model is a neural-network to rank the visualizations.

The on-line component generates all possible visualizations and uses the trained models to select top-k

visualizations.

Data2Viz [11] is another learning based system that automatically generates visualizations using

deep learning approach. Particularly, the visualizations generation is formulated as a language

translation problem data specifications are mapped to visualization specifications in Vega-Lite. A

multi-layered attention-based encoder-decoder network is trained with long short term memory units.

VizML [12] proposes another ML based approach for visualization recommendation that learns

visualization design choices through a corpus of datasets and associated visualizations. Neural network

classifiers are developed for five design choices prediction tasks. The work also benchmark with a test

set through crowdsourcing.

Next, we review the systems that quantify interestingness in term of metrics directly related

to data and not on any other sources such a learning from prior knowledge or domain expertise.

QuickInsights [47] formulates insights based on three elements i.e., subject, type and interestingness

to discover insights. Insight subject is the content of the insight such as the subset, the attributes

and the transformation. It supports 12 types of insights such as correlation, outliers etc. To achieve

efficient insights, QuickInsights proposes mechanism to prioritize insight evaluation tasks and smart

query grouping to reduce the number of queries. The interestingness is measured as a combination of

significance and impact score of insight. QuickInsights is released in Microsoft Power BI tool. In their

previous work [49] they propose the concept of insight derived from aggregation result in multiple

steps. The computation sharing and pruning based optimizations are also proposed.

Foresight [44] considers insight as a strong manifestation of a distributional property of data. It

proposes insight classes such as, dispersion, skew, heavy tails, outliers etc., and the visualization types

for each class. Foresight initially presents top-k instances in data based on different ranking. The user

18 CHAPTER 2. RELATED WORK

Symbol Description
DB Database
Q Input query
T Predicates for Input query
DQ Dataset selected by Q
Vi ith aggregate view
Vi(DQ) ith target view
Vi(DB) ith comparison view on DB
D(Vi) Deviation of aggregate view V (i)

Table 2.1: Summary of symbols

can then choose the interesting ones and explore further by issuing insight queries in specific format.

It can handle large datasets by using approximate methods based on sketching and indexing.

VizDeck [7] generates all possible 1-D and 2-D visualizations ranked by statistical measures on a

dashboard. The ordering of the visualizations can be adjusted by the proposed voting mechanism in

which users can share, vote or save visualizations.

In data-driven recommendation, a huge number of visualizations are generated and comparisons

are made to discover insights. As a result the probability of discovering spurious insights increase.

This is known as multiple comparison problem (MCP) and is well studied in statistics. In the context

of visualizations recommendations [50] investigate this problem and proposes methods to evaluate

MCP by measuring the accuracy of insights with known ground truth labels.

Deviation-Based Data-Driven Recommendation Systems

As mentioned earlier, one of the main challenges in recommending data-driven visualizations is the

quantification of interestingness which depends on a lot of factors. Recent work provides strong evi-

dence that a deviation-based formulation of interestingness is able to provide analysts with interesting

visualizations that highlight some of the particular trends of the analyzed datasets [6]. The underlying

premise is that a visualization is likely to be interesting if it displays a large deviation from some

reference (e.g., complete dataset, another dataset, historical data or the rest of the data).

Consider a database DB, the user specifies an input query Q to select a subset DQ of data from DB .

For instance, consider the following input query Q:

Q : SELECT * FROM DB WHERE T ;

In Q, T specifies a combination of predicates, which selects a portion of DB for visual analysis.

Typically, the reference dataset is either the complete database DB. For deviation-based recommenda-

tion systems, a visualization shows comparison of the visual representation for target and reference

dataset. For instance, a visual representation of Q is basically the process of generating an aggregate

view Vi, composed of a target view Vi(DQ) on DQ and a comparison view Vi(DB) on DB, which is

then plotted using some of the popular visualization methods (e.g., bar charts, scatter plots, etc.).

Typically, for computing deviation a distance metric is defined as utility function which computes

distance between Vi(DQ) and Vi(DB).

2.3. VISUALIZATION RECOMMENDATION 19

SeeDB [6] is one of the first system which recommends top-k aggregate views on user specified

input query Q based on a deviation metric. It generates all possible aggregate views Vi(DQ) and Vi(DB)

by generating GROUP BY queries on DQ and the reference dataset DB. It recommends the top-k

visualizations based on distance between the corresponding Vi(DQ) and Vi(DB). It proposes multi-

query optimization techniques to share computation among the candidate views. SeeDB also proposes

a suit of approximate optimizations based on confidence-interval, top-k ranking and multi-arm bandits

to prune low utility views. The user study in this work provides strong evidence that a deviation-based

formulation of utility is able to provide analysts with interesting visualizations.

Ziggy [14] recommends a diverse set of attributes in which DQ has unusual distribution compared

to DB. Ziggy focus on describing the general distribution of DQ instead of aggregate views and it builds

the views one by one, in a greedy manner. It uses a hybrid utility function consisting of dissimilarity

and diversity value of views. The dissimilarity metric is a combination of several simple indicators

of dissimilarity such as, difference between means etc. It also evaluates the statistical robustness of

the views using asymptotic bounds on each component of utility and aggregation of their confidence

scores.

TopKAttr [15] finds top-k attributes whose distributions in the DQ and DB deviate most from each

other. Specifically, the user specifies the Q, k and deviation-based utility metric. The system considers

all views Vi(DQ) and corresponding Vi(DB) using all attributes and COUNT aggregate function. The

system recommends top-k bar chart histograms.The deviation is measured by normalized l1 (total

variation or earth movers distance) or l2 (Euclidean distance). A sampling based solution is proposed

that is guaranteed to return the correct top-k attributes with high probability. Novel analytic techniques

are also proposed to derive confidence intervals for deviation based utility functions. The proposed

solution is highly scalable as it can produce 25x speedup with near-zero error in the answer.

Manually exploring all possible subsets of data for insights can be tedious and inefficient. VISPI-

LOT [51] identifies a network of visualizations that convey key insights in the dataset based on

deviation between Vi(DQ) and Vi(DB). VISPILOT constructs a lattice of visualizations, where the

visualization from DB are at the top and the next level has visualizations from subsets having single

predicate and so on. The lattice is traversed from top to bottom. VIZPILOT introduces a concept of

informativeness in terms of measure of similarity between a visualization and its parent. The utility of

a visualization is the distance between the visualization and its most informative parent.

[52, 53] is another work that automatically explores the subsets of data. It considers all possible

subsets of data specified by a single predicate, where predicate is a categorical attribute. The compari-

son views Vi(DB) belong to the overall database DB. To efficiently navigate the search space of subsets

of data they employ the multi query optimization and confidence interval strategies.

Some recent research efforts in deviation-based data-driven recommendation systems have focused

on false discoveries. For instance, VizRec [48] is framework that quantifies the statistical significance

of recommended visualizations to improve performance. VizRec recommends a visualization Vi(DQ)

for a reference Vi(DB) if their corresponding histograms are statistically different with respect to the

true underlying distribution of DB. The false discoveries are controlled by classical statistical testing

20 CHAPTER 2. RELATED WORK

System Visualization
Type

Distance
Metric

Numeric
Dimensions

User
Preferences

Scalability False
Discoveries

Coverage

SeeDB
[6]l

Bar Charts Earth Movers x x v x x

Ziggy
[14]

Scatter Plot Combination
of Statistical
Measures

x x x v x

TopKAttr
[15]

Histograms Euclidean x x v x x

VizRec
[48]

Histograms Chebyschev x x x v x

VISPILOT
[51]

Bar Charts Euclidean x x x v v

Efficient
data slice
search
[52]

Bar Charts Euclidean x x v x v

View-360 Bar Charts Euclidean v v v v v

Table 2.2: Deviation-Based Data-Driven Visualization Recommendation Systems

and by application of Vapnik Chervonenkis dimension method. QUDE [54, 55] is a system, focused

on automatically controlling risk factors such as, multiple hypothesis testing and simpson’s paradox

during the data exploration process.

View-360

The current data-driven visualization recommendation systems are still primitive. Particularly, in

deviation-based data-driven recommendation systems, the existing systems fails to capture the require-

ments of numerical dimensions. Moreover, most of the work in this area lacks coverage in terms

of making recommendations from complete search space i.e., considers only a subset of data for

visualization recommendation.

View-360 is the prototype system we developed that combines all of the schemes proposed in this

thesis. The table 2.2 compares the features supported by other systems and our proposed end to end

prototype View-360. As seen in the table, the default distance metric we support is euclidean distance,

however, any other distance metric can also be plugged in if required. We also support recommendation

on numerical dimension attributes. View-360 includes query refinement based schemes that provide

maximum coverage by exploring all possible subsets of data. We also include user preferences in a

way that it would fit for different categories of users. Particularly, the user sets various exploration

parameters in the beginning or she can choose to use default settings. View-360 also integrates

hypothesis testing to exclude false discoveries from the recommendations. In this thesis we have

primarily proposed pruning and approximation based schemes to make the solution scalable for large

datsets.

2.3. VISUALIZATION RECOMMENDATION 21

Chapter 3

Efficient Binned View Recommendation

3.1 Introduction

Recommending data visualizations that reveal new and valuable insights is a challenging problem,

which has been the focus of many research approaches (e.g., [6–9,17]). The main idea underlying those

approaches is to automatically generate all possible aggregate views of data, and recommend the top-k

views that result in interesting visualization, where the interestingness of a visualization is quantified

according to some utility function. Recent work provides strong evidence that a deviation-based

formulation of utility is able to provide analysts with interesting visualizations that highlight some of

the particular trends of the analyzed datasets [6, 17]. The underlying premise is that a visualizations

that results in a higher deviation is expected to reveal some interesting insights that are very particular

to the analyzed dataset [6, 17]. While the deviation-based notion of utility has been shown to be

effective in recommending views with categorical dimensional attributes, in this work we argue that it

falls short in capturing the requirements of numerical dimensions. Particularly, in the presence of such

numerical dimensions, binned aggregation is typically required to group the numerical values along a

dimension into adjacent intervals [18, 19]. Given the large number of options for binning a numerical

dimension, it is expected that different binning configuration will result in different deviations, and

in turn, different levels of interestingness from the analyst point of view. For instance, in a view

with small number of bins, interesting insights are expected to remain hidden under a smooth and

coarse visual representation. Meanwhile, in a view that contains a large number of bins, insights might

go unnoticed in a cluttered or sparse visualization. To illustrate the impact of binning on numerical

dimensions, consider the following example:

Example 4. Consider a data analyst trying to gain insights into the special factors that led the Golden

State Warriors (GSW) basketball team to win the 2015 NBA championship. Consequently, the analyst

uses the 2015 NBA players statistics database [77] to compare the GSW team to the other teams in the

league. Particularly, the analyst poses a query:

Q: SELECT * FROM players WHERE team=GSW,

which returns the data for all the players on the GSW team. The data include different dimensions
23

24 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

72 13
7

27
1

50
4

65
7

90
4

98
2

12
07

14
68

15
83

20
69

23
18

24
55

24
90

26
13

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

of

Su
m

(3
-P

oi
nt

 A
tte

m
pt

ed
 R

at
e)

Minutes Played

Target View

Figure 3.1: View on players of the GSW team (target view)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

1 44 87 14
2

19
8

26
8

36
8

48
6

58
6

67
7

77
2

85
4

95
1

10
93

12
07

13
52

14
36

15
73

17
17

18
74

20
33

21
93

23
56

25
12

29
25

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

of

Su
m

(3
-P

oi
nt

 A
tte

m
pt

ed
 R

at
e)

Minutes Played

Comparison View

Figure 3.2: View on all players in the 2015 NBA (comparison view)

(e.g., age, number of games played, minutes played, etc.), and different measures (e.g., player efficiency

rating, 3-point attempt rate, etc.). To recommend interesting bar chart visualizations, different SQL

aggregate functions are applied on the views resulting from all the possible pairwise combinations

of dimensions and measures, then the most interesting views are presented to the analyst. Figure 3.1

shows one particular view defined on the dimension minutes played (MP) and the measure 3-point

attempt rate (3PAr). Such view is equivalent to:

V: SELECT MP, SUM (3PAr) FROM players WHERE team=GSW GROUP BY MP

Meanwhile, generating the same view of the entire database of all players (i.e., without the WHERE

team=GSW clause), results in the visualization shown in Figure 3.2. At first glance, comparing the two

views fails to reveal any insights about the GSW team. However, binning the two views, as shown in

Figure 3.3, reveals some very interesting observation. Particularly, Figure 3.3 shows that for all NBA

players, the 3PAr decreases as they play more games. The intuitive explanation is that the fatigue

incurred from playing more games can affect their fitness and reduce their 3PAr. However, for the

GSW players, that pattern significantly deviates from that general pattern. As Figure 3.3 shows, the

GSW players who spent more time on the field still achieve very high 3PAr. In fact, their 3PAr is

almost 4 times that of the other players. Clearly, that observation reflects the fitness and consistency of

the GSW players, which might distinguish them from other players in the league, and can shed some

light into understanding their championship win.

Choosing the right binning is essential in the process of extracting insights from the data, whether

that process is performed manually or analytically. On the one hand, a good binning allows to reduce

both the clutter and sparsity in the generated visualizations, which makes them easy to use by the

analyst to manually extract insights [56, 57]. On the other hand, a good binning also allows to group

similar data together, so that the special features of each group is aggregated and emphasized, which

3.1. INTRODUCTION 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-994 994-1988 1988-2981

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

of

Su
m

(3
-P

oi
nt

 A
tte

m
pt

 R
at

e)

Minutes Played

Comparison View Target View

Figure 3.3: Binned target view (i.e., GSW team) and comparison view (i.e., all NBA teams)

in turn allows quantitative metrics, such as deviation, to capture the interesting patterns exhibited by

those features. We note, however, that choosing the right binning for each visualization is a non-trivial

task. The benefits, as well as the challenges, of binning numerical dimensions are well-recognized

in the literature, especially in the context of histogram construction for the purpose of selectivity

estimation and query optimization (e.g., [18, 19, 58]). Such histograms provide a concise summary of

the underlying data distribution of an attribute, where the accuracy of that summarization is dependent

on the employed binning strategy. Similarly, in bar chart visualizations, which is the focus of this

thesis, the overall utility of a visualization is dependent on the underlying binning. Consequently, the

applicability of the simple deviation-based notion of utility becomes very limited in the presence of

numerical dimension attributes.

To address such limitation, we introduce a novel hybrid multi-objective utility function, which

captures the impact of numerical dimension attributes in terms of generating visualizations that

are: 1) interesting, 2) usable, and 3) accurate. Clearly, combining these often conflicting objectives

dramatically expands the search space of possible visualizations (i.e., aggregate views). Moreover, it

significantly increases the processing time incurred to asses the overall utility of each view, which is

assembled from the utility values of each of the three objectives listed above.

Accordingly, we propose a suite of novel search algorithms, which are particularly optimized

to leverage the specific features of the view recommendation problem. The main idea underlying

our first scheme Multi-Objective View Recommendation for Data Exploration (MuVE) is to use an

incremental evaluation of the multi-objective utility function, where different objectives are computed

progressively. Our results in [1] show that MuVE is able to prune a large number of unnecessary views,

and in turn reduces the overall processing time for recommending the top-k views. However, that

achieved pruning power is highly dependent on the order in which those views are presented to MuVE

and might often limit its performance gains. To address that limitation, we propose our second scheme

upper MuVE (uMuVE), in which the goal is to provide a flexible navigation of the search space so

that high-utility views are discovered earlier. Particularly, uMuVE is based on setting upper bounds on

the utility of each possible view, which is then exploited to effectively guide the search process by

means of interleaving the evaluation of the different objectives offered by the different views. Due to

that interleaved processing, at any point of time, uMuVE would typically have multiple views under

consideration, which requires significant amount of memory for storing their data. This motivated us

to propose our third scheme Memory-aware uMuVE (MuMuVE), which aims to provide a pruning

26 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

power close to that of uMuVE under some memory usage constraints.

The most expensive operation while computing the utility of views is the time spent in executing the

queries related to the views. To reduce the cost of this particular operation, a novel technique mView
is proposed, which instead of answering each query related to a view from scratch, reuses results from

the already executed queries. In summary, this is done by materializing views and answering queries

from the materialized views instead of the base table. The idea of materializing views for reducing the

query-processing time is well studied in the literature [59–61] and has proven significant relevance to

a wide variety of domains, such as query optimization, data integration, mobile computing and data

warehouse design [60, 61]. However due to prohibitively large number of views, the blind application

of materialization may result in even further degradation of the cost [59]. Substantial amount of work

has already been done to select an appropriate set of views to materialize that minimize the total query

response time and the cost of maintaining the selected views, given a limited amount of resource,

e.g., materialization time, storage space etc. [62]. In this work our proposed technique mView first

defines a cost benefit model to decide which views are the best to reuse. Later, in an optimal order it

materializes the best set of views, which reduce the overall cost of the solution.

We also included set of experiments to demonstrate efficiency of all of our proposed view recom-

mendation techniques.

3.2 Related Work

Alongside the commercial tools such as tableau, Qlik etc., several research efforts have been directed

towards providing automation features to the visualization process. Show Me [63] is an add-on for

commercial visualization tool Tableau, it provides automatic presentation by means of additional user

interface commands and defaults. It includes a restrictive feature of ranking views according to its

graphical presentation type. The user still has to decide which dimensions and measures to visualize.

Rank-by-Feature Framework [45] computes statistical summaries and ranking for histograms and

scatter-plots. While visualizations can be ranked by various features, the user still has to select a

ranking criterion, and then all possible projections are ranked by that criterion. Profiler [8] detects

anomalies and recommends visualizations based on mutual information metric. Hence, it is specifically

designed to highlight data quality issues, but exploring data for interesting view is beyond the scope

of that work. VizDeck [7] generates all possible 2-D visualizations on a dashboard and allows users

to reorder, share or permanently store those visualizations. It also recommend views, based on a

visualization quality model using statistical features of the dataset such as VizDeck lacks the deviation

based ranking and it does not scale for high dimensional large datasets. The ziggy approach [9, 14]

introduces a multi-view subset characterization approach based on the idea of selecting tuples that

differ from the rest of the database. It recommends sets of columns on which user selected data has

an unusual distribution from the rest of the database. Specifically, it performs tuple based ranking,

while our work focuses on binned aggregate views. As mentioned earlier, our work recommends

visualizations based on the deviation between two datasets, as in SeeDB [6, 17]. However, while

3.3. PRELIMINARIES 27

SeeDB effectively recommend views for categorical attributes, it lacks the necessary techniques for

handling numerical attributes, which is focus of our work.

3.3 Preliminaries

3.3.1 View Recommendation

The process of visual data exploration is typically initiated by an analyst specifying a query Q on a

database DB. The result of Q, denoted as DQ, represents a subset of the database DB to be visually

analyzed. For instance, consider the following query Q:

Q: SELECT * FROM DB WHERE T;

In Q, T specifies a combination of predicates, which selects a portion of DB for visual analysis

(e.g., team = GSW). A visual representation of Q is basically the process of generating an aggregate

view V of its result (i.e., DQ), which is then plotted using some of the popular visualization methods

(e.g., bar charts, scatter plots, etc.). Similar to traditional OLAP systems and recent data visualization

platforms [6–8, 17, 64], our model is based on a multi-dimensional database DB, consisting of a set

of dimension attributes A and a set of measure attributes M. Additionally, F is the set of possible

aggregate functions over the measure attributes M, such as SUM, COUNT, AVG, STD, VAR, MIN and MAX.

Hence, an aggregate view Vi over DQ is represented by a tuple (A,M,F) where A ∈ A, M ∈M, and

F ∈ F. That is, DQ is grouped by dimension attribute A and aggregated by function F on measure

attribute M (all symbols are summarized in Table 4.1). As in [6], we consider aggregate views that

perform a single-attribute group-by and aggregation on DQ. A possible view Vi of the example query

Q above would be expressed as:

Vi: SELECT A, F(M) FROM DB WHERE T

GROUP BY A;

where the GROUP BY clause specifies the dimension A for aggregation, and F(M) specifies both the

aggregated measure M and the aggregate function F .

Typically, a data analyst is keen to find visualizations that reveal some interesting insights about

the analyzed data DQ. However, the complexity of this task stems from: 1) the large number of

possible visualizations, and 2) the interestingness of a visualization is rather subjective. Towards

automated visual data exploration, recent approaches have been proposed for recommending interesting

visualizations based on some objective, well-defined quantitative metrics (e.g., [6–8, 17]). Among

those metrics, recent case studies have shown that a deviation-based metric is able to provide analysts

with interesting visualizations that highlight some of the particular trends of the analyzed datasets [6].

In particular, the deviation-based metric measures the distance between Vi(DQ) and Vi(DB). That

is, it measures the deviation between the aggregate view Vi generated from the subset data DQ vs. that

generated from the entire database DB, where Vi(DQ) is denoted as target view, whereas Vi(DB) is

denoted as comparison view. The premise underlying the deviation-based metric is that a view Vi that

results in a higher deviation is expected to reveal some interesting insights that are very particular

28 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

to the subset DQ and distinguish it from the general patterns in DB. To ensure that all views have

the same scale, each target view Vi(DQ) is normalized into a probability distribution P[Vi(DQ)] and

each comparison view into P[Vi(DB)]. This visualization is not useful for any insight, the target and

comparison views are plotted on the same graph but have different scales, as the number of tuples in

target view are fewer than the comparison view.

Consider an aggregate view V = (A,M,F). The result of that view can be represented as the

set of tuples: < (a1,g1),(a2,g2), ...,(at ,gt)>, where t is the number of distinct values (i.e., groups)

in attribute A, ai is the i-th group in attribute A, and gi is the aggregated value F(M) for the group

ai. Hence, V is normalized by the sum of aggregate values G =
t
∑

p=1
gp, resulting in the probability

distribution P[V] =< g1
G , g2

G , ..., gt
G >. For instance, for the comparison view shown in Figure 3.3,

Table 3.1 illustrates the groups (Minutes played), aggregate values (Sum 3-PAR) and the computation

of its probability distribution.

For a view Vi, given the probability distributions of its target and comparison views, the deviation

D(Vi) is defined as the distance between those probability distributions. Formally, for a given distance

function dist (e.g., Euclidean distance, Earth Mover’s distance, K-L divergence, etc.), D(Vi) is defined

as:

D(Vi) = dist(P[Vi(DQ)],P[Vi(DB)]) (3.1)

Consequently, the deviation D(Vi) of each possible view Vi is computed, and the k views with the

highest deviation are recommended (i.e., top-k) [6]. Hence, the number of possible views to be

constructed is N = 2× |A| × |M| × |F|, which is clearly inefficient for a large multi-dimensional

dataset. Thus, several techniques have been proposed for optimizing the processing time incurred

in recommending visualizations, which are orthogonal to the optimizations proposed in this work to

address the impact of numerical dimensions, which is described next.

3.3.2 Numerical Dimensions

In this thesis, we mainly focus on the problem of recommending visualizations in the presence of

numerical dimension attributes. While numerical dimension attributes (e.g., age, height, etc.) are

abundant in scientific and commercial databases, current visualization recommendation techniques

tend to mostly overlook such numerical dimensions, and rather focus on the categorical ones. In

the presence of numerical dimensions, binned aggregation is typically required so that to group

the numerical values along a dimension into adjacent intervals over the range of values covered by

that dimension [18, 19]. Accordingly, binning of numerical dimensions poses several non-trivial

challenges in terms of recommending visualizations that are not only interesting, but also accurate and

usable. Particularly, in addition to being interesting (i.e., highly deviated from the general data DB),

recommended visualizations are expected to be accurate (i.e., minimize the amount of error between

the aggregated view Vi and its corresponding dataset DQ) and usable (i.e., minimize the amount of

clutter in view Vi). For instance, while the target and comparison views shown in Figures 3.1 and 3.2

3.3. PRELIMINARIES 29

Comparison View
Minutes Played Sum (3-PAR) Pdf Sum(3-PAR)
a1 : 1−994 g1 : 103.32 g1

G = 103.32
184.87 = 0.56

a2 : 994−1988 g2 : 53.97 g2
G = 53.97

184.87 = 0.29
a3 : 1988−2981 g3 : 27.58 g3

G = 27.58
184.87 = 0.15

Sum of aggregate values (G) = 184.87

Table 3.1: Computing the probability distribution of the comparison view shown in Figure 3.3.

are highly accurate (no binning applied), they are also barely usable because of high clutter or high

sparsity, which translates into missing out on revealing interesting insights.

As mentioned earlier, the benefits, as well as the challenges, of binning numerical dimensions are

well-recognized in the literature, especially in the context of histogram construction (e.g., [18, 19, 58]),

anomaly detection (e.g., [65]), and data visualization (e.g., [8, 66]). For instance, binning (also know

as bucketing) is an essential step in constructing histograms over numerical attributes for the purpose

of selectivity estimation and query optimization. While a histogram that is based on a small number of

bins provides a high degree of compression, its accuracy can be quite poor. To the contrary, adding

more bins to a histogram, or equivalently decreasing its bin width, has been shown to increase the

accuracy of a histogram at the expense of increasing the costs incurred in processing, maintaining, and

storing those additional bins. Similarly, in bar chart visualizations, which is the focus of this thesis, too

few bins result in loss of information and compromise the accuracy of visualization, while too many

bins result in a cluttered low quality visualization.

Deciding the optimal bin width for histograms has been intensively studied in the statistics literature,

where several model-based approaches have been proposed [18]. In contrast, the database literature

mostly takes a model-free approach, considering the dataset currently stored in the database as the only

data of interest. (We refer the reader to [18,19], for comprehensive surveys on that topic.) In this work,

we adopt the same approach and expand on existing model-free methods, as discussed next.

3.3.3 Binned Views

To enable the incorporation and recommendation of visualizations that are based on continuous

numerical dimensions, in this work we introduce the notion of a binned view. A binned view Vi,b

simply extends the basic definition of a view to specify the applied binning aggregation. Specifically,

given a view Vi represented by a tuple (A,M,F), where A ∈ A, M ∈M, F ∈ F, and A is a continuous

numerical dimension with values in the range L = [Lmin−Lmax], then a binned view Vi,b is defined as:

Definition 5. Binned View: Given a view Vi and a bin width of w, a binned view Vi,b is a representation

of view Vi, in which the numerical dimension A is partitioned into a number of b equi-width non-

overlapping bins, each of width w, where 0 < w≤ L, and accordingly, 1≤ b≤ L
w .

For example, Figure 3.3 shows a binned view, in which the number of bins b = 3 and the bin width

w = 994.

30 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

We note that our definition of a binned view resembles that of an equi-width histogram in the sense

that a bin size w is uniform across all bins. While other non-uniform histograms representations (e.g.,

equi-depth and V-optimal) often provide higher accuracy when applied for selectivity estimation, they

are clearly not suitable for standard bar chart visualizations.

Given our binned view definition, a possible binned bar chart representation of query Q is expressed

as:

Vi,b: SELECT A, F(M) FROM DB WHERE T

GROUP BY A

NUMBER OF BINS b

The deviation provided by a binned view Vi,b is computed similar to that in Eq. 4.1. In particular,

the comparison view is binned using a certain number of bins b and normalized into a probability

distribution P[Vi,b(DB)]. Similarly, the target view is binned using the same b and normalized into

P[Vi,b(DQ)]. Then the deviation D(Vi,b) is calculated as:

D(Vi,b) = dist(P[Vi,b(DQ)],P[Vi,b(DB)]) (3.2)

Clearly, the deviation D(Vi,b) is bounded by a maximum value DM. That value DM is achieved when for

each group ai at least one of the gi
G from P[Vi,b(DB)] and P[Vi,b(DQ)] is zero. Therefore, to normalize

the deviation, D(Vi,b) is divided by DM.

Clearly, for a binned view such as view Vi,b defined above, its usability depends on the visual

quality i.e., how clearly the visualization reveals the structure within the data. Inversely, clutter is

defined by the crowdedness that obscure the structure within the visualization [57]. A number of

metrics have been proposed to measure clutter for various types of visualizations, such as the number

of data points displayed, data density (number of data points/number of pixels), data to ink ratio and

lie factor [56, 57]. All of these metrics basically quantify the amount of content displayed on screen as

a measure of clutter. Similarly, for bar chart visualizations, clutter occurs due to the large number of

bins in a visualization. Consequently, we simply define usability as the inverse of clutter, which is

captured as follows:

S(Vi,b) =
1
b
=

w
L

(3.3)

where b is the number of bins, w is the width of each bin and L is the range of the dimension attribute.

S(Vi,b) is in the range [0,1], such that S(Vi,b) = 1 indicates highest quality.

Furthermore, a binned view Vi,b is obviously a summarized approximation of the corresponding

non-binned view Vi. Thus, it is essential to measure the (in)accuracy provided by Vi,b. To achieve this,

consider a non-binned view Vi, which is defined as (A,M,F). Further, and without loss of generality,

assume A is an ordered integer attribute. As described in the previous section, the result of that

view can be represented as the set of tuples: < (a1,g1),(a2,g2), ...,(a j,gi), ...,(at ,gt)>, where t is

the number of distinct values (i.e., groups) in attribute A. A binned view Vi,b provides a concise

approximate representation of Vi based on partitioning the ordered attribute A into b bins. Particularly,

each bin Ix consists of a start and end point, Ix = (sx,ex), and a value ĝx, which represents the

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 31

aggregated value of the measure M over all the values of dimension A in the range of Ix. That is,

Vi,b =<(I1, ĝ1),(I2, ĝ2), ...,(Ix, ĝx), ...,(Ib, ĝb)>, where b� t.

This data reduction implies approximation errors in the estimation of the original non-binned

aggregate values, where the error incurred by that approximation increases with decreasing the number

of bins b. There are number of metrics that have been used for measuring that kind of (in)accuracy such

as Sum Squared Error, Sum-Absolute-Error, Sum-Absolute-Relative-Error and Maximum-Absolute

Relative-Error [67]. In this work, we adopt Sum Squared Error (SSE) metric, which has also been

widely employed by the database community to measure the accuracy of frequency histograms for

the purpose of query optimization (e.g., [58, 68]). Applying SSE metric for general aggregate views

is straightforward. In particular, the aggregate measure corresponding to any dimension value in

the contiguous range sx,sx +1, ...,ex is approximated using a single representative value g′x, which is

computed as ĝx
nx

, where nx = ex− sx +1 (i.e., the number of distinct values in bin bx). Accordingly,

each g j ∈ Ix is estimated as g′j = g′x. Hence, the SSE provided by Vi,b, denoted as E(Vi,b), is computed

as E(Vi,b) =
t
∑

p=1
(gp−g′p)

2 and the relative SSE is computed as R(Vi,b) =
t
∑

p=1

(gp−g′p)
2

g2
p

. Accordingly,

the accuracy of a view Vi,b is simply computed as:

A(Vi,b) = 1−
R(Vi,b)

t
(3.4)

The computed A(Vi,b) is in the range [0,1], such that A(Vi,b) = 1 indicates maximum accuracy (i.e.,

zero error).

Clearly, incorporating the different metrics listed above further complicates the problem of finding

the top-k recommended visualizations. This is mainly due to the different binning options, which in

turn leads to an increase in the number of candidate visualizations.

3.4 Multi Objective View Recommendation

3.4.1 Problem Definition

In a nutshell, the goal of this work is to recommend the top-k bar chart visualizations of the results of

query Q according to some utility function. When all dimension attributes are categorical, such goal

simply boils down to recommending the top-k interesting views based on the deviation metric [6, 17],

as described in Section 4.3.1. However, that simple notion of utility falls short in capturing the impact

of numerical dimensions. In particular, the presence of numerical dimensions introduces additional

factors that impact the utility gained from a recommended view. In our proposed schemes, we employ

a novel hybrid multi-objective utility function, which integrates such factors, namely:

1. Interestingness: Is the ability of a view to reveal some interesting insights about the data, which

is measured using the deviation-based metric D(Vi,b) (Eq. 3.2).

32 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

2. Usability: Is the quality of the visualization in terms of providing the analyst with an under-

standable uncluttered representation, which is quantified via the relative bin width metric S(Vi,b)

(Eq. 3.3).

3. Accuracy: Is the ability of the view to accurately capture the characteristics of the analyzed data,

which is measured in terms of the accuracy metric A(Vi,b) (Eq. 3.4).

Notice that the different factors listed above are often at odds with each other. For instance, a view

that contains a large number of bins can provide high accuracy, at the expense of being cluttered and

difficult to understand by an analyst. To the contrary, using a small number of bins leads to a very

smooth and coarse representation of the analyzed data, which can hide its particular and interesting

characteristics. To capture those conflicting factors, MuVE employs a weighted sum multi-objective

utility function, which is defined as follows:

U(Vi,b) = αD×D(Vi,b)+αA×A(Vi,b)+αS×S(Vi,b) (3.5)

where D(Vi,b) is the normalized deviation of binned view Vi,b from the overall data, A(Vi,b) is the

accuracy of Vi,b, and S(Vi,b) is the usability of Vi,b.

Parameters αD, αA and αS specify the weights assigned to each objective in our hybrid utility

function, such that αD +αA +αS = 1. Those weights can be user-defined so that to reflect the user’s

preference between the three aspects of utility. Also, notice that all objectives are normalized in the

range [0,1]. Accordingly, the overall multi-objective utility function takes value in the same range (i.e.,

[0,1]), where the goal is to maximize that overall utility. Such goal is formulated as follows:

Definition 6. Multi-Objective View Recommendation: Given a user-specified query Q on a database

DB, a multi-objective utility function U, and a positive integer k, find the k aggregate binned views

over DQ, which have the highest utility values.

In summary, we posit that a view is of high utility, if it shows a unique pattern that is based on

accurate data and can be visually identified and appreciated by the user. For instance, referring back to

our motivating Example 4 in Chapter 1, while Figure 3.1 shows a non-binned view (i.e., accuracy of

1.0), the deviation provided by that view is only 0.17, and its usability is ∼0. Meanwhile, Figure 3.3

shows a binned version of the same view obtained at αA = 0.2,αD = 0.6,αS = 0.2, which results in

deviation=0.29, usability=0.33, and accuracy=0.30. That increase in both deviation and usability,

allowed that particular view to come first on the view recommendation list (i.e., top-1), and enabled

for an insightful visualization.

View Processing Cost

Recall that in the absence of numerical dimensions, the number of candidate views N to be constructed

is equal to N = 2×|A|× |M|× |F|. In particular, |A|× |M|× |F| queries are posed on the data subset

DQ to create the set of target views, and another |A|×|M|×|F| queries are posed on the entire database

DB to create the corresponding set of comparison views. In addition, a total of |A|× |M|× |F| distance

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 33

computations are needed to calculate the deviation between each pair of target and comparison views.

For each candidate non-binned view Vi over a numerical dimension A j, the number of target and

comparison binned views is equal to: 2×|M|×|F|×B j, where B j is the maximum number of possible

bins that can be applied on dimension A j (i.e., number of binning choices). Hence, in the presence of

|A| numerical dimensions, the total number of binned views grows to NB, which is simply calculated

as:

NB =
|A|

∑
j=1

2×|M|× |F|×B j (3.6)

Furthermore, for each pair of target and comparison binned views, the three metrics/objectives listed

above are to be evaluated. Evaluating those metrics incurs the following processing costs:

1. Query Execution Time: Is the time required to process the raw data to generate the candidate

target and comparison binned views, where the cost for generating the target view is denoted as

Ct(Vi,b), and that for generating the comparison view is denoted as Cc(Vi,b).

2. Deviation Computation Time: Is the time required to measure the deviation between the target

and comparison binned views, and is denoted as: Cd(Vi,b). Notice that this time depends on the

employed distance function dist.

3. Accuracy Evaluation Time: Is the time required to measure the accuracy of the binned target

view in representing the underlying data distribution and is denoted as Ca(Vi,b).

Putting it together, the total cost incurred in processing a candidate view Vi is expressed as:

C(Vi) =
B

∑
b=1

Ct(Vi,b)+Cc(Vi,b)+Cd(Vi,b)+Ca(Vi,b) (3.7)

Hence, the total cost incurred in processing all candidate binned views is expressed as:

C =
NB

∑
i=1

C(Vi) (3.8)

3.4.2 Search Strategy Overview

In section 3.4.3- 3.4.7, we present search strategies for finding the top-k binned views for recommen-

dation. For clarity of presentation, we break down a search strategy into two integral components,

namely: 1) Horizontal Search, and 2) Vertical Search, as shown in Figure 3.4. At a high level, the

objective of horizontal search is to find the optimal binning for a given non-binned view, whereas

the objective of vertical search is to find the top-k binned views with the highest utility values. In

Section 3.4.3- 3.4.6, we present different strategies for horizontal search, whereas in Section 3.4.7, we

expand on those strategies to enable and integrate vertical search.

The total number of binned target and comparison views are NB as defined in Eq. 3.6. Evaluating

the utility of each pair of those target and comparison binned views requires a total processing time

C(Vi), which includes the times needed for query execution, deviation computation, and accuracy

34 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

V1

…

Vi

…

VN

Vi,1 … Vi,b … Vi,L

Horizontal Search

Vertical S
earch

set of non-binned
views

set of binned views for Vi

Figure 3.4: Horizontal and Vertical Searches for recommending top-k visualizations

evaluation. The large number of possible binned views, together with the complexity of evaluating

the utility function, makes the problem of finding the optimal binning for a certain view Vi highly

challenging. In the following, we present the optimal baseline scheme namely Linear Search together

with our proposed schemes; i) Multi-Objective View Recommendation for Data Exploration (MuVE),

ii) Upper bound based MuVE (uMuVE), and iii) Memory-aware uMuVE (MuMuVE). We also present

a baseline approximation schemes namely local search and our proposed approximation schemes.

3.4.3 Baseline Schemes

Linear Search

Linear search is basically an exhaustive brute force strategy, which serves as a baseline for our

evaluation. In this strategy, given a certain candidate non-binned view Vi, all its corresponding binned

views are generated and the overall utility of each of those views is evaluated. Particularly, a non-

binned view Vi = (A,M,F) is expanded into a set of binned views: Vi = {Vi,1, ...,Vi,b, ...,Vi,L}, where

b is the number of bins, and L is the range of the continuous numerical dimension A. Consequently,

the value of b that results in the highest utility is selected as the binning option for view Vi resulting in

the binned view Vi,opt .

Local Search

Local search is a meta heuristic method that is widely used in solving optimization problems. In

general, a local search algorithm starts out with an initial solution and then attempts to find a better

solution in the neighborhood of that initial one. In this work, we adopt dynamic Hill Climbing

(HC), with halving search as another baseline method [69]. Specifically, for the set of binned views

Vi = {Vi,1,Vi,2, ...,Vi,L}, HC initially starts at some random number of bins b, where 1≤ b≤ L, and a

step s = L. In each iteration of HC, it considers two alternative settings for the number of bins: b− s,

and b+ s, then moves to the one which provides maximum utility. When HC cannot find a move that

increases the utility, then s is halved. This halving continues until s < 1. Despite of being susceptible

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 35

to hitting local maxima, HC is expected to provide significant reductions in processing costs compared

to the linear search methods.

3.4.4 The MuVE Scheme

Similar to the linear search described above, for a given non-binned view Vi = (A,M,F), our MuVE

scheme considers the set of all its possible binned views: Vi = {Vi,1,Vi,2, ...,Vi,b, ...,Vi,L}. Unlike linear

search, however, MuVE reduces the computational costs incurred in processing that set by means of:

1) pruning unnecessary views, and 2) pruning unnecessary utility evaluations.

To easily understand MuVE, notice that our problem of searching the space and ranking binned

views according to our multi-objective utility function Eq. 3.5 is similar to Top-K preference query

processing. Particularly, for a view Vi,b, the three objectives D(Vi,b),A(Vi,b),S(Vi,b) can be perceived as

the preference query over 3-dimensions. However, efficient algorithms for preference query processing

(e.g., [70, 71]), are not directly applicable to our problem because: 1) For any view Vi,b the values of

D(Vi,b) and A(Vi,b) are not physically stored and they are computed on demand based on the binning

choice b, and 2) The size of the view search space Vi is prohibitively large and potentially infinite. To

address these limitations, MuVE adapts and extends algorithms for Top-K query processing towards

efficiently and effectively solving the multi-objective view recommendation problem.

Before describing MuVE in details, we first outline a baseline solution based on simple extensions

to the Threshold Algorithm (TA) [71]. Conceptually, to adapt the well-know TA to the view recom-

mendation model, each possible binned view Vi,b is considered as an object with three partial scores:

1) deviation αDD(Vi,b), 2) Accuracy αAA(Vi,b), and 3) Usability αSS(Vi,b). Those partial scores are

maintained in three separate lists: 1) D-list, 2) A-list, and 3) S-list, which are sorted in descending

order of each score. Under the classical TA algorithm, the three lists are traversed sequentially in

a round-robin fashion. While traversing, the binned view with the maximum utility seen so far is

maintained along with its utility. An upper bound on the utility (i.e., threshold) is computed by applying

the utility function to the partial components of the last seen view in the three different lists. TA

terminates when the maximum utility seen so far is above that threshold or when the lists are traversed

to completeness.

Clearly, such straightforward conceptual implementation of TA is infeasible to our problem due to

the limitations mentioned before. However, recall that the usability objective S is based on the number

of bins in a view and is calculated as S(Vi,b) =
w
L = 1

b . Hence, out of the three lists mentioned above,

a sorted list S can easily be generated at a negligible processing cost. In particular, given a view Vi

over a numerical dimension A of range L, MuVE progressively populates the S-list with the values

αSS(Vi,1),αSS(Vi,2), ...,αSS(Vi,L), which are the values of the usability objective sorted in decreasing

order.

One possible approach for populating the D-list and A-list is to first generate the S-list and then

compute the corresponding D(Vi,b) and A(Vi,b) values for each view Vi,b. Those values are then sorted

in descending order and the TA algorithm is directly applied on all three lists. Clearly, that approach

36 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

has the major drawback of incurring the cost for computing the deviation and accuracy of all the

possible binned views. Instead, we leverage the particular Sorted-Random (SR) model of the Top-K

problem to minimize the number of those expensive estimation probes.

The SR model is particularly useful in the context of web-accessible external databases, in which

one or more of the lists involved in an objective function can only be accessed in random and at a

high-cost [70–72]. Hence, in that model, the sorted list basically provides an initial set of candidates,

whereas random lists (i.e., R) are probed on demand to get the remaining partial values of the objective

function. In our model, the S-list already provides that sorted sequential access, whereas the D-list and

A-list are clearly external lists that are accessed at the expensive costs of computing the deviation and

accuracy. Under that setting, while the S-list is generated incrementally, two values are maintained

(as in [70, 71]): 1) Useen: the maximum utility seen among all binned views generated so far, and 2)

Umax: a threshold on the maximum possible utility for the binned views yet to be generated. These

two values enable efficient navigation of the search space by pruning a significant number of possible

binned views as well as utility evaluations, which is achieved by means of two simple techniques:

Incremental Evaluation: The main idea is to calculate the different components of the utility function

U(Vi,b) incrementally and terminate the calculation once it is clear that Vi,b is not the optimal binned

view. To achieve this, when a candidate binned view Vi,b is considered, its S(Vi,b) value is compared

to the maximum utility seen so far, (i.e., Useen), then the calculation of its D(Vi,b) and A(Vi,b) values

are eliminated (i.e., pruned) if αD +αA +αSS(Vi,b)≤Useen. The idea is that since each of D(Vi,b) and

A(Vi,b) is bounded to 1.0, then a binned view Vi,b that satisfies this condition will never have a utility

greater than Useen, which makes evaluating its deviation and accuracy unnecessary. Such view will

incur no processing costs since S(Vi,b) is readily available given b, whereas the calculations of D(Vi,b)

and A(Vi,b) are pruned.

If the above condition is not satisfied, instead of calculating both D(Vi,b) and A(Vi,b), further

incremental evaluation is performed. Particularly, MuVE decides an order of evaluation of those two

objectives. If D(Vi,b) is evaluated first, then if αDD(Vi,b)+αA +αSS(Vi,b)≤Useen, then Vi,b is safely

pruned without the need for evaluating its accuracy. Alternatively, if A(Vi,b) is evaluated first, then if

αD +αAA(Vi,b)+αSS(Vi,b)≤Useen, then the deviation objective is not calculated and Vi,b is pruned.

The evaluation order of these two objectives is very important for pruning of low utility views. To

decide the evaluation oder of those two objectives, MuVE applies a simple priority function, such that

if:
αA

Ct(Vi,b)+Ca(Vi,b)
>

αD

Ct(Vi,b)+Cc(Vi,b)+Cd(Vi,b)
(3.9)

then A(Vi,b) is evaluated first, otherwise D(Vi,b) is the one to be evaluated first. The idea is to give

higher priority to evaluating an objective if it incurs less processing cost and/or contributes more to the

utility function that is to be maximized. Recall that Ct(Vi,b), Cc(Vi,b), Cd(Vi,b), Ca(Vi,b) are the costs

of evaluating the target view, comparison view, deviation, and accuracy, respectively. To estimate

such costs for a binned view Vi,b, MuVE simply maintains a moving average of each of those costs

over the previous Vi,1,Vi,2, ...,Vi,b−1 binned views. Particularly, whenever a short circuit fails and an

objective is evaluated, the cost for evaluating the operations involved in that objective is updated

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 37

(a) First Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Useen = 0.62
A(Vi,b) 0.60 Umax = 0.90
D(Vi,b) 0.80
U(Vi,b) 0.62 ≤0.87 ≤0.85 ≤0.84 ≤0.83

(b) Second Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Useen = 0.62
A(Vi,b) 0.60 0.65 Umax = 0.87
D(Vi,b) 0.80
U(Vi,b) 0.62 ≤0.66 ≤0.85 ≤0.84 ≤0.83

(c) Third Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Useen = 0.62
A(Vi,b) 0.60 0.65 0.60 Umax = 0.85
D(Vi,b) 0.80 0.56 Pruned
U(Vi,b) 0.62 0.57 ≤0.61 ≤0.84 ≤0.83

(d) After the Final Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Useen = 0.74
A(Vi,b) 0.60 0.65 0.60 0.80 1.00 Umax = 0.83
D(Vi,b) 0.80 0.56 Pruned 0.55 0.52
U(Vi,b) 0.62 0.57 ≤0.61 0.63 0.74

Figure 3.5: Example: The MuVE Scheme

as: Cx(Vi,b) = βCx(Vi,b−1)+
1−β

b−2

b−2
∑
j=1

Cx(Vi, j), where x is any of the four operations listed above, and

β = 0.825 to give more weight to the most recent costs. In our experiments (Section 3.5), we consider

other options for setting the priority function and discuss the trade-offs between those options.

Early termination: when a binned view Vi,b is considered for evaluation, the threshold Umax is updated

to Umax = αD +αA +αSS(Vi,b) . That is, assuming that Vi,b will receive the maximum score of 1.0

under both the deviation and accuracy objectives. In that case, if Useen ≥Umax, then it is guaranteed

that the actual utility of Vi,b cannot exceed Useen. Moreover, since all the following views starting at

Vi,b+1 will have lower S values, they are also guaranteed to provide utilities less than Useen. Hence,

those views are pruned and early termination is reached.

Example 5. Consider applying MuVE search on a non-binned view Vi, which is represented by 5

binned views Vi,2 to Vi,6 (Figure 3.5). Further, consider that k = 1, αD = 0.2, αA = 0.6 and αS = 0.2.

For each binned view Vi,b, its usability S(Vi,b) is already known and the binned views are ordered

accordingly. However, the values of the other two objectives A(Vi,b) and D(Vi,b) are calculated as

MuVE progresses. U(Vi,b) is the utility of the binned view Vi,b if all three objectives are known,

otherwise, it specifies an upper bound on that utility. Useen is the maximum utility seen so far and Umax

is the threshold on the maximum possible utility. Figure 3.5 shows a snapshot of how MuVE returns the

top-1 binned view for Vi. In the first iteration (Figure 3.5a), Umax is set as αD +αA +αSS(Vi,2) = 0.90,

38 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

then both the accuracy and deviation of the first binned view Vi,2 are computed (shown as a highlighted

column). Since Vi,b is the only seen view, therefore, Useen =U(Vi,2) = 0.62. In the second iteration

(Figure 3.5b), MuVE considers the next view (i.e., Vi,3). The new value of Umax is 0.87 calculated by

αD +αA +αSS(Vi,3). According to our priority function, Vi,3 is probed for accuracy and its new upper

bound on utility is computed as αD +αAA(Vi,3)+αSS(Vi,3) = 0.66, which is stored in U(Vi,3). Since

that value of 0.66 is greater than the current value of Useen, then Vi,3 can possibly have a utility greater

than Useen, so it is further probed for deviation. In the third iteration (Figure 3.5c), Vi,4 is probed

for accuracy. Its updated upper bound on utility U(V4) = 0.61, which is less than Useen, therefore its

deviation computation is pruned. Similar to Vi,2, the next two views Vi,5 and Vi,6 are also fully probed

(both accuracy and deviation are evaluated). Finally, MuVE selects Vi,6 as the top-1 view, which has

the highest utility.

In Example 5, MuVE managed to prune the one deviation calculation for Vi,4. In general, the

amount of pruning achieved by MuVE depends on several factors including the data distribution

and the weights of each objective. To attain even higher pruning power, our uMuVE and MuMuVE

schemes are proposed next.

3.4.5 The uMuVE Scheme: Upper Bound Based MuVE

Similar to the TA algorithm, MuVE visits the sequence of possible binned views one at a time. For

each visited view Vi,b, the objective values A(Vi,b) and D(Vi,b) are either immediately calculated or

pruned. Hence, all the necessary processing is completed once a view is visited and no backtracking is

needed. Alternatively, in this section, we present uMuVE, which extends the Upper Algorithm [70, 73]

and allows for interleaved processing of views. Particularly, uMuVE follows a greedy approach, in

which it evaluates the most promising views first so that to minimize the total processing time while

providing the same results as our original MuVE.

Like MuVE, uMuVE also maintains Umax, a threshold on the highest possible utility of a view in

the S-list, which has not yet been visited. Additionally, each binned view Vi,b has an upper bound

Uupper(Vi,b) on its utility, which is the maximum possible utility a view Vi,b can have. In uMuVE

a priority queue PQ is maintained based on the upper bound scores of the views. When a view is

retrieved from the S-list, its Uupper(Vi,b) equals to αD+αA+αSS(Vi,b) and it is added to PQ. Once any

or both of the objectives (i.e., deviation or accuracy) is calculated, Uupper(Vi,b) of the view is updated

accordingly.

For example, in Example 5, the first view retrieved from the S-list and added to PQ is Vi,2 (Fig-

ure 3.6a). According to our earlier explanation, initially Uupper(Vi,2) =Umax = αD +αA +αSS(Vi,2) =

0.90. In the first iteration, according to our priority function (Eq. 3.9), accuracy of Vi,2 is computed

and its upper bound on utility is updated to 0.66.

In each iteration, uMuVE decides to process one out of two views: 1) view Vi,b+1, which is the

next view in the S-list, or 2) Vh, which is the view with the highest Uupper in PQ. To decide between

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 39

(a) First Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Umax = 0.90
A(Vi,b) 0.60
D(Vi,b)
U(Vi,b) ≤0.66 ≤0.87 ≤0.85 ≤0.84 ≤0.83

(b) Second Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Umax = 0.87
A(Vi,b) 0.60 0.65
D(Vi,b)
U(Vi,b) ≤0.66 ≤0.66 ≤0.85 ≤0.84 ≤0.83

(c) Fifth Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Umax = 0.83
A(Vi,b) 0.60 0.65 0.60 0.80 1.00
D(Vi,b)
U(Vi,b) ≤0.66 ≤0.66 ≤0.61 ≤0.72 ≤0.83

(d) After the Final Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 Umax = 0.83
A(Vi,b) 0.60 0.65 0.60 0.80 1.00
D(Vi,b) Pruned 0.52
U(Vi,b) ≤0.66 ≤0.66 ≤0.61 ≤0.72 0.74

Figure 3.6: Example: The uMuVE Scheme

those two views, the upper bound of Vh is compared against Umax and the following two cases are

considered:

Case 1: Uupper(Vh)≤Umax: If the upper bound of Vh is lower than the upper bound of the unseen

views and there are still views that are not added to PQ yet. Then, this is an indication that the next view

in S-list can have a higher upper bound on its utility as compared to all of the views in PQ. Particularly,

Uupper of the next binned view Vi,b+1 is computed and Umax is updated as Umax =Uupper(Vi,b+1).

To further illustrate that case, consider Figure 3.6 again. As Uupper(Vi,2) is less than Umax, the

decision on pruning or probing of Vi,2 is deferred for now (shown as dark highlighted column) and

it will be kept in memory until uMuVE comes back to it. In the second iteration (Figure 3.6b), Umax

is updated according to the new view Vi,3 and Vi,3 is added to PQ. After probing Vi,3 on accuracy, its

upper bound on utility also becomes less than Umax and uMuVE retrieves the next view from the S-list.

In the next three iterations, uMuVE will add the next three views Vi,4, Vi,5, Vi,6 in PQ and probe them

for accuracy only, as shown in Figure 3.6c.

Case 2: Uupper(Vh) > Umax or S-list is empty: If Uupper(Vh) is greater than Umax, then this is an

indication that Vh can be the top-1 view. If Vh is already fully probed then it is returned as the top-1

view and the rest of the views are removed from PQ. However, if it is partially probed then its other

objective is calculated and Uupper(Vh) is updated accordingly.

If S-list is empty, uMuVE selects the view with highest upper bound Vh, probe it further and update

40 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

its Uupper(Vh). To illustrate this case consider Figure 3.6d, in which uMuVE has added all possible

views to the PQ and S-list is empty. Now, uMuVE will select a view from the front of PQ i.e., Vi,6

and compute its deviation objective. The final utility of Vi,6 is 0.74 and the upper bound of every other

view is less than this utility, therefore, Vi,6 is returned as top-1 view. Figure 3.6 clearly shows that

uMuVE is able to prune three deviation evaluations as compared to MuVE.

3.4.6 The MuMuVE Scheme: Memory-aware uMuVE

Our machines have limited computational and memory resources. Therefore, along with the processing

cost of proposed search schemes, it is also important to understand their memory requirements. For

instance, consider our proposed schemes MuVE and uMuVE, MuVE’s memory usage is negligible

since it considers only one view at a time. However, uMuVE stores multiple views in the priority queue,

therefore, it uses more memory and its memory requirements need to be quantified and optimized. In

the classical Upper scheme [70, 73], objects are points in multidimensional space and partial probes

only require to store single value per dimension. Therefore, memory is not a critical problem in that

scenario. However, in our case, each object is a view and view data is stored in memory. This brings

forth the addition challenge of optimizing memory requirements of uMuVE. In this section, we address

that challenge by quantifying the memory needs of uMuVE and proposing the memory-aware uMuVE

scheme (MuMuVE).

As explained in Section 3.4.5, the decision on the views in the priority queue remain pending, unless

there is an indication that those views should be probed further or pruned. The memory requirements

for uMuVE depend on the order in which views are visited. For instance, for a non-binned view Vi, if

the top-1 binned view is seen earlier in the search, memory needs will be minimal. In the worst case

scenario, the data for every binned view Vi,b is stored in memory. The amount of memory MU(Vi,b)

used by a binned view Vi,b equals to the number of bins b of Vi,b. Then, a binned view Vi,b in PQ, can

be in one of the following three states:

1. A(Vi,b) & D(Vi,b) are known: That is, view Vi,b has been fully probed and both objectives have

been evaluated. Therefore, the data for comparison and target view is not required anymore.

Hence, MU(Vi,b) = 0.

2. A(Vi,b) is known & D(Vi,b) is unknown: That is, the accuracy of view Vi,b has been computed.

Specifically, the underlying target view of Vi,b has been retrieved and it will be kept in memory

until Vi,b is pruned or probed for deviation. Therefore, MU(Vi,b) = b.

3. D(Vi,b) is known & A(Vi,b) is unknown: That is, the deviation of view Vi,b has been evaluated.

Particularly, the underlying target and comparison views of Vi,b were retrieved. After computing

deviation, the comparison view is discarded, but the target view will remain in main memory

because it may be needed if uMuVE decides to evaluate the accuracy of this view. Therefore,

MU(Vi,b) = b.

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 41

(a) Third Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 MU(Vi) = 9
D(Vi,b)
U(Vi,b) ≤0.66 ≤0.66 ≤0.61 ≤0.84 ≤0.83

(b) Fourth Iteration: Initial State
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 MU(Vi) = 5
D(Vi,b) 0.54
U(Vi,b) ≤0.66 ≤0.66 0.52 ≤0.84 ≤0.83

(c) Fourth Iteration: Final State
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 0.80 MU(Vi) = 10
D(Vi,b) 0.54
U(Vi,b) ≤0.66 ≤0.66 0.52 ≤0.72 ≤0.83

(d) After the Final Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 0.80 1.00
D(Vi,b) Pruned 0.54 0.55 0.52
U(Vi,b) ≤0.66 ≤0.66 0.52 0.63 0.74

Figure 3.7: Example: The MuMuVE Scheme (Max-Bins)

Let Li be the range of the dimension attribute of the non-binned view Vi, then the maximum

memory needed to search for the top-1 binned view is:

MU(Vi) =
Li

∑
b=2

MU(Vi,b) =
Li

∑
b=2

b

In Example 5, the amount of memory used by uMuVE (Figure 3.6) is MU(Vi) =
6
∑

b=2
b = 2+3+4+

5+6 = 20. This is because uMuVE had all 5 views in the memory.

Clearly, uMuVE always has lower processing cost as compared to MuVE, but it has additional

memory needs. To balance the trade-off between memory and processing time, a memory-aware

version of uMuVE (MuMuVE) is proposed next.

MuMuVE is an extension of uMuVE for memory-bounded evaluation of views. The new scheme

attempts to minimize view probes for a given amount of memory ML. The main idea is when the

memory utilization gets close to ML, instead of adding more views to PQ, give preference to probing

those views which are already in PQ. Consequently, memory will be evicted.

As explained previously, uMuVE selects a view Vh with the highest Uupper from PQ and if

Uupper(Vh)<Umax, moves a binned view VS from S-list to PQ. However, for MuMuVE before adding

VS to PQ, we also need to check if there is enough space available. Therefore, the condition is modified

as: if Uupper(Vh) < Umax & MU(VS) < ML then add VS to PQ. VS is not added to PQ if any of the

42 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

two conditions is violated. Hence, if Uupper(Vh) < Umax is false, MuMuVE probes Vh further. If

MU(VS)< ML is false, that means MU(Vi) has reached the bound ML. MuMuVE will choose a partially

probed view Vh′ from PQ to complete its utility evaluation. This ensure that memory occupied by Vh′

is evicted and more views can be added to PQ. The decision about which view to evict is critical, as it

affects the processing time. We consider the following three options:

1) Max-Bins: In this option, MuMuVE chooses the view with the maximum number of bins from

the partially probed views in PQ. Although, there is no indication that this view might be the top-1

view, however, it ensures that the maximum possible memory is evicted by a single probe.

Again, consider Example 5 and assume ML = 10. MuMuVE starts adding views from S-list to

PQ as in uMuVE. By the end of the third iteration (Figure 3.7a), Vi,2, Vi,3 and Vi,4 are already in PQ.

The amount of memory used MU(Vi) is 9. The next view in S-list Vi,5 require 5 locations while there

is only 1 available, therefore, MuMuVE needs to evict memory before adding Vi,5 to PQ. According

to max-bins, MuMuVE probes the view having maximum bins i.e., Vi,4 (Figure 3.7b). Consequently,

there is enough space to add Vi,5 as shown in the final state of the fourth iteration in Figure 3.7c. After

the final iteration (Figure 3.7d), this scheme is able to prune two objective evaluations as compared to

four of uMuVE. However, in worst case it only used 50% of the space compared to uMuVE.

2) Max-Utility: In this option, MuMuVE chooses the view Vh′ having maximum upper bound

Uupper. However, if number of bins of Vh′ is lower than the number of bins of VS then it will keep

choosing Vh′ views until there is enough space. Therefore, as result MuMuVE evaluates unnecessary

objectives and that will increase processing cost as compared to MuVE. On the other side there is

possibility that the view MuMuVE has fully probed might be the top-1, which will end the search.

Consider Example 5 again and assume ML = 10. Similar to max-bins, Vi,2, Vi,3, Vi,4 are added to

PQ and ML is reached (Figure 3.8a). According to max-utility, the view having maximum upper bound

on utility i.e., Vi,2 is probed further (Figure 3.8b). However, the available space (ML−MU) is still

not enough to accommodate Vi,5. Therefore, MuMuVE probe Vi,3 (Figure 3.8c), which will reduce

the used memory space MU to 4. Then, Vi,5 can be added to PQ as shown in the final state of fourth

iteration in Figure 3.8c. Max-utility pruned one objective evaluation as compared to two of max-bins.

3) Max-Min-Utility: Memory requirements and processing time of the max-utility scheme can

be further reduced by keeping track of lower bound on the utility of the views in PQ. Particularly,

when the memory is full, view Vh′ with the maximum utility from PQ is probed further. Utility of this

Vh′ becomes lower bound on the utility i.e., Ulower =U(Vh′) and all views Vi,b from PQ which have

Uupper(Vi,b)<Ulower are removed, because none of these can be top-1 view.

Consider Figure 3.8 again, and assume Ulower is also maintained. In initial state of the fourth

iteration (Figure 3.8b) after view Vi,2 is fully probed the lower bound on utility is updated as Ulower =

0.62. As the upper bound on the utility of Vi,4 is less than Ulower, which means Vi,4 can not be in top-1

therefore it is removed from PQ. Now, there is enough memory available to probe the next view. After

the final step, max-min-utility is able to prune two objective evaluations compared to max-utility.

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 43

(a) Third Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 MU(Vi) = 9
D(Vi,b)
U(Vi,b) ≤0.66 ≤0.66 ≤0.61 ≤0.84 ≤0.83

(b) Fourth Iteration:Initial State
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 MU(Vi) = 7
D(Vi,b) 0.80
U(Vi,b) 0.62 ≤0.66 ≤0.61 ≤0.84 ≤0.83

(c) Fourth Iteration: Final State
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 0.80 MU(Vi) = 4
D(Vi,b) 0.80 0.56
U(Vi,b) 0.62 0.57 ≤0.61 ≤0.72 ≤0.83

(d) After the Final Iteration
Vi,2 Vi,3 Vi,4 Vi,5 Vi,6

S(Vi,b) 0.50 0.33 0.25 0.20 0.17 ML = 10
A(Vi,b) 0.60 0.65 0.60 0.80 1.00
D(Vi,b) 0.80 0.56 Pruned 0.55 0.52
U(Vi,b) 0.62 0.57 ≤0.61 0.63 0.74

Figure 3.8: Example: The MuMuVE Scheme (Max-Utility)

3.4.7 Vertical Search Schemes

Recall that the goal of this work is to recommend the top-k visualizations that maximize our multi-

objective utility function. In the previous section, we discussed horizontal search strategies, which find

the optimal binned Vi,opt for a given non-binned view Vi. As discussed earlier, the space of possible non-

binned views, is of size N = 2×|A|× |M|× |F|. In the case where A is a set of numerical dimensions,

then the total number of corresponding possible binned views is NB, where NB =
|A|
∑
j=1

2×|M|×|F|×B j.

Hence, the goal is simply to find the top-k binned views across those NB views. We note, however, that

recommending two different binned views that correspond to the same non-binned views adds little

value to the analyst and is rather redundant. Hence, if Vx,b1 and Vy,b2 are two views in the top-k list,

then x 6= y. Consequently, we propose the following vertical search strategies.

In our first strategy for vertical search, we extend linear search (as described in the previous section)

for the purpose of finding the top-k recommendations. Particularly, in this simple strategy, the set of

all possible non-binned views V is traversed sequentially in an exhaustive manner. Then, each view

Vi ∈ V is expanded and searched horizontally to find its optimal binned view Vi,opt . As linear search

finishes scanning V, the optimal binned view corresponding to each view Vi is identified, and out of

those, the k with the highest utility are the ones to be recommended.

Note, however, that under this vertical linear search, the vertical and horizontal searches are clearly

44 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

decoupled. Hence, while the vertical search is performed linearly, the choice of the horizontal search

strategy is open. Given the algorithms discussed so far, this allows for the combinations denoted as

follows: linear-linear: in which linear search is used for both the vertical and horizontal searches,

and MuVE-Linear: in which linear search is used for vertical search, whereas the optimized MuVE,

as described in the previous section, is used for horizontal search. Obviously, the latter combination

allows leveraging the optimizations offered by MuVE to reduce the cost of each horizontal search.

Towards further optimizations, in the following we discuss extending MuVE, uMuVE and MuMuVE

to perform both the vertical and horizontal searches (i.e., MuVE-MuVE, uMuVE-Linear, uMuVE-

uMuVE, MuMuVE-Linear, MuMuVE-MuMuVE).

Extending MuVE to perform both horizontal and vertical searches is straightforward. To explain

that extension, recall that for performing horizontal search on a non-binned view Vi over a numerical di-

mension of range L, MuVE progressively populates the S-list with the values αSS(Vi,1),αSS(Vi,2), ...,αSS(Vi,L),

which are the values of the usability objective sorted in decreasing order. Hence, to allow vertical

search, MuVE traverses the set of non-binned views V in a round-robin fashion, where in a round r each

view Vi ∈ V is appended to the S-list as Vi,r, given that r is less than the maximum number of bins that

is possible for that view. Adding a view Vi,r to the S-list triggers evaluating the multi-objective utility

function U(Vi,r). That evaluation is performed similar to the one described above for the horizontal

search, except that the pruning conditions employed for the incremental evaluation are set for top-k

instead of top-1. Evaluating new views continues until all possible binned views are generated or until

early termination is reached, then the top-k views with the highest utility are returned to the user.

In comparison to MuVE-Linear described above, using MuVE for both vertical and horizontal

search clearly offers further reductions in cost by means of increasing the number of pruned operations.

To explain this, consider an uninteresting view Vi (i.e., a view with low deviation). If that view is

considered in isolation, as in MuVE-Linear, then significant processing time will be spent on finding

Vi,opt . However, U(Vi,opt) is expected to still be very small compared to the other views, which are

more interesting. Under MuVE, however, those interesting views will lead to increasing the value of

Useen, which in turn allows for pruning many of the objective evaluations that were to be performed on

Vi.

Extending uMuVE to perform vertical and horizontal search is similar to MuVE. Particularly, like

MuVE, uMuVE traverses the set of non-binned views V in round robin fashion and in each round r it

appends each Vi,r to S-list. However, uMuVE also maintains a priority queue PQ and it moves views

from S-list to PQ when none of the views in PQ are promising enough to be probed further. When the

utility of a fully probed view Vh becomes greater than Umax it is recommended as top-k and removed

from PQ. Consequently, all of the views with same A, M and F as Vh are also removed from PQ to

ensure that the recommended views are diverse.

Progressive Results: A key advantage of using uMuVE in both horizontal and vertical direction is

that it can produce progressive results, i.e., results as they become available rather than waiting for

complete evaluation of all of the views. Specifically, after returning the top-1 view, if more views are

required uMuVE continues to probe more views and complete their utility evaluations. Then, uMuVE

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 45

returns the next view with the highest utility and it keeps going until all of the top-k views are returned.

This feature can be particularly beneficial in an interactive data exploration scenario, where as soon as

the first few results are known, the user may decide to terminate the current search and begin a next

search by changing some of the input parameters.

Additional Aggregate Queries: We note that while in this thesis we consider only aggregation with a

single numeric dimension (i.e., single group-by attribute) , our techniques are directly applicable to the

more general scenario, in which there are multiple numeric group-by attributes. Such aggregations

will result in multi-column views that can be visualized as multi-dimensional or stacked bar charts.

Hence, more memory is required to store those multi-column views but the process of the objective

computation would remain the same.

Another interesting setting to consider is when some of the possible aggregations have a numerical

dimension attribute, whereas others are based on a categorical dimension attribute. In that case,

recommending the top-k interesting views is rather challenging as it requires the employed utility

function to be able to fairly compare the utility provided by those two different kinds of views. One

idea is to adapt our multi-objective function (Eq. 3.5) such that if a view Vi is based on a categorical

dimension, then its overall utility is computed as follows: 1) the deviation of Vi is computed as in

Eq. 3.2, 2) the accuracy of Vi is always equal to 1.0 since no summarisation is performed, and 3)

the usability of Vi is also equal to 1.0 since categorical values cannot be aggregated in larger bins.

However, that simple adaptation is expected to always assign high utility values to those views based

on categorical dimensions because their accuracy and usability will always receive a perfect score of

1.0. This is clearly in contrast with our goal of ensuring a fair comparison between different kinds of

views. Hence, our utility function needs to incorporate additional measures to enforce that fairness

(e.g., diversification [74]). A detailed exploration of that problem is part of our future work.

3.4.8 Approximate Search Schemes

All the search algorithms presented so far, except for Hill Climbing, are accurate in the sense that they

provide the same top-k views as the baseline exhaustive linear search. Meanwhile, Hill Climbing,

being a local search algorithm, is prone to hit some local maxima when used for horizontal search,

hence recommending views with lower utility. The degree of inaccuracy exhibited by local search

methods is typically unpredictable and highly depends on the behavior of the utility function to

be optimized. To the contrary, MuVE employs optimization techniques that allow for significant

performance gains, while at the same time providing the same recommendations as the exhaustive

baseline. In the following, we introduce several approximations to the MuVE scheme to further

improve its performance, while incurring negligible loss in the quality of recommendation.

View Refinement

In this approximation, instead of horizontally expanding and searching each and every non-binned

view Vi to find its optimal binned view Vi,opt , only a small number of views are selected for that

46 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

expensive horizontal search. The main idea is to perform a simple vertical search to quickly select

that small set of views, which are then refined using horizontal search to find the top-k recommended

views. To achieve this, the set of non-binned views V is searched vertically using a predefined number

of bins, which is the same for all views. Specifically, the utility of each non-binned view Vi ∈ V is

computed as U(Vi,de f), where de f is the same value for all views. Then the top-k views according to

that binning de f are selected, which is easily performed using linear search or MuVE. Consequently,

utility of each one of those k selected views (i.e., U(Vi,de f)) is further refined using horizontal search

to find its optimal binning (i.e., Vi,opt). Hence, only k views are selected for horizontal search, which

can be applied using linear search, MuVE, or HC, as explained earlier. We note that the default

binning value de f is a system parameter. Our experimental evaluation shows that choosing a moderate

number of bins results in significant reductions in cost, while at the same time providing high fidelity

recommendations.

View Skipping

The main idea underlying that approximation is to skip the horizontal search for some non-binned

views, thus saving the costs incurred in finding their Vi,opt . To better understand this idea, recall that

each non-binned view Vi is basically represented by a tuple (A,M,F) where A ∈A, M ∈M, and F ∈ F.

Hence, for each numerical dimension A, there exists a set of views VA, which share the same dimension

A, while being defined using different measures and aggregate functions, such that |VA|= |M|× |F|.
Accordingly, in this approximation we assign the same binning to all the views in the set VA. To find

that binning (i.e., number of bins), a view Vi is selected arbitrary from the set VA. For that non-binned

view, horizontal search is performed normally using any of the strategies outlined above (i.e., linear,

HC, or MuVE), so that to find its corresponding Vi,opt . Then that optimal number of bins opt is

assigned to all views in VA, and their utilities are evaluated accordingly. The premise is that the range

of a numerical dimension A is an important factor in deciding its optimal binning. Hence, since all

views in VA share the same dimension A, then the optimal binning of those views will have a very

small variance from some mean value, which is selected as described above and used to represent the

set of views VA. Accordingly, the number of times horizontal search is invoked is equal to the number

of numerical dimensions (i.e., |A|). Those horizontal searches are easily integrated with one of the

vertical searches described above (i.e., linear or MuVE).

Range Partitioning

The idea for this approximation is to reduce the complexity of the horizontal search based on simple

range partitioning techniques. Recall that a non-binned view Vi = (A,M,F) is expanded into a set of

binned views: Vi = {Vi,1,Vi,2, ...,Vi,b, ...,Vi,L}, where b is the number of bins, and L is the range of the

continuous numerical dimension A. By default, MuVE as well as linear search, assume the value of b

to be continuous in the range [1−L] with incremental additive step of 1.0, leading to corresponding

binning of widths: L
1 ,

L
2 , ...,1. Hence, a numerical dimension A with a large continuous range results in a

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 47

Datasets Number of
tuples

Range of A1 Range of A2 Range of A3 Number of
Views

DIAB 768 21-81 0-67 0-199 2,961
NBA 651 19-38 1-83 1-2981 27,765

CENSUS 32,561 17-90 1-16 1-99 1,701

Table 3.2: Details of Datasets

large number of binning options, and in turn a high cost for performing horizontal search. Accordingly,

we employ two simple alternative methods for range partitioning, namely: 1) additive, and 2) geometric.

The default partitioning described above is an instant of the additive method, in which the incremental

step s is set to 1. In the general case, the incremental step s is a parameter, hence, a non-binned

view Vi is expanded into a set of binned views: Vi = {Vi,1,Vi,1+s,Vi,1+2s, ...,Vi,L}. Alternatively, in the

geometric method (e.g., [75]), Vi is expanded into a set of binned views: Vi = {Vi,20,Vi,21,Vi,22, ...,Vi,L}.
Naturally, both methods are expected to reduce the processing time incurred in horizontal search, at the

expense of some reduction in the fidelity of recommendation, which will be evaluated experimentally

in the next sections.

3.4.9 Experimental Testbed

We perform extensive experimental evaluation to measure the efficiency of the different top-k view

recommendation strategies presented in this thesis. Here, we present the different parameters and

settings used in our experimental evaluation.

Setup: We built a platform for recommending visualizations, which extends the SeeDB codebase [6] to

support numerical dimensional values, binned aggregation, and the different search strategies presented

in this thesis. Our experiments are performed on a Corei7 machine with 16GB of RAM memory.

The platform is implemented in Java, and PostgreSQL is used as the backend database management

system.

Schemes: We investigate the performance of the different combinations of the vertical and horizontal

search strategies presented in this thesis. Our naming convention for those combinations is repre-

sented as: SearchH-SearchV, where SearchH denotes the search strategy employed for horizontal

search, whereas SearchV is the one for vertical search. This leads to the following combinations:

Linear-Linear, MuVE-Linear, MuVE-MuVE, uMuVE-Linear, uMuVE-uMuVE, MuMuVE-Linear and

MuMuVE-MuMuVE. For instance, in MuVE-Linear, MuVE is used for horizontal search, whereas lin-

ear search is applied for vertical search. In the presence of approximation, as discussed in Section 3.4.8,

we extend our notation to: SearchH(AppH)-SearchV(AppV). Hence, the possible horizontal approxima-

tions are: SearchH(A), and SearchH(G), which denote the additive and geometric range partitioning,

respectively. For vertical approximations, SearchV(R) denotes the view refinement approximation, and

SearchV(S) is for the view skipping approximation.

Data Analsyis: We assume a data exploration setting in which multi-dimensional datasets are analyzed.

We use three datasets: DIAB: dataset of diabetic patients [76], NBA: dataset of basketball players [77]

and CENSUS: dataset of adult census income [78]. The independent numeric attributes of each dataset

48 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

are used as dimensions, whereas the observation attributes are used as measures. For instance, in

the DIAB dataset, dimensions are selected from age, BMI, etc., whereas measures are selected from

insulin level, glucose concentration, etc.

The DIAB, NBA and CENSUS datasets have 9, 28 and 15 attributes, respectively. In our default

setting, we select 3 dimensions, 3 measures, and 3 aggregate functions. Table 3.2 shows the range

of each dimension A for every dataset and accordingly the number of possible views are also shown.

In the analysis, all the α values are in the range [0− 1], where αD +αA +αS = 1. In the default

setting, αD = 0.2, αA = 0.2, αS = 0.6 and k = 5, unless specified otherwise. The input queries for

each dataset are: DIAB: SELECT * FROM DIAB WHERE Pregnancies>3, NBA: SELECT * FROM

NBA WHERE team=GSW, and CENSUS: SELECT * FROM CENSUS WHERE income>50K.

Performance: We evaluate the efficiency of the different recommendations strategies in terms of (1)

Cost: As mentioned in Section 4.4, the cost of a strategy is the total cost incurred in processing all the

candidate binned views, which is measured in wall clock time, and (2) Fully Probed Views: Count of

the views Vi,b for which both objectives D(Vi,b) and A(Vi,b) were calculated. Each performance metric

is reported based on the average of 10 different executions. (3) Fidelity: It is a measure of the degree

of accuracy achieved by a certain scheme. Particularly, if Vopt is the set of top-k views recommended

by a baseline optimal scheme, whereas Vrec is the set of views recommended by an approximated

scheme, then fidelity is measured to capture the difference between the sum of the utilities offered by

Vopt and Vrec. Formally:

F = 1−
U(Vopt)−U(Vrec)

U(Vopt)
(3.10)

3.4.10 Experimental Evaluation

In the following experiments, we evaluate the performance of both our optimization techniques

(Section 3.4.10), as well as our approximation techniques (Section 3.4.10), under different parameter

settings.

Optimization Techniques

Impact of the α parameters (Figures 3.9, 3.10 and 3.11): In this set of experiments, we measure the

impact of the α values on processing time (i.e., cost). Figures 3.9, 3.10 and 3.11 show how the cost of

the different schemes is affected by changing the values of αD, αA and αS.

In Figures 3.9 and 3.10, αS is set to constant 0.2 while αA and αD are changing. In particular,

as shown in the figures, αD is increased, while αA is implicitly decreased and is easily computed

as αA = 1−αD +αS . Figure 3.9 shows that Linear-Linear has almost same cost for all values of

αS, which is expected since it performs exhaustive search over all combinations of A, M, F , and B.

Therefore, its cost depends on the number of all possible combinations, irrespective of the values of α .

Figure 3.9 also shows that MuVE-MuVE has lower cost than Linear-Linear and MuVE-Linear,

especially in the region where αD is low and correspondingly, αA is high. This is because interesting

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 49

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
os

t (
Se

c)

αD

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

Figure 3.9: DIAB:Impact of αA and αD on cost, while αS = 0.2

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fu
lly

 P
ro

be
d

Vi
ew

s

αD

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

Figure 3.10: Impact of αA and αD on fully probed views, while αS = 0.2

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
os

t (
Se

c)

αS

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

Figure 3.11: DIAB: Impact of αD and αS on cost, while αA = 0.2

50 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

views with high accuracy will lead to a higher Useen, which in turn allows for pruning the less interesting

views during the vertical search. Furthermore, Figure 3.9 also shows that uMuVE-uMuVE offers the

lowest cost, especially when αD < 0.4. For instance, at αD = 0.2, uMuVE-uMuVE has almost 30%

lower cost as compared to MuVE-MuVE. This is because after evaluating one objective of a view,

uMuVE delays probing that view in full until the partial utility of that view becomes higher than

the current Umax. Hence, it prunes many unnecessary deviation evaluations. The reduction in cost

of the MuVE variants can be further understood using Figure 3.10, in which we plot the number of

views that are probed in full (i.e., both deviation and accuracy are evaluated). Figure 3.10 shows that

MuVE-MuVE and uMuVE-uMuVE fully probe a very low number of views at the high values of αD.

Interestingly, however, that large reduction in the number of probed views does not translate into cost

saving as it has been the case at high αA (Figure 3.9). This is because at high αD, MuVE-MuVE and

uMuVE-uMuVE mainly prune the operations for computing accuracy, whereas at high αA mainly the

operations for computing deviation are pruned, which typically incur higher processing cost than that

needed for computing accuracy.

In Figure 3.11, αA = 0.2, whereas αS is increasing and accordingly αD is decreasing. Figure 3.11

shows the effect of changing αS and αD values on cost. Particularly, Figures 3.11 shows that the

MuVE schemes have almost same cost as Linear-Linear for smaller values of αS, but outperform it

as the value of αS increases. For instance, in Figure 3.11 at αS > 0.5, all four schemes show more

than 70% reduction in cost as compared to Linear-Linear. This happens because in the MuVE and

uMuVE schemes, when αS is high, there are more chances of applying the short circuiting and early

termination conditions based on the usability value, and in turn pruning many of the operations required

for evaluating deviation and accuracy. The amount of achieved pruning is further increased under

MuVE-MuVE and uMuVE-uMuVE, which is able to prune those operations during both the vertical

and horizontal searches. For instance, Figure 3.11 shows that uMuVE-uMuVE reduces the processing

cost by almost 75%, compared to uMuVE-Linear, at αS = 0.6.

Impact of k (Figure 3.12): In the previous experiments, the value of k is set to 5 (i.e., top-5

views are recommended). Figure 3.12 shows that Linear-Linear, MuVE-Linear and uMuVE-Linear

are all insensitive to the increase in the value of k. This is because Linear-Linear is exhaustive

search, whereas MuVE-Linear and uMuVE-Linear also performs an exhaustive vertical search. For

instance, in Figure 3.12a, in case of top-1 MuVE-MuVE reduces the cost by up to 90% compared to

the Linear-Linear scheme, while the reduction offered by uMuVE-uMuVE is up to 85% compared to

the MuVE-MuVE scheme.

Priority Function Analysis (Figure 3.13): As mentioned in Section 3.4.4, we consider different

options for setting our priority function for ordering the evaluation of objectives. The options that

we considered are: 1) Random: Randomly chooses the objective to evaluate first, 2) Deviation-First:

Always computes the deviation objective first, 3) Accuracy-First: Always computes the accuracy

objective first, 4) Weights-Based: Selects the objective which has more weight as it contributes more

to the objective function, and 5) Hybrid: Selects an objective based on its weight and evaluation cost

(as in Eq. 3.9).

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 51

0

0.5

1

1.5

2

2.5

3

3.5

4

1 5 10 15 20 25

C
os

t (
Se

c)

k

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

(a) DIAB

0

5

10

15

20

25

30

35

1 5 10 15 20 25

C
os

t (
Se

c)

k

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

(b) NBA

0

10

20

30

40

50

60

1 5 10 15 20 25

C
os

t (
Se

c)

k

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

(c) CENSUS

Figure 3.12: Impact of k on Cost

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
u

ll
y

P
ro

b
e

d
 V

ie
w

s

αD

Random
Deviation-First
Accuracy-First
Weight-Based
Hybrid

Figure 3.13: Priority Function Analysis

Figure 3.13 shows the cost of MuVE-MuVE in terms of the number of fully probed views when

incorporating each of the options listed above. In Figure 3.13, αS = 0.2, whereas αD is increasing and

accordingly αA is decreasing.

Figure 3.13 shows that for low value of αD, number of fully probed views for accuracy-first

scheme are lower than deviation-first because of the short circuiting of deviation objective evaluation.

However, for high values of αD, number of fully probed views for deviation-first are lower because

of the short circuiting of accuracy objective evaluation. Hybrid scheme captures the advantage of

52 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

0
20
40
60
80

100
120
140
160
180

3 5 7 9 11 13 15 17 19 21
C

os
t (

Se
c)

Number of Measure Attributes

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

Figure 3.14: NBA: Scalability

0

0.5

1

1.5

2

2.5

3

3.5

4

1 9 12 13 14 15

C
os

t (
Se

c)

View Number

Linear-Linear
MuVE-Linear
MuVE-MuVE
uMuVE-Linear
uMuVE-uMuVE

Figure 3.15: DIAB: Progressive Results

0

1

2

3

4

5

6

0.05 0.25 0.50 0.75 1.00

C
os

t (
Se

c)

Memory

uMuVE-uMuVE
MuMuVE-MuMuVE (Max-Utility)
MuMuVE-MuMuVE (Max Bins)
MuMuVE-MuMuVE (Max-Min-Utility)

Figure 3.16: Impact of ML on MuMuVE Scheme

both deviation-first and accuracy-first schemes. For values where αA is high, the number of database

probes are smaller as compared to low αA. This happened due to the satisfaction of short circuiting

and early terminating conditions and as a result pruning of deviation evaluation operations. The

deviation-first has the similar trend for higher values of αD. Here, accuracy evaluation operations are

pruned. The figure shows, the random scheme probes mores views as compared to accuracy-first and

deviation-first. Therefore, it is not the optimal priority function. Weight-based captures the advantage

of both deviation-first and accuracy-first schemes. Hybrid integrates the cost of computing objectives

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 53

into weights-based priority function. As deviation costs almost twice as accuracy, accuracy gets a

preference to get computed first for α < 0.6.

Scalability (Figure 3.14): From Section 3.4.1, the theoretical complexity of our recommendation

problem is linear in terms of the number of dimensions A, expressed as cA, where c is the product

of number of measures, aggregate functions and bin settings. While such complexity applies to both

Linear, MuVE and uMuVE, in practice, however, c is much smaller for MuVE and uMuVE due to

pruning. For example, Figure 3.14 shows our results on the NBA data, it can be inferred that c for

Linear goes up to ∼12, whereas it is only ∼0.05 for MuVE and uMuVE.

Progressive Results (Figure 3.15): In this experiment we demonstrate uMuVE’s ability to produce

results in a progressive fashion. Particularly, Figure 3.15 shows the delay (i.e., processing cost)

until producing the ith-top view when recommending a total of 15 views (i.e., top-k, where k = 15).

As the figure shows, Linear-Linear, MuVE-Linear, MuVE-MuVE and uMuVE-Linear produce the

top-15 views all together as a batch. However, uMuVE-uMuVE produces the 1st top view as soon

as it is identified, and then it keeps producing more views in descending order of their utility values.

For instance, uMuVE-uMuVE recommends the 9th view after only 0.18sec, while MuVE-MuVE

recommends it along with all the 15 top-k views after 1sec.

Memory Requirements (Figure 3.16): In this experiment we study the performance of our memory-

aware MuMuVE scheme under a predefined memory constraint ML. We particularly evaluate the

different variants of MuMuVE, namely: Max-bins, Max-utility, and Max-Min-Utility, against uMuVE.

To do that, we set the limit ML as a percentage of the memory used by uMuVE in the worst case (as

shown on the x-axis in Figure 3.16). For instance, a value of 0.75 means that the memory constraint

ML is set to 75% of the maximum memory used by uMuVE. As the figure shows, uMuVE-uMuVE acts

as a baseline and its performance is independent of ML. Further, the figure also shows that as ML is

decreased, the cost of all the memory-aware schemes increase. This is because the memory-aware

schemes are forced to evaluate extra objectives to reclaim space. The figure shows that Max-Bins

outperforms Max-Utility because of its ability to avoid unnecessary probes and reclaim space, whereas

Max-Min-Utility performs as good as uMuVE-uMuVE while keeping the memory usage well under

constraint.

Approximation Techniques

Impact of Additive Range Partitioning (Figures 3.17 and 3.18): In Figures 3.17 and 3.18 we show

the impact of having different values of step. As expected, Figure 3.17 shows that the HC-Linear

search scheme provides the same cost regardless of the employed step. This is simply because HC

employes its own stepping method, as explained earlier. Meanwhile, the cost of Linear(A)-Linear

decreases with the increase in step. This is because when step > 1, the search space is reduced by a

factor of step, which results in that reduction of cost. The figure also shows that MuVE(A)-Linear has

low cost at step = 1 and after that its cost is almost the same as Linear(A)-Linear. This is because,

when step = 1 MuVE(A)-Linear gets the opportunity of short circuits and early terminations, which

are activated because of the high utility provided by those views with relatively small number of

54 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

0

5

10

15

20

25

30

35

1 2 3 4 5 6
C

o
st

 (
S

ec
)

Step

Linear(A)-Linear

MuVE(A)-Linear

MuVE(A)-MuVE

HC-Linear

Figure 3.17: NBA: Impact of additive range partitioning on cost

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

F
id

el
it

y

Step

Linear(A)-Linear MuVE(A)-Linear

MuVE(A)-MuVE HC-Linear

Figure 3.18: NBA: Impact of additive range partitioning on fidelity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
o

st
 (

S
ec

)

αS

Linear(G)-Linear MuVE(G)-Linear

MuVE(G)-MuVE HC-Linear

Figure 3.19: NBA: Impact of geometric range partitioning on cost

bins. With higher values of step, this opportunity is missed and MuVE(A)-Linear behaves almost the

same as Linear(A)-Linear. Figure 3.18 shows the impact of step on fidelity. For HC-Linear, similar

to its cost, its fidelity is insensitive to step and it always provides less than 50% fidelity. This is

because HC-Linear is a local search based scheme, which is expected to hit a local maxima, hence,

failing to achieve the global maxima, which results in low fidelity. Meanwhile, Linear(A)-Linear,

MuVE(A)-Linear and MuVE(A)-MuVE show the same pattern with increasing the step value.

Impact of Geometric Partitioning (Figure 3.19 and 3.20): For this set of experiments we set αA = 0.2

and observe the effect of changing αS on the fidelity and cost of when employing geometric partitioning.

Figure 3.19 shows that the cost of Linear(G)-Linear remains constant because it exhaustively searches

for maximum utility view. Meanwhile, geometric partitioning reduces the cost of MuVE(G)-Linear

3.4. MULTI OBJECTIVE VIEW RECOMMENDATION 55

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7
F

id
el

it
y

αS

Linear(G)-Linear MuVE(G)-Linear

MuVE(G)-MuVE HC-Linear

Figure 3.20: NBA: Impact of geometric range partitioning on fidelity

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Linear-Linear Linear-Linear(R) Linear-Linear(S)

C
o

st
 (

S
ec

)

Figure 3.21: DIAB: Impact of View Refinement and Skipping Approximations on Cost

and MuVE(G)-MuVE by more than 50% compared to Linear(G)-Linear for high values of αS. In

Figure 3.20, we can see that the fidelity of HC-Linear is decreasing with increase in αS while all other

schemes have around 100% fidelity. This is because the geometric partitioning always includes views

with small/medium number of bins (e.g., 20,21,22,23), which are typically the ones that provide high

overall utility.

Approximation with View Refinement and Skipping (Figure 3.21): Figure 3.21 shows the cost of

Linear-Linear(R) and Linear-Linear(S), which employ approximations during the vertical search. As

the figure shows, the cost of Linear-Linear(S) is lower than Linear-Linear because it reduces the

search space by assuming that one bin size for a dimension would fit for all measures and functions.

Meanwhile, Linear-Linear(R), with default binning de f = 4, offers the lowest cost as it vertically

choses the top-k views in an initial pass and then the horizontal search is done only for those top-k

views. In terms of fidelity, both Linear-Linear(S) and Linear-Linear(R) achieve around 95% fidelity.

56 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

0

5

10

15

Age

(a) Vi,8

0

5

10

15

21-30 31-40 41-50 51-60
Age

(b) Vi,4

0

5

10

15

20

21-40 41-60
Age

(c) Vi,2

Figure 3.22: Generating Vi,2 by performing aggregation on Vi,4 or Vi,8

3.5 Materialized View Selection for Aggregate View Recommen-

dation

3.5.1 Problem Definition

As mentioned in Section 4.3.1, the view recommendation process involves the generation of a huge

number of the comparison and the target views. Particularly, these views are the result of executing

their corresponding aggregate queries. Section 3.4.1 outlines how colossal the cost is for the binned

view recommendation problem. However, we notice that for binned aggregate queries, the result of

certain queries can be used to answer other queries.

3.5. MATERIALIZED VIEW SELECTION FOR AGGREGATE VIEW RECOMMENDATION 57

Figure 3.23: Lattice for View Vi with B = 8

Example 6. For example, consider a table of employees, which has Age as a numerical dimension

attribute. Particularly, one of the aggregate views on this attribute is count the number of employees

grouped by Age. For this type of views, it is more meaningful if adjacent intervals are grouped together

and shown in a summarized way. For example, Figure 3.22a shows the whole range grouped in 8 bins,

while Figure 3.22b and 3.22c show range grouped in 4 bins and 2 bins respectively. It can be clearly

seen that the view Vi,2 can be answered from views Vi,4 and Vi,8, by performing aggregation on these

views instead of the base table.

We term this relationship as dependency. For instance, view Vi,2 depends on Vi,4, Vi,6 and Vi,8.

Definition: View Dependency: a binned view Vi,b depends on another binned view Vi,b′ , if Vi,b can be

answered using Vi,b′ , where b′ is a multiple of b i.e., b′ = xb.

For any non-binned view Vi, all the possible binned views Vi,b can be directly generated from the

base table. Therefore, every Vi,b at least depends on the base table, and at most depends on B
b − 1

other views Vi,b′ . The dependency relationship between the candidates can be represented by a lattice.

Figure 3.23 shows the lattice for a particular non-binned view Vi that can have a maximum of 8 bins.

Each node in the lattice represents a binned view, e.g. node 5 is binned view Vi,5, while node 0

represents the base table. A view can be generated using any of its ancestors in the lattice. For instance,

the ancestors of node 3 (i.e.,Vi,3) are node 6 (i.e.,Vi,6) and node 0 (i.e., base table).

Every Vi,b′ is a candidate view that can be reused to generate some other views. Specifically, Vi,b

can be cached in the memory or stored on the disk for later reuse. However, because of the limited

memory it is practical to store the view on the disk. Therefore, we propose to materialize the views

that are later required to be reused. For instance, in Figure 3.23, every view that is an ancestor of at

least one other view is a candidate view to be materialized. A key problem is how to decide which

views should be reused? The three possible options are:

1. Reuse nothing: This is the baseline case in which all the queries are answered from the base

table. Consequently, this would incur the query processing time for each binned view from

scratch.

58 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

2. Reuse the whole lattice: In this case all views should be materialized. This would reduce the

query processing time of each binned view but the overall execution time of the solution will

increase because it would include the additional cost of materializing the views.

3. Reuse a set of views: Choose an optimal set of views T to reuse and materialize them. This will

incur the cost of materialization but reduce the overall cost of the solution because a number of

queries will be answered from the materialized views instead of the base table.

The best option is to reuse a set of views, which has a possibility of reducing the overall cost.

However, a cost benefit analysis between answering the views directly from the base tables vs.

materializing the views and answering some views from those materialized ones is required.

View Processing Cost

Recall from Section 3.4.1, the total cost incurred in processing a binned view Vi,b is the sum of the costs

of executing target and comparison queries, calculating deviation and accuracy (Eq 3.7). However, we

note that the cost of computing deviation and accuracy is negligible as compared to query execution

cost, as it involves no I/O operations. Furthermore, for simplicity in the next sections we assume

C(Vi,b) =Ct(Vi,b)+Cc(Vi,b). Therefore, Eq 3.7 is reduced to:

C(Vi) =
B

∑
b=1

C(Vi,b) (3.11)

The goal of this study is to propose schemes that reduce the cost Ct(Vi,b) and Cc(Vi,b), which will

consequently reduce the overall cost C of the solution. For that purpose, let Cb(Vi,b) be the cost of

answering a binned view Vi,b from the base table. Then in Eq 3.11, the cost of finding the top-1 binned

view (C(Vi)), for the non-binned view Vi, can be rewritten as:

C(Vi) =

L
w

∑
b=2

Cb(Vi,b) (3.12)

Notice C(Vi) actually specifies the cost for option 1, where nothing is reused. For the other options,

where reuse is involved, let Cm(Vi,b) be the cost of answering Vi,b from a materialized view. Addition-

ally, let the views be divided into two sets: 1) Dependent Set: the views that can be answered from

T belong to the dependent set P, and 2) Independent Set: the views that cannot be answered from T
belong to the independent set I. Particularly, the views in I need to be answered from the base table.

Let the cost of materializing a view Vi,b′ is CM(Vi,b′), then Eq 3.13 specifies the cost for option 3:

C(Vi) = ∑
Vi,bεP

Cm(Vi,b)+ ∑
Vi,bεT

CM(Vi,b)+ ∑
Vi,bεI

Cb(Vi,b) (3.13)

Definition: Materialized View Selection for View Recommendation: Given all the binned views

Vi,b for a non-binned view Vi, find a set T of views to materialize, which minimize the cost C(Vi) of

finding the top-1 binned view.

3.5. MATERIALIZED VIEW SELECTION FOR AGGREGATE VIEW RECOMMENDATION 59

Figure 3.24: Example of Cost Model for HashAggregate Operator Where bm = 8 and b = 4

In the next sections we present our proposed schemes that adapt and extend algorithms of ma-

terialized view selection towards efficiently solving the aggregate view recommendation problem.

3.5.2 mView: Greedy Approach

As explained int Section 3.3.3, the large number of possible binned views, makes the problem of

finding the optimal binning for a certain view Vi highly challenging. An exhaustive brute force strategy

is that given a certain non-binned view Vi, all of its binned views are generated and the utility of each

of those views is evaluated. Consequently, the value of b that results in the highest utility is selected as

the binning option for view Vi. However, this involves massive cost of processing all possible binned

views.

In this work, we propose a novel technique mView, which instead of answering each query related

to a view from scratch, reuses results from the already executed queries through view materialization.

Particularly, mView maintains two sets of views; 1) T: the views that are finalized to be materialized, 2)

Cand: set of candidate views that can be added to T and consequently get materialized. The proposed

technique mView adapts a greedy approach to determine T for materialization. Initially, Cand and T
are empty. Then for a non-binned view Vi, a lattice as shown in Figure 3.23 is constructed, using an

adjacency list after identifying dependencies among the views. The search for the top-1 binned view

starts from the binned view Vi,b where b = 1. All of the views that are ancestors of Vi,b in the lattice

are added to the set Cand. Next, the benefit of materializing each view in Cand is computed.

We study in detail how to compute the benefit of materializing a view in the next paragraph. After

benefit calculation, from the set Cand, a view Vm, which provides the maximum benefit is selected.

Vm is added in T if it is not already in T. Consequently, Vm is materialized and Vi,b is generated from

Vm. In next iteration Cand is set to empty again and the ancestors of the next binned view are added

to Cand. This process goes on until all of the Vi,b have been generated. Clearly, for this technique to

work efficiently, a cost model is required to estimate the benefit of materializing views without actual

materialization. Therefore, next we define that cost and benefit model.

Cost Benefit Analysis

As mentioned earlier, to decide which views are the best candidates for materialization, the cost and

benefit of materialization needs to be analyzed. Specifically, we use processing time as our cost metric

60 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

to measure performance of the schemes. In the linear cost model, the time to answer a query is taken

to be equal to the space occupied by the underlying data from which the query is answered [79, 80].

In this work, the same model is adopted with some modifications. Assume that the time to answer

the aggregate query Q is related to two factors; 1) the number of tuples of the underlying view from

which Q is answered, which is actually the number of bins of the ancestor view, and 2) the amount

of aggregation required to answer Q. Normally, a relational DBMS uses HashAggregate as query

execution plan for group-by queries. Particularly, in this study PostgreSQL is used as backend database,

which uses HashAggregate as query execution plan for group-by queries. Hence, the cost model used

by the query optimizer, particularly PostgreSQL consists of a vector of five parameters to predict the

query execution time [81]; 1) Sequential page cost (cs), 2) Random page cost (cr), 3) CPU tuple cost

(ct), 4) CPU index tuple cost (ci), and 5) CPU operator cost (co). The cost CHA of the HashAggregate

operator in a query plan is then computed by a linear combination of cs, cr, ct , ci, and co:

CHA = nscs +nrcr +ntct +nici +noco

Where the values n = (ns,nr,nt ,ni,no)
T represent the number of pages sequentially scanned, the

number of pages randomly accessed, and so forth, during the execution.

Generally, for estimating cost of an operator, the values in vector n are estimated. However, in our

case, the already known number of rows of a materialized view (i.e, number of bins of that view) and

target view can be used for vector n. For instance, Figure 3.24 shows the steps of the HashAggregate

operator for generating a view with 4 bins from a view with 8 bins, and the cost incurred. Specifically,

The operation of generating a view with b bins from a view with bm bins has the following parameters:

• nscs & nrcr: cs and cr are the I/O costs to sequentially access a page and randomly access a

page, while ns and nr are the number of sequentially and randomly accessed pages respectively.

Generally, size of a page is 8KB. Consequently, ns depends on the page size, size of each row

(let it be r), and the number of rows read, which is equal to the number of bins of the materialized

view, i.e., ns =
8KB
r×bm

. Furthermore, cs and cr depends on whether the data is fetched from the

disk or it is already in cache. Particularly, this cost is negligible for the later case and that is the

case in our model.

• ntct : ct is the cost of scanning each row and nt is the number of rows scanned, which is equal to

the number of bins of the materialized view, i.e., nt = bm.

• nici: ci is the cost to place the row in a bucket (bin) using hashing and ni is the number of rows

hashed, which is equal to the number of bins of the materialized view, i.e., ni = bm.

• noco: co is the cost to perform aggregate operation such as sum, count etc., and no is the number

of aggregate operations performed. If Vi,b is answered from Vi,bm , then there are b buckets and

each bucket will require bm
b −1 aggregate operations, i.e., no = b(bm

b −1) = bm−b.

Therefore, the cost of HashAggregate operator CHA is:

CHA = ntct +nici +noco

3.5. MATERIALIZED VIEW SELECTION FOR AGGREGATE VIEW RECOMMENDATION 61

CHA = bmct +bmci +(bm−b)co

CHA = bm(ct + ci + co)+b(−co)

The costs ct , ci, and co remain same for all queries. therefore, we replace them with simple constants c

and c′ such that: c = ct + ci + co and c′ =−co. Hence,

CHA = bm× c+b× c′

Therefore, the cost of generating Vi,b from materialized view Vi,bm is:

Cm(vi,b) = bm× c+b× c′ (3.14)

Where c and c′ are learnt through multi-variable linear regression. Consequently, the benefit of

materializing a view Vi,bm is computed by adding up the savings in the query processing cost for each

dependent view Vi,b over answering Vi,b from the base table and subtracting the cost of materialization

of Vi,bm .

B(Vi,bm) = ∑
Vi,b∈P

[(Cb(Vi,b)−Cm(Vi,b))]−CM(Vi,bm) (3.15)

In this section, we listed the details of our proposed technique mView for the exhaustive search,

which is also called Linear search. When this scheme is applied to a non-binned view Vi, it results

in a top-1 binned view, this is termed has horizontal search. Furthermore, applying this to every

non-binned view, their corresponding top-1 binned views are identified and from there top-k views can

be easily recommended, this is termed as vertical search. In our experiments, we differentiate between

horizontal and vertical search and the scheme applied to each direction.

3.5.3 Materialized views with MuVE

In [1, 2], we argue that the deviation based utility metric falls short in completely capturing the

requirements of numerical dimensions. Hence, a hybrid multi-objective utility function was introduced,

which captures the impact of numerical dimension attributes in terms of generating visualizations that

have: 1) interestingness (D(Vi,b)): measured using the deviation-based metric, 2) usability (S(Vi,b)):

quantified via the relative bin width metric, and 3) accuracy (A(Vi,b)): measured in terms of Sum

Squared Error (SSE). The proposed multi-objective utility function, was defined as follows:

U(Vi,b) = αD×D(Vi,b)+αA×A(Vi,b)+αS×S(Vi,b) (3.16)

Parameters αD, αA and αS specify the weights assigned to each objective, such that αD +αA +αS = 1.

Furthermore, to efficiently navigate the prohibitively large search space MuVE scheme was proposed,

which used an incremental evaluation of the multi-objective utility function, where different objectives

were computed progressively. In this section, we discuss how to achieve benefits of both the schemes,

mView and MuVE.

Selecting T while using MuVE as search strategy is non-trivial, because of the trade-off between

MuVE and mView. In the MuVE scheme, the benefit of cost savings comes from the pruning of many

62 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

views and utility evaluations. A blind application of greedy view materialization, as in mView, may

result in materialization of views that gets pruned because of the MuVE’s pruning scheme. The idea

here is to estimate which views MuVE will eliminate and exclude those views from the set of candidate

views to materialize. To address this issue, we introduce a penalty metric, which is added to the benefit

function. Therefore, a candidates view Vi,bm , which has high certainty (represented as CE(Vi,bm)) of

getting pruned by MuVE gets a high reduction in its benefit of materialization. Particularly, a view

gets pruned due to either of the two factors; 1) short circuit of deviation objective, the certainty of this

pruning is represented as CED(Vi,bm), and 2) early termination, certainty of getting early terminated

is represented as CEE(Vi,bm). The certainty factor CE(Vi,bm) is the sum of the certainty of pruning

deviation evaluation (CED(Vi,bm)) and certainty of getting early terminated (CEE(Vi,bm)).

CE(Vi,bm) =CED(Vi,bm)+CEE(Vi,bm)

Therefore, the benefit of materializing a view in Eq 3.15 is updated as:

B(Vi,bm) = ∑
Vi,b∈P

[Cb(Vi,b)−Cm(Vi,b)]− [CE(Vi,bm)×CM(Vi,bm)] (3.17)

The certainty of pruning deviation computation depends on the ratio of αA and αD. MuVE uses a

priority function to determine which objective to evaluate first, in other words MuVE tries to prune the

objective, which is not evaluated first. According to that function if αA is greater than αD there is a

chance of pruning the deviation objective. We are interested in pruning deviation evaluation as it is the

only objective that involves execution queries for target and comparison views.

CED(Vi,b) =

{
0 f or αA

αD
<1

αA
αD
×10 f or αA

αD
=1

}
(3.18)

The certainty of early termination depends on αS and b, higher value of αS or b means the chance of

getting early termination is high.

CEE(Vi,b) =

{
0 f or αS<0.5

αS× b
L f or αS≥0.5

}
(3.19)

3.5.4 Experimental Testbed

We perform extensive experimental evaluation to measure the efficiency of top-k view recommendation

strategies presented in this section. Here, we present the different parameters and settings used in our

experimental evaluation.

Setup: We built a platform for recommending visualizations, which extends the SeeDB codebase [6]

to support view materialization based schemes presented. Our experiments are performed on a Corei7

machine with 16GB of RAM. The platform is implemented in Java and PostgreSQL is used as the

backend DBMS.

Schemes: We investigate the performance of the different combinations of the vertical and horizon-

tal search strategies presented in [1] with mView proposed in this thesis. Our naming convention for

3.5. MATERIALIZED VIEW SELECTION FOR AGGREGATE VIEW RECOMMENDATION 63

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
o

s
t

(S
ec

)

αS

Linear-Linear

MuVE-Linear

MuVE-MuVE

mView(Linear-Linear)

mView(MuVE-MuVE)

mView(MuVE-Linear)

Figure 3.25: Impact of αA and αS on cost,
while αD = 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
el

at
iv

e
D

if
fe

re
n

c
e

αS

Linear-Linear

MuVE-Linear

MuVE-MuVE

Figure 3.26: Impact of αA and αS on relative
difference, while αD = 0.2

those combinations is represented as: SearchH-SearchV, where SearchH denotes the search strategy

employed for horizontal search, whereas SearchV is the one for the vertical search. This leads to the

following combinations: Linear-Linear, MuVE-Linear, and MuVE-MuVE as baseline schemes and

mView(Linear-Linear), mView(MuVE-Linear), and mView(MuVE-MuVE) as proposed schemes.

Data Analysis: As in [6], we assume a data exploration setting in which a multi-dimensional

dataset of diabetic patients1 is analyzed. The DIAB dataset has 9 attributes and 768 tuples. The

independent numeric attributes of the dataset are used as dimensions (e.g., age, BMI, etc.), whereas

the observation attributes are used as measures (insulin level, glucose concentration, etc.). In our

default setting, we select 3 dimensions, 3 measures, and 3 aggregate functions, which results in a

maximum of 2961 possible views. In the analysis, all the α values are in the range [0− 1], where

αD +αA +αS = 1. In the default setting, αD = 0.2, αA = 0.2, αS = 0.6, k = 5, and euclidean distance

is used for measuring deviation, unless specified otherwise.

Performance: We evaluate the efficiency and effectiveness of the different recommendations

strategies in terms of two factors:1) Cost: As mentioned in Section 4.4, the cost of a strategy is the

total cost incurred in processing all the candidate binned views. We use wall clock time to measure

the different components included in that cost namely, query execution time of target and comparison

views, deviation computation time, and accuracy evaluation time. 2) Relative Difference: The ratio

between cost of baseline schemes and the mView based schemes, i.e., Costo f baseline−Costo f mViewScheme
Costo f baselinescheme .

Each setting is executed 10 times and then average is taken as the cost incurred.

3.5.5 Experimental Evaluation

In the following experiments, we evaluate the performance of our technique mView under different

parameter settings. As explained in Section ?? that mView scheme is used in combination with the

baseline Linear scheme and optimized MuVE scheme. Additionally it was also mentioned that the

blind materialization of views while using MuVE search strategy may not be the optimal solution.

Therefore, for mView(MuVE-MuVE) and mView(MuVE-Linear) schemes an heuristic based method

was proposed to predict the expected early termination and short circuit point. Figures 3.25 and 3.27

1https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

64 CHAPTER 3. EFFICIENT BINNED VIEW RECOMMENDATION

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
o

s
t

(S
ec

)

αD

Linear-Linear

MuVE-Linear

MuVE-MuVE

mView(Linear-Linear)

mView(MuVE-MuVE)

mView(MuVE-Linear)

Figure 3.27: Impact of αA and αD on cost,
while αS = 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
el

at
iv

e
D

if
fe

re
n

c
e

αD

Linear-Linear

MuVE-Linear

MuVE-MuVE

Figure 3.28: Impact of αA and αD on relative
difference, while αS = 0.2

show the impact on cost, while Figures 3.26 and 3.28 quantifies the percentage improvement achieved

in terms of relative difference using the view materialization scheme.

In Figures 3.25 and 3.26, αD is set to constant 0.2 while αA and αS are changing. In particular,

as shown in the figures, αS is increased, while αA is implicitly decreased and is easily computed

as αA = 1−αD−αS. Figure 3.25 shows that cost mView(Linear-Linear) is less than the baseline

scheme Linear-Linear. This is because mView chooses such a set of views to materialize that saves

aggregation time by generating them from the materialized views. Furthermore, Figure 3.26 shows

mView(Linear-Linear) reduces the cost by almost 30% as compared to the Linear-Linear scheme.

Figure 3.25 also shows that using our proposed heuristic in mView(MuVE-MuVE) and the incremental

view materialization of mView, the cost is further reduced. This is due to the reason that we avoided

the unnecessary materialization of views which are eventually pruned by mView(MuVE-MuVE).

Furthermore, Figure 3.26 shows mView(MuVE-MuVE) reduces the cost by almost 70% as compared to

MuVE-MuVE at αS = 0.6.

In Figures 3.27 and 3.28, αS is set to constant 0.2 while αA and αD are changing. Figure 3.27

clearly shows that mView based three schemes have less cost compared to the other three schemes.

The difference in cost for the mView(MuVE-MuVE) scheme is more than 30% at αD = 0.1 as shown in

Figure 3.28.

3.6 Summary

In this chapter we presented a novel utility function and a suite of search schemes for recommending

top-k aggregate data visualizations. Our utility function recognizes the impact of numerical dimensions

on visualization, which is captured by means of multiple objectives, namely: deviation, accuracy,

and usability. Our proposed search schemes further incorporate that utility function for the purpose

of recommending the top-k aggregate data visualizations. A key goal in the design of those search

schemes is to efficiently prune the prohibitively large search space of possible data aggregations.

That goal is reasonably achieved by our MuVE scheme, and is further improved by uMuVE, at the

expense of a high memory usage. Accordingly, we presented MuMuVE, which provides a pruning

3.6. SUMMARY 65

power close to that of uMuVE, while keeping memory usage within predefined constrain. Moreover,

we also presented another novel technique mView for recommending top-k binned aggregate data

visualizations. The proposed scheme reuses the already executed views through materialization and

answering the later queries from the materialized views. We have provided extensive experimental

evaluation, which illustrate the benefits achieved by proposed schemes.

Chapter 4

Input Query Refinement for View
Recommendation

4.1 Introduction

Visual data exploration is the rudiments of deriving insights from large datsets. Typically, it involves

an analyst going through the following steps: 1) selecting a subset of data for analysis, 2) generating

different visualizations of that analyzed data, and 3) sifting through those visualizations looking for

the ones that reveal interesting insights. Based on the outcome of the last step, the analyst might have

to refine their initial selection of data so that the newly analyzed subset would show more interesting

insights. This is clearly an iterative process, in which each selection of data (i.e., input query) is a

springboard to the next one. For this time-consuming process to be effective, a challenging combination

of system and domain expertise is required.

Motivated by the need for an efficient and effective visual data exploration process, several solutions

have been proposed towards automatically finding and recommending interesting data visualizations

(i.e., steps 2 and 3 above) [1,6–9]. The main idea underlying those solutions is to automatically generate

all possible views of data, and recommend the top-k interesting views, where an interestingness of

a view is quantified according to some utility function. Recent work provides strong evidence that

a deviation-based formulation of utility is able to provide analysts with interesting visualizations

that highlight some of the particular trends of the analyzed datasets [1, 6, 9, 15]. In particular, the

deviation-based metric measures the distance between the probability distribution of a visualization

over the analyzed dataset (i.e., target view) and that same visualization when generated from a reference

dataset (i.e., comparison view), where the reference dataset is typically the entire database from which

that analyzed data is extracted. The underlying premise is that a visualizations that results in a

higher deviation is expected to reveal some interesting insights that are very particular to the analyzed

dataset [1, 6, 9, 15].

Existing solutions have been shown to be effective in recommending interesting views under

the assumption that the analyst is precise in their selection of analyzed data. That is, the analyst is
67

68 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

Figure 4.1: View from Refined Query Q1 (Far from Q)
Target View Vi(DQ1): SELECT Occupation COUNT(*) FROM C

WHERE education ≤ 1 GROUP BY Occupation

Comp. View Vi(DB): SELECT Occupation COUNT(*) FROM C

GROUP BY Occupation

Deviation = 0.2614147363382412

able to formulate a well-defined input query that selects a subset of data, which contains interesting

insights that can be revealed by the recommended visualizations. However, such assumption is

clearly impractical and extremely limits the applicability of those solutions. In reality, it is typically a

challenging task for an analyst to select a subset of data that has the potential of revealing interesting

insights. Hence, it is a continuous process of trial and error, in which the analyst keeps refining their

selection of data manually and iteratively until some interesting insights are revealed.

Therefore, in this work we argue that, in addition to the existing solutions for automatically

recommending interesting views, there is an equal need for solutions that can also automatically select

subsets of data that would potentially provide such interesting views. That is, there is a need for

solutions in which the two tasks of data selection as well as view recommendation are both automated

and work together in synergy.

To further illustrate the need for such solution, we presented Ex. 2 in Chap 1. The example

illustrated a clear need for a query refinement solution that is able to automatically modify the analyst’s

initial input query into a new query, which selects a subset of data that includes interesting insights.

Those hidden insights are then easily revealed using existing solutions that are able to recommend

interesting visualizations. To that end, one straightforward and simple approach would involve

generating all the possible subsets of data by automatically refining all the predicates of the input query.

In our example above, that would be equivalent to generating all refinements of the predicate WHERE

education ≥ 12. Consequently, for each subset of data selected by each query refinement, generate

all possible aggregate views (i.e., visualizations). In addition to the obvious challenge of a prohibitively

large search space of query refinements, that naive approach would also lead to visualizations that

might appear to be visually interesting but they are useless from the analyst’s perspective. To illustrate

that limitation, consider the following example.

Example 7. Now assume that the naive approach described above is applied to the input query Q

4.1. INTRODUCTION 69

Figure 4.2: View from Refined Query Q2 (Close to Q)
Target View Vi(DQ2): SELECT Hours per Week COUNT(*) FROM C

WHERE education ≥ 16 GROUP BY Hours per Week

Comp. View Vi(DB): SELECT Hours per Week COUNT(*) FROM C

GROUP BY Hours per Week

Deviation = 0.16898935750541005

specified in Example 2. That is, the all possible refinements of Q are generated so that to find and

recommend visualizations that are more interesting than the one shown in Figure 1.4. Particularly,

after generating all those possible refined queries with all the possible values for the predicate on the

education attribute, the recommended top visualization is shown in Figure 4.1. That visualization is

recommended based on the following refined query Q1:

Q1:SELECT * FROM C WHERE education ≤ 1,

As Figure 4.1 shows, that visualization is based on plotting the probability distribution of the

occupation attribute for those who never went to school (i.e., education ≤ 1) vs. the population.

Clearly, Figure 4.1 is visually interesting as the probability distribution of the target view is

significantly different from the comparison view (i.e., deviation = 0.261414..).

However, there are two issues with that refinement, and in turn the recommended visualization:

1) similarity-oblivious: a blind automated refinement that is oblivious to the analyst’s preferences

might result in a refined query that is significantly dissimilar from the input query. For instance, in this

example the analyst’s intention is to analyze the subset of data for those who completed high school

(i.e., education ≥ 12), whereas the refined query selects for the analysis those who never went to

school (i.e., education ≤ 1). 2) statistical insignificance: as Figure 4.1 shows, the target view is

missing a number of values for the occupation attribute, which indicates that the subset selected by

the refined query Q1 is possibly too small for analysis, and in turn statistically insignificant.

The two issues mentioned above highlight the need for automatic refinement solutions that are

guided by the user’s preference, which is precisely the focus of this work. In particular, we propose a

novel scheme for automated query refinement for view recommendation in visual data exploration,

called QuRVe. Before discussing the details of QuRVe in the next sections, we illustrate its benefits

using following example:

Example 8. Figure 4.2 shows the top view recommended by QuRVe based on the input query Q

provided in Example 2. That view is generated based on automatically refining Q into the new modified

70 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

and statistically significant query Q2, which is specified as:

Q2:SELECT * FROM C WHERE education ≥ 16

Notice that Q2 is clearly more similar to the input query Q than the previously refined query Q1

discussed in Example 7. Particularly, instead of analyzing the data for those who completed high

school (i.e., education ≥ 12), the refined query Q2 analyzes the data for those who completed

a college degree (i.e., education ≥ 16). More importantly, the recommended view based on the

refined Q2 shows a uniquely interesting insight. Specifically, as Figure 4.2 shows, highly educated

people tend to work more hours than the rest of the population. More precisely, it shows that only 13%

of the population work more than 50 hours a week, whereas that percentage goes up to 30% for those

have completed college.

Based on the previous example our key goal in designing QuRVe is to recommend interesting

visualizations, while at the same time achieving high effectiveness and efficiency. To ensure that

desired effectiveness, we formulate the problem of refining query for recommending top-k aggregate

visualization as a multi-objective optimization problem. Particularly, given an input query Q, the

optimization objective is to find those top-k interesting visualizations from all possible refinements

of the input query according to a similarity-aware utility function, subject to predefined constraints

on statistical significance. Clearly, such formulation is challenged by the large number of possible

refinements and corresponding visual representations generated per refinement. Hence, to achieve

efficient recommendation, QuRVe introduces novel search algorithms that are particularly optimized

to leverage the specific features of the problem for pruning the large search space.

4.2 Related Work

4.2.1 Query Refinement

Our work stands out from existing query refinement techniques because it addresses a novel problem

of automatic query refinement for statistically significant visual recommendation. The existing work

of query refinement in the domain of data exploration can be divided into three categories. Firstly, the

refinement of queries for satisfying cardinality constraints. Secondly, exploring predicates to answer

why questions and to explain outliers. Thirdly, refining queries for general aggregate results. [82] is the

seminal work on query refinement to satisfy cardinality constraints on the query result. This cardinality

constrained based refinement has applications in the many/few answers problems. This work addresses

a relaxed problem compared to us, as only partial combinations are generated due to interactivity with

the user. In comparison, core of our work is around the automation objective, however we also combine

the user preference through weighted similarity metric and other control parameters of the proposed

schemes. Scorpion [83] similar to us, is another system to analyze large datasets through aggregates.

However, while our system refine predicates to find interesting aggregate views, scorpion takes a set

of outlier points in an aggregate query result as input and finds predicate that explain the outliers.

Aggregate operator’s properties are used to derive the search and prune the predicate search space.

4.3. PRELIMINARIES 71

SAQR [84] proposed scheme for similarity-aware refinement of aggregate queries, which satisfy the

aggregate and similarity constraints imposed on the refined query and maximize its overall utility. The

recent research with similarities to our work is [85], however their goal is to generate set of alternative

queries to meet the constraint on similarity to the original query and the aggregate constraint. While,

our goal is to generate alternate queries to maximize utility based on similarity to the original query

and deviation from the reference dataset. The proposed partitioning based optimization to speed up

query processing because of overlap between refined queries is orthogonal to our work, as we also

have these overlapping queries.

4.2.2 Hypothesis Testing

Hypothesis testing is a well studies area in the domain of statistics. However, very little work has been

done in the domain of data exploration in terms of determining statistical significance of explored

data. Towards exploratory hypothesis testing and analysis [86], was one of the initial attempts to

connect hypothesis testing to database domain. They find sub-populations for comparison, using

frequent pattern mining techniques and then perform significance tests. The hypothesis that are found

statistically significant are further analyzed. Another work related to statistically significant data driven

discoveries is [87]. In this work a framework is proposed that allows the user to query for statistically

significant relationships between data sets, while our work focuses on finding statistically significant

visualizations within one dataset. Additionally, restricted monte carlo tests for correlations of data sets

are developed. The initial experiments indicate that the significance tests can help the data discovery

process. Similar to our work is [55], which automatically creates hypothesis based on aggregate

queries and perform significance testing based on chi-square tests.

4.3 Preliminaries

In this section, we first describe the basics of view recommendation, followed by automatic query

refinement in general. We also describe testing statistical significance and estimating sample sizes

based on hypothesis testing for view recommendation.

4.3.1 View Recommendation

Similar to the recent data visualization platforms [1, 6–8, 17, 64], we are given a multi-dimensional

dataset DB(A,M), where A is the set of dimension attributes and M is the set of measure attributes.

Additionally, F is the set of possible aggregate functions over the measure attributes M. In a typical

visual data exploration session the user chooses a subset DQ of the dataset DB by issuing an input

query Q. For instance, consider the following query Q:

Q: SELECT * FROM DB WHERE T;

In Q, T specifies a combination of predicates, which selects DQ for visual analysis (e.g., education

≥ 12 in Example 2). A visual representation of Q is basically the process of generating an aggregate

72 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

Symbol Description
DB Database
DQ Subset of data selected by Q
Q Input query
T Predicates in input query
Q j A refined query
Q Set of refined queries
A Set of dimension attribute
M Set of measure attribute
F Set of aggregate function
P Set of attributes for predicates
Vi(DQ) ith Aggregate view on DQ

Vi,Q j ith Aggregate view on refined query Q j

N Total number of views
D(Vi) Deviation of a view Vi

S(Q,Q j) Similarity between Q and Q j

DM Theoretically maximum deviation of any view
Du Upper bound on deviation of any views

Table 4.1: Summary of symbols

view Vi of its result (i.e., DQ), which is then plotted using some visualization methods such as bar

charts, scatter plots, etc. Therefore, an aggregate view Vi over DQ is represented by a tuple (A,M,F,b)

where A ∈ A, M ∈ M, F ∈ F and b is the number of bins in case A is numeric. That is, DQ is

grouped by dimension attribute A and aggregated by function F on measure attribute M. For instance,

(Hours per Week, *,COUNT,2) represents the aggregate view shown in Fig. 1.4.

Manually finding interesting views of data is a time-consuming task. Towards automated visual

data exploration, recent approaches have been proposed for recommending interesting visualizations

based on deviation based metric (e.g., [1, 6–8, 17]). In particular, it measures the deviation between the

aggregate view Vi generated from the subset data DQ vs. that generated from the entire database DB,

where Vi(DQ) is denoted as target view, whereas Vi(DB) is denoted as comparison view. To ensure that

all views have the same scale, each target view Vi(DQ) and comparison view Vi(DB) is normalized into

a probability distribution P[Vi(DQ)] and P[Vi(DB)] and it is bounded by the maximum deviation value

DM. Accordingly, the deviation D(Vi), provided by a view Vi, is defined as the normalized distance

between those two probability distributions.

D(Vi) =
dist(P[Vi(DQ)],P[Vi(DB)])

DM
(4.1)

Consequently, the deviation D(Vi) of each possible view Vi is computed, and the k views with the

highest deviation are recommended (i.e., top-k) [1, 2, 6, 15]. Hence, the number of possible views to

be constructed is N = 2×|A|× |M|× |F|, which is clearly inefficient for a large multi-dimensional

dataset.

As explained earlier, the input query provided by the user is the cornerstone for recommending

interesting views. However, formulating a well-defined input query that selects a subset of data, which

contains interesting views is a non-trivial task. Therefore, in this work we argue that in addition to

4.3. PRELIMINARIES 73

existing visualization recommendation solutions, there is an equal need for query refinement solutions,

that automatically refine input query to select subsets of data that would reveal interesting visualizations.

In the next section we discuss the preliminaries of refining a query.

4.3.2 Query Refinement

Automatic query refinement is a widely used technique for DBMS testing, information retrieval and

data exploration. In a nutshell, in this technique the user provides an initial query and then it is

progressively refined to meet a particular objective. In the context of data exploration and aggregate

queries, query refinement has been used to automatically recommend queries for satisfying cardinality

and aggregate constraints [82, 85], explaining outliers [83] and answering why not questions [88].

In this work, we propose to automatically refine input query for the objective of view recommen-

dation. Particularly, as mentioned in Section 4.3.1, the user provides an input query Q, in which

T specifies a conjunction of predicates. The input query is progressively refined by automatically

enumerating all combinations of predicates for the objective of generating interesting views.

Particularly, we consider queries having numeric selection predicates with range (<,≤,>,≥)

operators. These predicates are defined on a set of numeric dimension attributes denoted as P. The

number of predicates is p, such that |P|= p. Each of this range predicate is in the form li ≤ Pi ≤ ui

where Pi ∈ P and li and ui are the lower and upper limits of query Q along predicate Pi. The domain

of predicate Pi is limited by a Lower bound Li and upper bound Ui. A refined query Q j for an input

query Q is generated by modifying the lower and/or upper limits for some of the predicates in Q.

That is, for a predicate li ≤ Pi ≤ ui in query Q, a refined predicate in Q j takes the form l′i ≤ Pi ≤ u′i .

The predicate that is not included in T is equivalent to Li ≤ Pi ≤Ui. Similar to [82, 84], we convert

the range predicated into two single sided predicates. Therefore, li ≤ Pi ≤ ui is converted to two

predicates: Pi ≤ ui
∧
−Pi ≤−li. This allows refinement of one or both sides of the range predicates

and this results in the total number of single sided predicates to be 2p. The refinement can be in one

of the two directions: i) contracting i.e. decreasing the value of the predicate and ii) expanding i.e.

increasing the value of the predicate. The set of all of the refined queries is denoted as Q. The number

of all possible refinements is exponential in p and forms a combinatorial search space. For instance, if

predicate Pi is discrete and refinements are in step of 1.0, then number of all possible refinements are

ni =
ai(ai+1)

2 where ai =Ui−Li. For p such predicates the combinations of all possible refinements are

n1×n2×np ≈ np. In other words size of the set Q is approximately np (i.e., |Q| ≈ np). Consider

the following example to clearly understand the predicate specification and refinement.

Example: Consider the query Q in Example 2, in Q only li = 12 is defined explicitly, however

ui =Ui = 16 is automatically added and Q is completely defined as follows:

Q:SELECT * FROM C WHERE 12 ≤ education ≤ 16

After converting to single sided predicated it would become

education ≤ 16 and -education ≤ -12

74 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

A refined query Q j is obtained by expanding or contraction one or more predicates Pi ∈ T to P′i ,

this makes Q j different from the input query Q. A refined query that is significantly dissimilar from

the input query, results in loss of user preference. Therefore, to quantify the change that has been made

to Q to get the refined query Q j, we define a similarity measure S(Q,Q j) in terms of the distance of

Q j from Q i.e., s(Q,Q j).
S(Q,Q j) = 1− s(Q,Q j) (4.2)

In Section 4.5, we define the distance s(Q,Q j) to quantify the change made to the input query to get

the refined query.

4.3.3 Hypothesis Testing

In visual exploration sometimes the visually observed difference may not actually be statistically

significant, specially in the case of view recommendation, which involves summary data based

visualizations and their ranking [55, 89, 90]. Particularly, with our recommendation tool [1, 2], we

made the following observations:

• Some of the recommended top-k target views have very few underlying tuples, which lead to

higher deviation values. Consequently, such views receive higher rank despite of the lack of real

insight, for instance, the target view shown in Fig 4.1 of Example 7.

• Sometimes the subset under analysis has only low deviation views, for instance, the case

discussed in Example 2. Furthermore, in such situation there are many views with very similar

deviation values. This actually means that the difference observed is not statistically significant

and the top-k recommendation must consider additional criteria along with the deviation value.

For instance, the target view shown in Fig 1.4 of Example 2 is not statistically significant.

To determine whether the observed difference is statistically significant, we employ the widely used

approach of hypothesis testing. Hypothesis testing determines if there is enough evidence for inferring

that a difference exists between two compared samples or between a sample and population. A

difference is called statistically significant if it is unlikely to have occurred by chance [89]. Hypothesis

testing involves testing a null hypothesis by comparing it with an alternate hypothesis. The hypothesis

to be tested is called the null hypothesis, denoted as H0. The null hypothesis states that there is

no difference between the population and the sample data. The null hypothesis is tested against an

alternate hypothesis, denoted as H1, which is what we have observed in the sample data. For instance,

in Fig 1.4 of Example 2, the hypothesis is that the high school graduates work different number of

hours per week (Hours worked is divided into two categories) as compared to the population, and this

becomes the alternate hypothesis. The corresponding null hypothesis is that no such difference exits.

Likewise all the views from refined queries become the alternate hypothesis.

Depending on the nature of the statistical test and underlying hypothesis, different null hypothesis

statistical tests have been developed, e.g., z-test and t-test for normal distribution. Moreover, these

tests assume that the data arise from a distribution described by parameters, for instance a normal

4.4. QUERY REFINEMENT FOR VIEW RECOMMENDATION 75

distribution is described with mean and variance. The choice of statistical test is based on the domain

and data under analysis .

Furthermore, after stating null and alternative hypothesis, the chosen statistical test returns the

p-value. The p-value is the probability of obtaining a statistic at least as extreme as the one that was

actually observed, given the null hypotheses is true. Accordingly, p-value for each hypothesis (i.e.,

pvalue(Vi)) is computed. Smaller p-value means it is very unlikely that the observed difference is

by chance and thus it is statistically significant. The p-value is compared against a priori chosen

significance level α . The conventionally used significance level is 0.05. if pvalue(Vi)≤ α , then the

null hypothesis H0 must be rejected, which means the Vi is statistically significant. Due to the nature

of the statistical test involved, the acceptance or rejection of H0 can never be free of error. If the test

incorrectly rejects or accepts H0, then an error has occurred. There can be following two types of

errors in hypothesis testing:

1. If H0 is rejected, while it was true, it is called Type-I error.

2. If H0 is accepted, while H1 was true, it is called Type-II error.

Type-II error is critical in our case because we do not want to reject views that might be interesting.

The probability of Type-II error is specified by user specified parameter β , which normally has a value

between 0.10 and 0.20. An alternate term is power, which is the probability of rejecting a false null

hypothesis, therefore, power = 1−β . A priori power analysis determines the minimum sample size

to obtain required power. By setting an expected size (ω), significance level (α), and power level (β),

the sample size necessary to meet this specification can be determined [91].

Although we can control our search by giving more weight to similarity, there can still be a situation

where the number of tuples is small. Consequently, it will lead to a target view having empty groups.

Hence, it will result in high deviation from the comparison view. This leads to false discoveries as the

high deviation is because of insufficient sample size, and not due to the different distribution of target

view from comparison view. Therefore, we perform power analysis, estimate the minimum sample

size required to achieve the specified power, and employ it as a constraint in our problem definition.

Consequently, the refined subsets that satisfy the minimum sample constraint participate in our search

of top-k views.

4.4 Query Refinement for View Recommendation

4.4.1 View Recommendation with Query Refinement

In this paper, we mainly focus on recommending the top-k aggregate views generated on the input

query Q and all refined queries Q j ∈ Q . In Section 4.3.1, we defined aggregate view Vi, on user

selected subset of data DQ (recall DQ is selected by input query Q). Accordingly, the Eq. 4.1 defined

the deviation of an aggregate view D(Vi), by calculating normalized distance between probability

distributions of Vi(DQ) and Vi(DB). However, after refining the input query and generating all Q j ∈Q,

76 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

we have views Vi from input query as well as from refined queries. Therefore, to identify origin of a

view Vi, we denote it as Vi,Q j , which means ith view of the query Q j. Accordingly, the Eq. 4.1 can be

modified to define the deviation D(Vi,Q j), provided by a view Vi,Q j , as:

D(Vi,Q j) =
dist(P[Vi(DQ j)],P[Vi(DB)])

DM
(4.3)

In next section, we formally define the problem of query refinement for view recommendation.

4.4.2 Problem Statement

In a nutshell, the goal of this work is to recommend the top-k bar chart visualizations of the results of

query Q and all refined queries Q j ∈Q according to some utility function. When the visualizations are

only of query Q such goal simply boils down to recommending the top-k interesting views based on

the deviation metric, as described in Section 4.3.1. However, that simple notion of utility falls short in

capturing the impact of refinement on input query. In particular, the automatic refinement introduces

additional factors that impact the interestingness and in turn utility of the recommended views. In

our proposed schemes, we employ a weighted multi objective utility function and some constraints to

integrate such factors, namely:

1. Interestingness: Is the ability of a view to reveal some interesting insights about the data, which

is measured using the deviation-based metric D(Vi,Q j) (Eq. 4.3).

2. Similarity: Is the similarity of the underlying refine query Q j of the view Vi,Q j , with the input

query Q, it is measured in terms of the similarity metric S(Q,Q j) (Eq. 4.2).

3. Statistical Significance: Is the ability of the query Q j and the view Vi,Q j to generate statistically

significant result, which is measured as a constraint by power(Q j) to check the size of the subset

selected by query Q j and pvalue(Vi,Q j) to check significance of the view Vi,Q j .

To capture the factors and constraints mentioned above, we first employ a weighted multi-objective

utility function, which is defined as follows

U(Vi,Q j) = αS×S(Q,Q j)+αD×D(Vi,Q j) (4.4)

where S(Q,Q j) is the similarity between input query Q and refined query Q j of the view Vi,Q j , and

D(Vi,Q j) is the normalized deviation of view Vi,Q j from the overall data.

Parameters αS and αD specify the weights assigned to each objective in our hybrid utility function,

such that αS +αD = 1. Those weights can be user-defined so that to reflect the user’s preference

between interestingness and similarity. Also, notice that all objectives are normalized in the range

[0,1]. Accordingly, the overall multi-objective utility function takes value in the same range (i.e.,[0,1]),

where the goal is to maximize that overall utility under specified constraints. Such goal is formulated

as follows:

Definition: Query Refinement for View Recommendation: Given an user-specified query Q on a

database DB, a multi-objective utility function U , a significance level α , statistical power 1−β and a

4.5. SEARCH SCHEMES 77

positive integer k. Find k aggregate views that have the highest utility values, from all of the refined

queries Q j ∈Q such that pvalue(Vi,Q j)≤ α and power(Q j)> 1−β .

In short, we premise that a view is of high utility for the user, if it satisfy the constraints, shows

high deviation and is based on a query that is similar to the user’s input query.

To estimate the cost incurred in solving the defined problem, note that for each refined query

Q j ∈Q, number of aggregate queries posed to the database equal to the number of aggregate views

generated i.e., 2×|A|× |M|× |F|. Furthermore, as discussed in previous section the number of refined

queries is exponential to the number of predicates p. Therefore, with query refinement the total number

of candidate views N are: N ≈ np×2×|A|× |M|× |F|.
This is a very large search space and require an effective navigation by maintaining minimum

cost. In Section 4.5 we propose different schemes to efficiently navigate the large search space for

recommending top-k views.

4.4.3 Similarity Aware Query Refinement

In this section we define our metric for measuring similarity between input query and refined query.

Eq 4.2 quantifies the change in the input query Q, by the refinement process, to get to a refined

query Q j, in terms of distance between Q and Q j. In literature, number of methods have been

proposed to measure the distance between two range queries. Specifically, distance between Q and

Q j can be measured in terms of Jaccard distance or edit distance between the predicates of the two

queries [88]. However, it is very coarse and fails to differentiate between the change in the value of

predicates. Another method is to measure the distance in terms of number of tuples changed in the two

queries [92, 93]. This quantifies the exact change in underlying data of the queries, however, it is an

expensive method because it requires database probes. Similar to [84, 85], we calculate the distance in

terms of absolute change in predicate values. This method provides a reasonable approximation of the

data at a negligible cost. Additionally, we normalize it by predicate bounds to take care of the different

scales of various predicates.

s(Q,Q j) =
1
p

p

∑
i=1

|lQ j
i − lQ

i |+ |u
Q j
i −uQ

i |
2|Ui−Li|

(4.5)

Example: Consider Q and Q1 of Example 2, the range of predicate education is [1,16], distance

between the two queries is: s(Q,Q1) =
|1−12|+|1−16|

2|16−1| = 0.86. In other words this mean there is 14%

similarity between Q and Q1. While, Q2 and Q has 87% similarity.

4.5 Search Schemes
For an input query Q, with a set of numeric dimension attributes P, each possible query refinement of

Q can be represented as a point in p-dimensional space, where |P|= p (please see Section 4.3.2 for

more details). Clearly, one of the points in that space is the input query Q itself, and the remaining

points belong to the set of refined queries Q. Our high-level goal is to: 1) generate the set Q, 2)

compute the utility of all the aggregate views generated from each query in Q, and 3) recommend the

78 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

Figure 4.3: Query Space Q

top-k views after ranking them based on their achieved utility. To that end, clearly the large size of

Q and the corresponding aggregate views, together with the complexity of evaluating the statistical

significance and utility function of each view, makes the problem highly challenging.

Hence, in this section, we put forward various search strategies for finding the top-k views

for recommendation. We present the baseline scheme namely Linear (Exhaustive) together with

our proposed schemes: i) Query Refinement for View Recommendation (QuRVe), ii)QuRVe with

tighter upper bounds (uQuRVe), iii) QuRVe with pseudo sorted cardinality (uQuRVe-range) and iv)

Approximation based schemes (uQuRVe(App)), (uQuRVe-range(App)).

4.5.1 Linear Scheme

Clearly, a naive way to identify the top-k objects is to score all those objects based on a scoring

function, sort according to their scores, and return the top-k objects. Accordingly, the Linear scheme is

basically an exhaustive, naive and brute force strategy, in which views from all possible queries are

generated and ranked according to their utility.

As we consider predicates on continuous dimensions, infinite possible values can be assigned to

predicates in refined queries. Therefore, each dimension is discretized with a user specified parameter

γ . This divides the range of dimension attribute into 1/γ equi-width intervals. In this scheme,

irrespective of Q, iteratively all possible refined queries are generated using all combinations of

Predicates P1,P2...Pp. For instance, in Fig. 4.3, the grid of two dimensions is shown. All intersections

points on the grid represent all refined queries at γ = 1
23 having predicates on dimensions d1 and d2,.

Moreover, for each query Q j ∈ Q, to check the constraint power(Q j) < 1− β , a function

powerTest(Q j, ω , β , α) is defined. The function returns true value if the constraint is satisfied,

otherwise it returns false. The cost of checking this constraint is one database probe, where a COUNT

query with predicates of Q j is executed to get the sample size of Q j.

Moreover, for the queries that satisfy the statistical power constraint, all views are generated. Then

for each view Vi,Q j the constraint pValue(Vi,Q j)≤ α is checked. Specifically, for this purpose, another

function significanceTest(Vi,Q j , α) is defined, which calculates the p-value and returns a true value if

p-value≤ α . The view that satisfied the constraint, their utility value U(Vi,Q j) is computed, and finally

the top-k views are returned.

4.5. SEARCH SCHEMES 79

Algorithm 1 QuRVe.

Require: Input query Q, an integer k, stepSize γ , Significance level α , Power level β , Effect size ω ,
Similarity weight αS.

Ensure: List of top-k views.
1: USeen← 0
2: UUnseen← 1
3: Qlist ← Q
4: Q j← Qlist .head
5: while !empty(Qlist) & UUnseen >USeen do
6: if powerTest(Q j,ω,β ,α) == T RUE then
7: Slist ← generateViews(Q j)
8: for each Vi,Q j do
9: if signi f icanceTest(Vi,Q j ,α) == T RUE then

10: computeUtility(Vi,Q j)
11: update(topk)
12: USeen← kth(topk)
13: else
14: re ject(Vi,Q j)
15: end if
16: end for
17: else
18: re ject(Q j)
19: end if
20: Qlist ← re f ineQueries(Q j,γ)
21: Q j← Qlist .next
22: UUnseen← αS×S(Q,Q j)+(1−αS)×Du(Vi,Q j)
23: end whilereturn topk

4.5.2 The QuRVe Scheme

Clearly, the straightforward linear search scheme, described above, visits every possible view, therefore,

it is very expensive in terms of execution time. In this section, we present the QuRVe scheme, which

reduces cost by pruning a large number of views.

Notice that our problem of finding top-k views is similar to the problem of top-k query processing.

Top-k query processing problem is an extensively studied area in various settings such as web accessible

databases and multimedia similarity search [70]. Generally in these settings objects are evaluated

by multiple objectives that contribute to the overall score of objects. In terms of efficiency, the best

performing techniques for various top-k problem settings are based on the threshold algorithm (TA)

[70, 71]. TA initially generates sorted lists of objects on partial scores for every objective. Then it

visits the lists in round robin fashion and merges objects from different lists to compute the aggregated

scores. Usually, it early terminates the search as soon as it has the top− k objects, i.e., long before

reaching the end of the lists.

In our settings, we have similar situation i.e., we have two partial scores of a view Vi,Q j :,1)

Similarity score S(Q,Q j), 2) Deviation score D(Vi,Q j). These are stored in Slist and Dlist . Conversely,

we also have some key differences; Firstly, for any view Vi,Q j the values of S(Q,Q j) and D(Vi,Q j) are

80 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

not physically stored and are computed on demand. Secondly, calculation of D(Vi,Q j) for a view is an

expensive operation. Thirdly, the size of the view search space is prohibitively large and potentially

infinite.

Obviously, a forthright implementation of TA is infeasible to our problem due to the limitations

mentioned before. However, recall that the similarity objective S(Q,Q j) is the comparison of predicates

of Q j with Q and involves no database probes. Hence, out of the two lists mentioned above, a sorted

list S can be easily generated at a negligible cost.

However, populating Dlist in a similar fashion is non-trivial, as it involves expensive database

probes. Particularly, to minimize the number of probes and efficiently populate Dlist , the Sorted-

Random (SR) model of the TA algorithm [70] is employed. In SR model the sorted list (S) provides

initial list of candidates and the random list (R) is probed only when required. Accordingly, QuRVe

provides Slist as the initial list of candidate views by incrementally generating refined queries in

decreasing order of similarity and populating the Slist . The views in Slist have their partial scores,

consequently, the final scores are only calculated for the views for which the Dlist is also accessed. To

achieve this, QuRVe maintains the following two values:

1. UUnseen: Stores maximum utility of the views that are yet to be probed.

2. USeen: Stores the kth highest utility of a view seen so far.

Specifically, for UUnseen, consider Vi,Q j as the next view in the similarity list and let the upper

bound on its deviation be Du(Vi,Q j). The upper bound on deviation from all views be Du then

Du = Max[Du(Vi,Q j)]. Consequently, UUnseen = αS×S(Q,Q j)+(1−αS)×Du. As the D(Vi,Q j) is the

normalized deviation, therefore theoretically Du = Max[Du(Vi,Q j)] = 1.

The main idea is to keep iterating following four steps. 1) Generate queries in decreasing order

of similarity and add them to list of refined queries Qlist , 2) take a query from Qlist and add its

corresponding views to the Slist , 3) take a view from Slist evaluate its utility, and 4) Update UUnseen and

USeen; Until UUnseen becomes smaller than USeen, which means the remaining views have utility less

than the utility of already seen views. Moreover, a list topk is maintained which has the ordered top-k

views seen so far.

In detail, QuRVe starts by making some initializations (Algorithm 1, line 1-4): (i) As there are

no views generated yet, therefore maximum seen utility USeen = 0, (iii) The maximum any view can

have is UUnseen = 1, and (iii) The first query to be considered will be the input query Q as it has the

highest similarity i.e., S(Q,Q) = 1. Therefore, Q is added to Qlist as the first member. Then, power

of currently under consideration query Q j is checked by calling the function powerTest(Q j, ω , β ,

α). Next, the corresponding views are generated by calling the function generateViews(Q j) and the

statistical significance test is performed on each view by calling the function significanceTest(Vi,Q j , α).

Utility of the views that pass the test is computed. Accordingly the list topk is updated. Additionally,

the utility of kth highest view is copied into USeen, to maintain the bound on the seen utility values.

This completes processing the currently under consideration query Q j.

4.5. SEARCH SCHEMES 81

(a) Example1 (b) Example2

Figure 4.4: The QuRVe Scheme
Subsequently, the next set of neighboring queries in terms of parameter γ are generated. Particularly,

the next query is generated by replacing each predicate Pi ≤ xi with two predicates Pi ≤ xi± γ . The

same process is repeated for each new query.

In next iteration, another query Q j is taken from the Qlist in order of the S value and accordingly

the value of UUnseen is updated. The iterations (Algorithm 1, line 6-21) continue, until either there

are no more queries to process (i.e., empty(Qlist) is true), or the utility of remaining queries will be

less than already seen utility (i.e., UUnseen >USeen is false). If QuRVe terminates because of the first

condition (i.e., empty(Qlist) is true) that means its cost is the same as Linear search, as the optimization

did not get a chance to step in. However, often QuRVe terminates because of the second condition (i.e.,

UUnseen >USeen is false) and achieves early termination.

Example: Consider an example where we have 8 views (V1−V8), from various refined queries. The

views are ordered according to precomputed similarity, as shown in Fig. 4.4a by the column S(Vi). The

parameters are set as k = 1, αS = 0.6 and αD = 0.4. Additionally, D(Vi),and U(Vi) columns correspond

to the deviation and utility values of the view Vi, which are computed on demand. For instance, when

view V1 is probed, its deviation is 0.1. Then the utility is computed as: 0.6×1+0.4×0.1 = 0.64. In

linear search all of the 8 views are probed to compute their deviation and utility values. However, for

QuRVe scheme after probing V6, UUnseen = 0.6×0.25+0.4×1 = 0.55 while USeen = 0.64, therefore,

the condition UUnseen >USeen becomes false, hence the search is early terminated and two of the views

get pruned.

QuRVe reduces the cost by pruning unnecessary views. However, it is efficient with particular

settings of input parameters or when the refined query that have the view with the maximum utility is

near the input query. For instance, consider Fig. 4.4b, which shows same example of Fig. 4.4a but with

αS = αD = 0.5. In this particular example, as the deviation has more weight, therefore, the value of

UUnseen is bigger, while USeen is smaller, as compared to Fig. 4.4a and as a result QuRVe fails to prune

any views.

QuRVe is restricted by high value of UUnseen. Particularly, the most efficient performance is

expected when UUnseen decrease quickly during search and early termination can be triggered. In

Section 4.5.3, we propose uQuRVe which is particularly designed with the intention to ensure a quick

decrease in UUnseen.

82 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

4.5.3 The uQuRVe Scheme

Recall that the fundamental idea underlying our proposed QuRVe scheme is to early terminate the

search based on the upper bound on the utility of not yet seen views (i.e., UUnseen). Particularly, UUnseen

is computed by using the similarity value of the next view on the list, together with the upper bound on

deviation Du. Hence, if UUnseen is less than the already seen maximum utility (USeen), then all of the

remaining views have no chance of coming up to the top-k. Therefore, QuRVe terminates the search at

that point, and those remaining views are pruned. Note that the Du used by QuRVe to calculate UUnseen

is basically the theoretical extreme value and it is oblivious to the analyzed data. Hence, in practice,

that upper bound is typically loose as it tends to overestimate the upper bound on deviation between

the target and comparison views generated from the analyzed data. Consequently, many chances of

pruning unnecessary views are missed.

To improve the pruning power, we note that in our problem setting views are generated correspond-

ing to the input query Q, as well as all its refinements (i.e., Q j ∈Q). In that setting, we observe that

while the target views for every Q j are generated from scratch (i.e., require a separate query execution),

the comparison views are only generated once for the input query Q and those same comparison views

are reused later for each Q j. Such observation is the main idea underlying our novel uQuRVe scheme

introduced in this section. Particularly, uQuRVe leverages such observation to provide a tighter upper

bound on deviation by using those already executed comparison views, together with the properties of

the deviation function, as explained next.

We first outline the properties of our deviation function to provide a tighter bound on deviation.

Specifically, according to Eq 4.1 any distance metric can be used for computing deviation, we take

Euclidean distance as our metric. Let Vc and Vt be our comparison and target views respectively with c

categories, then the squared Euclidean distance is:

dist2
PVc ,PVt

=
c

∑
x=1

(PVc[x]−PVt [x])
2

dist2
PVc ,PVt

=
c

∑
x=1

PVc[x]
2 +

c

∑
x=1

PVt [x]
2−2×

c

∑
x=1

(PVc[x]×PVt [x]) (4.6)

Recall, in the previous scheme QuRVe, Du the upper bound on deviation is the theoretical maximum

value of the distance between Vt and Vc. This maximum value is achieved when the last term in Eq. 4.6

is zero and consequently, dist2
PVc ,PVt

= ∑
c
x=1 PVc [x]

2 +∑
c
x=1 PVt [x]

2. To be precise this maximum value

is only possible when for each category x either PVc [x] or PVt [x] is zero. Resultantly, dist2
PVc ,PVt

= 2 and

Du =
√

2 .

However, this is the theoretical maximum, when the exact probability distribution of Vc and Vt are

unknown. While, in our problem settings, the PVc is known from the already executed comparison

views for Q. Hence, we propose uQuRVe scheme, that takes advantage of already calculated PVc and

calculate more realistic individual upper bounds Du(Vi,Q j) and overall upper bound Du.

Particularly, let the upper bound on deviation corresponding to a comparison view be Du[Vc]. The

main idea is to calculate the Du[Vc] for each comparison view and use it later for two purposes: 1)

4.5. SEARCH SCHEMES 83

Figure 4.5: uQuRVe Example
calculate upper bound on the utility of a target view, which can result in short circuiting of that view,

and 2) calculate the value of UUnseen, which can result in early termination of the search.

Note that the query for the comparison view has been executed and its P[Vc] is known. h However,

without executing the target query, we assume a hypothetical target probability distribution P[Vt] such

that it will result in the maximum value of deviation. Particularly, the upper bound Du[Vc] will be

achieved when for the one category in PVc having the minimum value, the corresponding value in PVt is

maximum (i.e., 1.0). For this to happen, and since the overall ∑
c
x=1 PVt [x] has to be equal to 1.0, then

all other values in PVt have to be 0.0.

dist2
PVc ,PVt

=
c

∑
x=1

(PVc [x])
2 +

c

∑
x=1

(PVt [x])
2−2×Min(PVc [x]×1) (4.7)

For instance. assume a comparison view having four categories and PVc = [0.3,0.4,0.1,0.2]. The

minimum value is in the third category therefore to have a maximum deviation let the hypothetical

target view have P[Vt] = [0,0,1,0]. Resultantly, the squared Euclidean distance will be:

dist2 = (0.32 +0.42 +0.12 +0.22)+(12)− (2×0.1×1) = 1.1

The normalized upper bound on deviation Du[Vc] will be 0.7. As the theoretical upper bound is
√

2 = 1.4, hence, our new upper bound is 50% less than the theoretical upper bound.

Once the Du[Vc] is calculated for all comparison views, Du is assigned the maximum value

from all of the comparison views i.e., Du = Max(Du[Vc]). The Du remains fixed for all iterations

as the views are accessed in order of their similarity value and there is no order on the deviation

or upper bound of deviation of the views. Then UUnseen is updated accordingly as UUnseen = αS×
S(Q,Q j) + (1−αS)×Du. The Du(Vi,Q j) is used to calculate the upper bound on utility of Vi,Q j .

Particularly, before executing the target query, the upper bound on utility of a view is calculated

as U(Vi,Q j) ≤ αS×S(Q,Q j)+ (1−αS)×Du(Vi,Q j). If U(Vi,Q j) ≤USeen then the target query is not

executed and that view is pruned (short circuit). uQuRVe performs better than QuRVe firstly by

achieving earlier early termination and secondly by pruning of many unnecessary views through short

circuits.

Example: Consider the example of Fig. 4.4b again. Now we have calculated the upper bound on

deviation for all views as shown by column DU(Vi) in Fig. 4.5, and Du = Max(DU(Vi)) = 0.8. Similar

to QuRVe at the start USeen = 0 and UUnseen = 1. The first view in Slist is V1, initially it is checked for

short circuit. Particularly, its upper bound of utility is computed as U <= 0.5+0.5×0.8 = 0.9. As

the upper bound is greater than USeen, therefore short circuit is not possible, it is probed for deviation

84 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

Figure 4.6: Pattern of Deviation
and actual value of U is computed. After probing V1 to V4 in order of similarity, USeen = 0.55 and

UUnseen = 0.65. For V5 when the upper bound on utility is computed using Du(V5), it is less than USeen.

Therefore, V5 is short circuited and it’s deviation is not probed. Afterwards, after probing V6, UUnseen

becomes smaller than USeen, therefore the search is early terminated. In comparison to QuRVe which

probed 8 views, uQuRVe probed only 5 views.

The QuRVe and uQuRVe schemes have Slist which provides sorted(S) access only and Dlist which

provides random(R) access only. The Dlist is accessed when the view under consideration can have a

utility greater than USeen. Specifically, the access to Dlist means calculating the statistical significance

and eventually the deviation value for the view by generating the database probes for target query. The

search can be further optimized by having higher USeen value earlier in search.

4.5.4 The uQuRVe-range Scheme

QuRVe and uQuRVe schemes were based on the Sorted-Random (SR) model of the Threshold algorithm

(TA), as having Dlist sorted is very expensive and contrary to our objective. However, as mentioned in

Section 4.5.2, the best performing techniques for top-k problem settings are based on the threshold

algorithm (TA) [70, 71].

The main idea behind this scheme is to reduces even further by having more control on the ordering

of probed views and first probe the views with the high utility. As the utility of a view depends on

the similarity and deviation objective values. The views are already accessed in the decreasing order

of similarity, however previous schemes lack effort to ensure any order on the deviation. Hence, we

studied the pattern of deviation for different dimensions. Although, deviation of a view does not have

a strict pattern but it shows decreasing trend as we increase range of the refined queries, which means

as the cardinality of the queries increases, the deviation generally decreases. For example, Fig. 4.6

shows pattern of deviation values for a single dimension attribute hours worked. Accordingly, we

define a metric SO(Vi) in terms of similarity of the underlying query of view Vi with the most restrictive

refined query. Let the most restrictive query having minimum cardinality be QO having all predicates

as li ≤ Pi ≤ li.

SO(Vi) = 1−DistFromQO(Vi).

In the uQuRVe-range scheme a SOlist which records similarity with QO is also maintained along

with the Slist and Dlist . The Slist provides sorted and random(SR) access, SOlist provides sorted (S)

4.5. SEARCH SCHEMES 85

Figure 4.7: uQuRVe-range Example
access and Dlist provides random(R) access only. Slist and SOlist are accessed in round robin fashion

and Dlist is only accessed when required. Similar to other schemes, UUnseen and USeen are maintained

and when UUnseen >USeen is false the search is terminated.

Example: Consider the same example of Fig. 4.4b, assume the views V1−V8 correspond to the

queries Q1−Q8 respectively. Also assume Q9 is QO and the SOlist has similarity values according to

that. Now we have Slist sorted on the similarity value and a SOlist sorted on the the similarity with QO

as shown in Fig.4.7. Similar to previous schemes at the start USeen = 0 and UUnseen = 1. uQuRVe-range

access the lists in round robin fashion. Therefore, in first iteration in Fig.4.7, first view in Slist is V1,.

After a failed short circuit test its utility is computed and USeen is updated. Then it goes to the SOlist

which has V8 as the first member. V8 is pruned as its upper bound on utility is less than USeen. In second

iteration V7 is pruned and in third iteration the algorithm early terminates. uQuRVe-range probes only

4 views as compared to 5 of uQuRVe.

uQuRVe-range reduces the cost even more than uQuRVe because it first visits the views which

have high probability of having top-k utilities. Consequently, it sets USeen to a high value and the

condition UUnseen >USeen becomes false very early as compared to uQuRVe. uQuRVe-range Scheme

becomes even more useful in a special case when initial hypothesis i.e., input query is unavailable.

This means that the similarity metric is irrelevant in this case and αS should be 0 . Consequently, the

utility value completely depends on the deviation objective. In QuRVe scheme there the Dlist access is

random therefore it will actually perform same as the linear scheme. However, uQuRVe-range has the

advantage of having SOlist which will partially ensure that views are accessed in order of high utility.

4.5.5 The QuRVe-Approximation

All the search algorithms presented so far are accurate as they provide the same top-k views as the

baseline linear search. In the following, we introduce an approximation extension for uQuRVe and

uQuRVe-range schemes to further improve performance, while incurring negligible loss in the quality

of recommendation.

As explained earlier the pruning power of a scheme depends heavily on the theoretical upper bound.

In reality the actual upper bound is much smaller than the one used in these schemes. However, it is

not practical to calculate the actual upper bound, as it requires probing all of the views which conflicts

with the goal of reducing cost through pruning. In this approximation approach we propose to estimate

the Du with high accuracy. The distribution of deviation is generally skewed and it does not follow a

86 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

normal distribution. Therefore, we consider non-parametric predictive interval model to determine the

Du with certain level of confidence without any assumption on the population. A prediction interval

is an estimate of an interval in which a future observation will fall, with a certain probability, given

what has already been observed. We execute sample views and the maximum deviation calculated in

those views is taken as the upper bound and assigned to Du. If there are y samples, then y−1
y+1 is the

prediction interval. We determine the number of samples y from the predictive interval. For instance,

setting y = 20 results in a 90% predictive interval. Which means 90% of the time the actual deviation

will be less than the upper bound set on deviation through samples. Obviously the higher the number

of sample is, higher the accuracy of Du. However, this will also result in increase in cost.

Applying the approximation approach to uQuRVe, the first y views are executed from the Slist and

after that Du is set accordingly. While for uQuRVe-range scheme when this approximation is applied,

y views are executed from Slist and SOlist in a round robin fashion, then the Du is updated. The Du is

later updated if a view is encountered which has deviation greater than the current value of Du. The

approximation is particularly exceptional for uQuRVe-range scheme, when Q is far from Q j having

optimal view. In that case uQuRVe-range takes advantage of the ordering in the SOlist and reduces cost

without the loss of accuracy.

4.6 Experimental Testbed

Parameter Range Default

SimilarityWeight (αS) 0.0-1.0 0.5

top-k (k) 1-25 10

Grid resolution (γ) 1/24-1/2 1/23

Number of predicates (p) 1-4 3

We perform extensive experimental evaluation to measure both the efficiency and effectiveness of

the different search strategies of query refinement for top-k view recommendation. Here, we present

the different parameters and settings used in our experiments.

Setup: We built a platform for refining query and recommending visOur experiments are performed

on a Corei7 machine with 16GB of RAM memory. The platform is implemented in Java, and

PostgreSQL is used as the backend database management system.

Data Analysis: We assume a data exploration setting in which multi-dimensional datasets are

analyzed. We use CENSUS: the census income dataset [20] and FLIGHTS: the flight delays dataset [94]

. The CENSUS dataset has 14 attributes and 48,842 tuples. The independent categorical attributes of

the dataset are used as dimensions (e.g., occupation, work class, hours per week, sex, etc.), whereas

the observation attributes are used as measures (capital gain, capital loss, etc.) and the numerical

independent attributes are used for predicates (e.g., education, age, etc.). The CENSUS dataset is used

as default dataset for experiments. The FLIGHTS dataset has 18 attributes and more than 5M tuples.

4.7. EXPERIMENTAL EVALUATION 87

In our default setting, |A|= 3, |M|= 3, |F|= 3 and p = 3, where p is the number of predicates used in

refinement. The aggregate functions used are SUM, AVG and COUNT. In the analysis, all the αS is in

the range [0−1], where αS +αD = 1. In default settings αS = 0.5, k = 10 and γ = 1
23 . For the purpose

of statistical significance in experiments we use chi-square goodness of fit test, which is the standard

test for comparing difference between sample and population data for categorical dimension attribute.

Schemes: Firstly, as a baseline scheme we include SeeDB [6], in which no weight is given to

similarity and the goal is maximize the sum of k deviations. Secondly, we use Hill Climbing (HC), with

halving search as another baseline method [69]. We compare the performance of the baseline schemes

(Linear, SeeDB, HC) with the schemes proposed in Section 4.5(QuRVe, uQuRVe, uQuRVe-range,

uQuRVe(App), uQuRVe-range(App)).

Performance: We evaluate the efficiency and effectiveness of the different recommendations

strategies in terms of cost incurred.

Cost: As mentioned in Section 4.4, the cost of a strategy is the total cost incurred in processing all

the candidate views. We use the total views probed and execution time as the cost metric.

Overall Utility: It is the sum of the utilities of the top-k views.

Each experiment is performed with 10 randomly generated input queries, spread around the search

space defined by predicates in P, then average of the cost and overall utility is taken.

4.7 Experimental Evaluation

Impact of the α parameters (Fig. 4.8): In this set of experiments, we measure the impact of the α

values on cost (i.e., total number of views probed and execution time). Figures 4.8 shows how the

cost of Linear, QuRVe, uQuRVe and uQuRVe-range schemes are affected by changing the values of αS

for CENSUS and FLIGHTS datasets. In Fig. 4.8, αS is increasing while αD is implicitly decreasing.

Notice that no approximations are employed in these schemes, hence, all schemes have the same

overall utility.

Fig. 4.8 shows that the Linear scheme has same cost for all values of αS, which is as expected

since it performs exhaustive search over all combinations of refined queries, dimensions, measures and

aggregate functions. Therefore, its cost depends on the number of all combinations, irrespective of the

value α .

Fig. 4.8a shows cost in terms of number of views probed, it shows that QuRVe has almost same

cost as Linear for αS = 0 and αS = 0.1, but outperform it as the value of αS increases. This happens

because in the QuRVe scheme, the upper bound on deviation is set to the theoretical maximum bound

i.e., Du = 1 and when αS = 0, UUnseen = 0× S+ 1×Du = 1, consequently early termination is not

possible. On the contrary, as αS increases, chances of applying the early termination condition based

on the similarity value becomes possible. Consequently, this prunes many of the database probes.

The amount of achieved pruning is further increased for αS ≤ 0.8 under uQuRVe, because of its

tighter upper bound on deviation. Consequently, this results in earlier early termination and number of

short circuits on deviation calculation. For instance, in Fig. 4.8a at αS = 0.3, uQuRVe shows around

88 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

αS

Linear
QuRVe
uQuRVe
uQuRVe-range

(a) CENSUS: Views Probed

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
os

t (
Se

c)

αS

Linear
QuRVe
uQuRVe
uQuRVe-range

(b) CENSUS: Execution Time

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
os

t (
Se

c)

αS

Linear
QuRVe
uQuRVe
uQuRVe-range

(c) FLIGHTS: Execution Time

Figure 4.8: Impact of αS and αD on Cost
50% reduction in cost as compared to the QuRVe. The cost is further reduced in uQuRVe-range, which

is able to prune deviation calculations even more because it visits the most probable top-k views first

before low utility views. For instance, Fig. 4.8a shows that uQuRVe-range reduces the processing cost

by more than 35%, compared to uQuRVe, at αS = 0.2. Notice uQuRVe and uQuRVe-range are able to

prune views for all values of α due to the tighter upper bound on utility.

Fig. 4.8b shows the cost for CENSUS dataset in terms of execution time. The figure clearly shows

that the pattern for all schemes is the same as Fig. 4.8a, this is because the execution time is mainly the

I/O time and it is directly proportional to the number of probed views.

Fig. 4.8c shows the execution time for FLIGHTS dataset, it shows that the execution time for

Linear is very high as compared to Fig. 4.8b because of the size of dataset. Moreover, the uQuRVe

has lower execution time compared to the QuRVe scheme for all values of αS due to the optimized

upper bounds. However, for αS ≤ 0.5 QuRVe is same as linear because the dataset lacks high deviation

views, the maximum deviation found is 0.25, which results in low value of USeen and consequently

missed early termination opportunities. However, the cost of uQuRVe and uQuRVe-range is almost

the same because for this dataset the low cardinality views which are expected to have high deviation

failed the statistical tests and as a result the optimization of uQuRVe-range scheme did not get the

opportunity to prune views.

Impact of k (Fig. 4.9): Fig. 4.9a & 4.9b shows that Linear scheme is insensitive to the increase in the

value of k. This is because it visits all views and sort them according to their utility irrespective of the

4.7. EXPERIMENTAL EVALUATION 89

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 15 20 25 30

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

k

Linear QuRVe
uQuRVe uQuRVe-range

(a) αS = 0.3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 15 20 25 30

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

k

Linear QuRVe
uQuRVe uQuRVe-range

(b) αS = 0.6

Figure 4.9: Impact of k

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

|A|

Linear
QuRVe
uQuRVe
uQuRVe-range

(a) Normal Scale

1

10

100

1000

10000

100000

1 3 5 7 9

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

|A|

Linear QuRVe
uQuRVe uQuRVe-range

(b) Log Scale

Figure 4.10: Impact of Dimensions on Cost
value of k.

For Fig. 4.9a, αS = 0.3, QuRVe performs better than Linear for small values of k, however as k

increase it almost performs same as Linear, because QuRVe uses maximum upper bounds on deviation.

Fig. 4.9a also shows that uQuRVe has lower cost than QuRVe for all values of k. This is because as

soon as uQuRVe has seen the top-k highest utility views, early termination will be enabled leading

to pruning many unnecessary low utility views. For instance, in case of top-1 uQuRVe reduces cost

by up to 65% compared to the Linear scheme. Moreover, uQuRVe-range performs even better than

uQuRVe for all values of k because of its psudo ordering on the deviation list. In Fig. 4.9b, αS = 0.6,

all QuRVe schemes performs many folds better than Linear, and the performs remains stable even with

the increasing number of k. This is because for αS > 0.5, the early termination always triggers for

QuRVe schemes and prune many unnecessary views.

Scalability (Fig. 4.10- 4.12): The search space of our problem depends on p, γ , |A|, |M| and |F |.
Increasing any of these factors explodes the search space. Consequently, cost of all schemes increases

because there are more views that are visited in search for top-k views. Fig. 4.10 shows the impact

of number of dimensions on cost, particularly for this experiment number of dimensions (|A|) are

increased from 1 to 9. Fig. 4.10 shows that the increase in the cost of Linear is linear with the increase

in |A|. However, for QuRVe and uQuRVe the increase in the cost is slow. Particularly, the cost of QuRVe

90 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

0

10000

20000

30000

40000

50000

60000

0.0625 0.125 0.25 0.5

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

γ

Linear
QuRVe
uQuRVe
uQuRVe-range

(a) Normal Scale

1

10

100

1000

10000

100000

0.0625 0.125 0.25 0.5

C
os

t (
To

ta
l v

ie
w

s
Pr

ob
ed

)

γ

Linear QuRVe uQuRVe uQuRVe-range

(b) Log Scale

Figure 4.11: Impact of Grid Resolution on Cost (Log Scale)

6

6.5

7

7.5

8

8.5

9

9.5

0.0625 0.125 0.25 0.5

O
ve

ra
ll

U
til

ity

γ

Linear
QuRVe
uQuRVe
uQuRVe-range

Figure 4.12: Impact of Grid Resolution on Overall Utility
and uQuRVe increases as the number of dimension are increased from 1 to 3, because the schemes

search from more views to generate top-k views. But for |A|= 5 the cost of both schemes decreases

this is because a new dimension is added which had views with high deviation and that resulted in

increasing the value of Seen and triggering early termination. The cost of uQuRVe-range scheme is

higher than that of uQuRVe for |A|= 1−3, the reason behind this is uQuRVe-range experiences an

overhead of probing extra views as compared to uQuRVe when it takes turn between s-list and d-list.

This overhead is mostly dominated by the savings of uQuRVe-range scheme. However, in the case

under discussion the pseudo ordering on d-list failed to ensure a higher value of Seen early in search

and that added overhead in the cost.

As mentioned in Section 4.5, we consider discretize the continuous dimensions by the user specified

parameter γ . Fig. 4.11- 4.12 show the impact of this discretization factor or grid resolution on cost and

overall utility value. A large value of γ represents sparse grid with bigger width cells, which means

there are few refined queries. As γ decreases the cell width in grid decreases, which means the number

of refined queries increases. More refined queries generally imply increase in cost but it should also be

able to improve the overall utility of the top-k views.

Fig. 4.11 clearly shows that as the grid becomes dense the cost of Linear scheme increase because

it has to search more number of refined queries for top-k views. The reduction in cost by QuRVe

4.7. EXPERIMENTAL EVALUATION 91

(a) Cost (b) Overall Utility

Figure 4.13: Impact of Approximation Schemes
schemes gets higher with the decrease in γ . This is because the number of possible refined queries

increases and it gives QuRVe schemes more opportunities to prune unnecessary views. Fig. 4.11b

shows the same results of Fig. 4.11a by using a log scale on the y-axis. In Fig. 4.11b the performance

gains of QuRVe schemes become even more clearer. Fig. 4.12 shows overall utility i.e., the sum of

utiltiy of top-k views. All three schemes have the same overall utility as all schemes recommend the

same top-k views, It can be clearly seen that as γ decreases the overall utility increases, which implies

the denser grid resolution ensures increase in overall utility,

Approximations Techniques ((Fig. 4.13): As mentioned in Section 4.6, we consider SeeDB and Hill

climbing (HC) for baseline comparison. These schemes do not give the optimized overall utility

according to our defined utility metric, therefore we include them in approximation schemes. We show

our best optimized scheme uQuRVe-range for comparison with approximation schemes uQuRVe(App)

and uQuRVe-range(App). Fig. 4.13a& 4.13b shows the cost and overall utility of different schemes.

Fig. 4.13a shows that SeeDB has the same and maximum cost for all values of α , because it is based

on purely deviation metric and no weight is given to similarity. Therefore, its cost depends on the

number of all possible combinations, irrespective of the values of α . Fig. 4.13a also shows that

the HC scheme provides the same cost regardless of α value. This is because HC is a local search

based scheme, which is expected to hit a local maxima, hence, always has low cost. Meanwhile, the

cost of uQuRVe(App) and uQuRVe-range(App) is lower than uQuRVe-range due to the employees

approximation. For instance, at αS = 0.1, uQuRVe(App)scheme prunes almost 50% more views than

uQuRVe scheme. Fig. 4.13b shows SeeDB start to fall back on overall utility for α ≥ 0.5. This is

because SeeDB is purely based on deviation metric, when the αD starts decreasing, the views selected

by SeeDB lacks the similarity value, hence, overall utility start to decrease as compared to the optimal

overall utility of uQuRVe-range. For HC, overall utility improves when al phaS is high. This is simply

because HC search is guided by the halving intervals of similarity list instead of the utility values. As

mentioned earlier HC is a local search based scheme, therefore, it fails to achieve the global maxima,

which is reflect in its overall utility. uQuRVe(App) and uQuRVe-range(App) has overall utility almost

the same as uQuRVe-range scheme.

92 CHAPTER 4. INPUT QUERY REFINEMENT FOR VIEW RECOMMENDATION

4.8 Summary

Motivated by the need for visualizations recommendation that lead to interesting discoveries and avoid

common pitfalls such as random or false discoveries, In this paper we formulated the problem of

query refinement for view recommendation and proposed QuRVe schemes for view recommendation.

QuRVe refines the original query in search for more interesting views. It efficiently navigates the

refined queries search space to maximize utility and reduce the overall cost. The cost is further reduced

with uQuRVe scheme, which applies tight upper bounds to prune more views. We also proposed

uQuRVE-range scheme that navigates the search space close to the order of highest utility views.

Additionally, we presented an approximation technique that further increase the cost savings provided

by uQuRVe and uQuRVe-range. Our experimental results show that employing the QuRVe schemes

offer significant reduction in terms of cost.

Chapter 5

View-360: A Prototype System for View
Recommendation

5.1 Introduction

Visual data exploration is the most valuable and widely used tool in the analyst’s toolbox. However,

with growing size and complexity of data, manual visual data exploration becomes challenging.

Therefore, to address the issue of efficiently and effectively identifying interesting visualizations, in

this thesis, we have proposed visualization recommendation schemes targeting various aspects of

the problem. Particularly, in this chapter, first the most relaxed version of the view recommendation

problem as defined in Definition 4 is formulated. Specifically, we argue that in existing recommendation

systems, the assumption that a comparison view is generated from a given reference dataset, limits

the discovery of interesting insights. Therefore, the reference dataset (i.e., the query that selects the

reference dataset) for generating the comparison views should also be refined. Second, the design

and implement of a holistic prototype system View-360 for view recommendation is presented. Third,

effectiveness of all of our proposed schemes in this thesis is presented by performing analysis on real

datasets from various domains.

Recall, that the baseline problem of view recommendation as stated in Definition 1, is that an

analyst chooses a subset of data for visual analysis by providing an input Query Q. Specifically, for

recommending top-k aggregate views, target and comparison views on all combinations of dimensions

(A), measures (M), and aggregate functions (F) are generated, their utility is evaluated according to

deviation-based utility function and top-k views are recommended. Specifically, for an aggregate view

Vi, the target view Vi(DQ) is generated on the subset of data specified by Q, while the comparison

views Vi(DB) is generated on the reference dataset which is typically the complete database.

The first dimension of the problem explored in Chapter3, is defined by Definition 2, where we

identify and address the challenges of having numerical dimensions in the exploration. We formalized

the view recommendation problem in the presence of numerical dimensions. Our proposed search

schemes automatically binned the numerical dimensions and efficiently recommended the top-k views
93

94 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.1: View-360: Recommended Views

including binned aggregate views. Moreover, During our analysis with various datasets, we realized

that the condition of providing an input query is contradictory to the automatic view recommendation

objective, as it restricts the search to the subset selected by Q. Additionally, mostly the analyst is only

able to provide an uncertain input query, while the interesting views might belong to some other subset.

Taking this observation further, in Chapter 4, we proposed efficient search schemes that automatically

refine the input query. This ensured that the target views of the top-k aggregate views can come from

any subset of the data.

As mentioned before, the top-k aggregate views are recommended, after computing deviation

between target views defined on refined queries and comparison views defined on reference dataset.

However, this fails to consider the aggregate views that can be generated by having both target and

comparison views on the different subsets of data. Therefor, to explore this dimension of the problem

in this chapter, we relax the assumption that the comparison views are generated from the predefined

reference dataset. Instead the query used for comparison view is also automatically refined. There

are two challenges associated with the refinement of reference dataset: Firstly, it increases the search

space of views exponentially. Second, all combinations of comparison views and target views in an

aggregate view are not comparable semantically. We discuss the problem, challenges, and baseline

solution of reference dataset refinement in detail in Section 5.2.

Moreover, we design and implement a holistic prototype system View-360 in Python, which

included all aspects of aggregate view recommendation i.e, recommendation based on categorical and

numerical attributes moreover recommendation based on refinement on target and comparison queries.

We also introduce some additional data exploration features in View-360 that help discovery of insights.

The effectiveness of our schemes and the proposed prototype system is demonstrated through analysis

on multiple datasets. Specifically, user specifies the dataset and set the required parameters. View-360

automatically performs all the steps of view generation and refinements and recommends the top-k

ranked views. Figure 5.1 shows the output generated by View-360.

5.2. REFERENCE DATASET REFINEMENT 95

5.2 Reference Dataset Refinement

A common operation during data exploration is exploring subsets of data by progressively changing

filters in the WHERE clause of the input query. However, manually changing the input query is a

major bottle neck in the exploration process. Consequently, in Chapter 4, we presented schemes

for automatic query refinement for the purpose of exploring all subsets of data for aggregate view

recommendation. Particularly, the main idea of these schemes is to generate refined queries in order of

their similarity with the input query and then generate aggregate views.

As mentioned earlier the recommended aggregate views are based on the target views defined on

subsets of data selected by the refined queries and comparison views defined on the complete dataset.

The interesting views revealed in such a manner can be considered as global interesting views, as the

comparison view comes from the complete data (global). However, contrary to global interesting views

there can exist local interesting view, in which the comparison views come from another subset of data

instead of the complete dataset. For example, a sales manager might want to analyze interesting views

about sales in each month compared to sales of the whole year, this would be a global interesting view

search. However, she might need to analyze sales of months compared to each other, in that case it

will be a local interesting view search and the comparison view should also come from subset of data

corresponding to a month.

To the best of our knowledge, none of the existing view recommendation systems can recommend

the local interesting views. However, some recent efforts have initiated research in this direction.

Particularly, the recent work on data slice search [52, 53], has adopted the local outlier detection

strategies from the context of knowledge discovery [99]. Specifically, [99] proposes the idea of local

outlier factor (LOF), which is based on local density in multi-dimensional space. For each data point,

they compute LOF value that indicates the outlierness among its nearest neighbors. The LOF value of

data point is high if its local density is low and those of its nearest neighbors are high. In the context

of local interesting aggregate views, the idea is to find aggregate views that show interestingness in

terms of deviation between a target view which can be analogous to a point in LOF and a comparison

view which comes from the neighborhood of the target view. However, the definition of neighborhood

of a target view is a non-trivial task, as it involves semantic of the view.

Recently, VisPilot [51], another visual data exploration tool has been developed, which explores

the subsets of data and recommends a small set of interesting visualizations to convey key distributions.

Similar to OLAP cube they build a lattice of data subsets, where the first node represents the complete

dataset. However, in our problem settings data subsets are considered in order of similarity with the

input query. Nevertheless, for the purpose of recommending local interesting views a lattice approach

can be adopted such that the first node is the input query and then the nodes down the lattice represent

refined queries.

96 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

5.2.1 View Recommendation with Reference Dataset Refinement

We have been assuming uptill now that for comparison views the reference dataset is predefined by

the user by using one of the following three choice: 1) the user provides a second input query to

select the referenece dataset, 2) the complete database is used as reference dataset by default, or 3)

the complemet of the data selected by input query Q is selected as reference dataset (i.e., reference

dataset = DB−DQ). The target and comparison view should have the same A, M and F . As the

deviation is calculated between the probability distributions of the target and comparison views, and

the visualization is plotted using those distributions. Having different dimension (A), measure (M) or

function (F) will loose the semantics of the visualization and deviation value.

However, the aggregate views recommended by using the specified reference dataset may not be

surprising or insightful due to the similarity between the probability distributions of the target and

comparison views. Therefore, we propose to refine the reference dataset for generating comparison

views instead of using the specified reference dataset. We propose to use the same subsets for

comparison as well. However, generating comparison views from refinement of reference dataset,

target views from refinement of input query and then combining them in aggregate views form a

combinatorial problem. Where more importantly, we need to identify the meaningful combinations

of target and comparison views as there will be many combinations in which comparison and target

views will lack contextual reference to each other. In other words, in such scenario, there exist many

aggregate view which have no semantic value for the user.

For instance, consider CENSUS INCOME dataset [20] again and assume for a particular target

and comparison view the predicates are:

Target: WHERE gender == Female and edu ≥ 12,

Comparison: WHERE gender == Male and edu ≥ 7.

Here the female having education higher than high school are compared with male having edu-

cation higher than primary school. The comparison has no contextual reference as the subsets under

comparison are not related in any way. This is because the predicates for target and comparison have

completely different values. However, if the predicates have similarity, that will set the context of

comparison and consequently, the comparison would make sense. For instance, for the above example,

it makes more sense if the comparison is between male and female having education higher than high

school or female having education higher than high school compared with females having education

higher than primary school as specified by following predicates:

Comparison: WHERE gender == Male and edu ≥ 12.

OR

Comparison: WHERE gender == Female and edu ≥ 7.

Problem Definition

In a nutshell, Our goal is to help analysts discover the key insights in a dataset by refining the reference

dataset and input query. Specifically, this task boils down to generating the set of all refined queries

5.3. VIEW-360 97

Q and then generating the aggregate views. Particularly, for aggregate views, the target views are

generate on a subset of data defined by a refined query Q j ∈Q and the comparison views are generated

on another subset of data defined by another refined query Qk ∈Q such that Q j and Qk have contextual

reference to each other.

Recall in Section 4.3.2, a query is defined by its predicates (Q j = Pj0,Pj1,Pjn). We define a

metric to determine the contextual reference between two queries Q j and Qk in terms of difference of

predicates between the two queries. Particularly, a context is set if the two queries are not different

from each other by more than one predicate. Note that, contrary to the case of input query refinement

here we are not interested in exact amount of difference of value in predicates. For the sake of knowing

that the queries are contextually related, it is enough to know the two queries differ from each other by

only one predicate.

C(Q j,Qk) = |Q j∩Qk|
We define an aggregate view Vi(Q j,Qk) as the ith aggregate view from two subsets defined by

queries Q j and Qk. Specifically, the target view of Vi(Q j,Qk) is defined on the subset of data selected

by Q j, while the comparison view is defined on subset selected by Qk. We define C as a constraint

in our problem setting. The utility of a view U is still the deviation based utility define in Chapter 4.

Formally, the problem of reference view refinement is stated as:

Definition: Reference View Refinement for View Recommendation: Given an user-specified query

Q on a database DB, a set of refined queries Q, and a multi-objective utility function U , Find k locally

interesting aggregate views Vi(Q j,Qk) that have the highest utility values, from all of the refined

queries Q j ∈Q, such that C(Q j,Qk) = 1.

All combinations of Q j and Qk forms a combinotorial problem. Particularly, let the number of

refined target views be N then considering the same views for comparison the possible aggregate

views will be N× (N−1). However, it is not a performance bottleneck for us, as the subsets of data

defined by refined queries and the aggregate queries for target views are already being retrieved from

the database, therefore, for reference dataset refinement and comparison views the already retried data

can be used. However, calculating the constraint C for huge combination of views is computationally

expensive. A simple baseline solution is to consider all combinations of Q j and Qk and the ones that

pass the constraint are used to generate and recommend the top-k views.

5.3 View-360

We present prototype of a visual data exploration tool, titled View-360, that recommends interesting

visualizations by espousing the following four aspects: i) automatic binning of numerical dimensions,

ii) automatic refinement of input query and reference dataset, iii) ensuring statistical significance of

recommended views by hypothesis testing and iv) making sure the recommended aggregate views

have semantic value by carefully selecting the target and comparison view for each visualizations.

Moreover, it is unclear how to decide which attributes to use for predicates, dimensions and

measures. Therefore, to keep the system flexible and have maximize discovery of insights, we allow to

98 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

have overlap in set P, A and M. However, for a view an attribute can be used either as a measure or

dimension or in a predicate at one time to keep the semantics of visualizations in tact. For instance,

assume attribute edu is marked in for all of the sets P, A and M by the user. Now when it is used in

refinement then it does not make sense to also use it in dimension and perform binning on it or to use

it as a measure and perform aggregate function on it, therefore for views that have edu as predicate it

is removed from A and M sets. Later, it is included in set A and consequently it is removed from the

other two sets and so on. In this way it gets to be treated as a dimension, measure and predicate for

discovery of insights.

We have also explored the possibilities of diversifying or unifying results and it was discovered

that unifying results i.e. putting the related views together is helpful for the user for drawing insights

into the data. Therefore, after generating top-k views, View-30 provides three option of viewing the

views: 1) in order of their ranking, 2) display the diversified top-k views, and 3) the results from the

same target query are put together or the results having the same dimension attribute are put together.

The analyst can perform analysis using one or all of the three options mentioned above. This helps to

synthesizing insights into data. We discuss this in detail in our analysis of various datasets.

Moreover, View-360 also provides a feature to explore a view further by plotting the scatter

plot or the frequency distribution of the attributes involved in that view. This feature is extremely

useful in many cases as it is shown in the detail discussion of datasets in next sections. Particularly,

when a recommended view has SUM as aggregate function, the explanation of such a view is not as

straightforward as other aggregate functions. For instance, the high value of SUM of a measure attribute

for a particular category in dimension attribute can be due to two reasons: 1) the value of the measure

itself is high, or 2) the value of the measure attribute is small, but the number of instances in that

category are large and when they add up for the SUM function it becomes a large value. Moreover,

if the high value is due to (1), then the same view with COUNT as aggregate function should also has

the ranking close to the one with the SUM function. Therefore, to draw an insight from a view that has

the SUM aggregate function, the same view with COUNT aggregate function should also be looked at.

View-360 further exploration feature, provides this facility to quickly look at the required related view

or other visualizations that helps in explanation of insight.

5.3.1 General Settings

In default settings, we assume there is no input query, therefore, all possible input queries (subsets

of data) are considered for recommendation.The user specifies attributes from the dataset for the

following parameters:

Ac - Categorical dimension attributes

An - Numerical dimension attributes

M - Measure attributes

Pc -Categorical attributes for predicates

Pn - Numerical attributes for predicates

5.4. BUSINESS DOMAIN 99

F - Aggregate functions

k - k for top-k

For attributes in Pc, refinements are generated by all unique categories of each attribute, for

attributes in Pn, user specified discritization factor (γ) is used to discretize the continuous values and

then all possible refined queries are generated. Each refined query can be used in the target view and

comparison view. For each refined query views are generated with all combinations of A, M and F.

The refinement is applied to categorical attributes as well, however these are not used in conjunction

with each other. Specifically, only one categorical attribute is used at a time in refinement.

5.4 Business Domain

5.4.1 Flight Delays and Cancellations 2015

The U.S. Department of Transportation’s (DOT) Bureau of Transportation Statistics tracks the on-time

performance of domestic flights operated by large air carriers. Summary information on the number of

on-time, delayed, canceled, and diverted flights is published in DOT’s monthly Air Travel Consumer

Report. In this analysis we use the dataset of 2015 flight delays and cancellations [94]. The attributes

of the dataset are described in the Table 5.1.

5.4.2 Data Pre-processing

The flights dataset [94] consist of three tables i.e., Flights, Airports and Airlines. The flights

table has 5,819,079 flight records, which are described by 32 attributes. Airports and Airlines

tables have details about the airports and airlines, respectively.

Table 5.1 shows that there are missing values in attributes related to flight-delay-reasoning such as

AIRLINE DELAY, WEATHER DELAY. Therefore those attributes are removed from analysis. Table 5.1

also shows that the CANCELLATION REASON attribute has 98.4% missing values, this is because this

attribute is only filled for the flights that are canceled (which are very low in number). Therefore, we

keep this attribute and in the next section we explain how we use this attribute in analysis. Note that

all other attributes are more than 98% complete.

Moreover, the attributes DAY OF WEEK and MONTH are converted to equivalent text for readability

of results.

In Table 5.2, the number of categories for each nominal attribute are shown. Table 5.2 shows the

YEAR attribute has only one value, because the dataset is only for the year 2015, therefore we remove

the attribute YEAR from further processing.

In the dataset, the unique values of airport codes in ORIGIN AIRPORT and DESTINATION AIRPORT

attributes were more than the lookup values in the Airports table. Numeric values existed which did

not match with the Airports table. Consequently, the numeric airport codes are removed by joining

Flights with Airports table. Eventually, a single table is created which contains valid airport codes

100 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Attribute Name Type Description & Values % missing
YEAR Numeric Year of the Flight Trip
MONTH Numeric Month of the Flight Trip 0%
DAY Numeric Day of the Flight Trip 0%
DAY OF WEEK Numeric Day of week of the Flight Trip 0%
AIRLINE Nominal Airline Identifier 0%
FLIGHT NUMBER Numeric Flight Identifier 0%
TAIL NUMBER Nominal Aircraft Identifier 0.2%
ORIGIN AIRPORT Nominal Starting Airport 0%
DESTINATION AIRPORT Nominal Destination Airport 0%
SCHEDULED DEPARTURE Numeric Planned Departure Time 0%
DEPARTURE TIME Numeric WHEEL OFF - TAXI OUT 1.5%
DEPARTURE DELAY Numeric Total Delay on Departure 1.5%
TAXI OUT Numeric The time duration elapsed between departure from the origin airport

gate and wheels off
1.5%

WHEELS OFF Numeric The time point that the aircraft’s wheels leave the ground 1.5%
SCHEDULED TIME Numeric Planned time amount needed for the flight trip 0%
ELAPSED TIME Numeric AIR TIME+TAXI IN+TAXI OUT 1.8%
AIR TIME Numeric The time duration between wheels off and wheels on time 1.8%
DISTANCE Numeric Distance between two airports 0%
WHEELS ON Numeric The time point that the aircraft’s wheels touch on the ground 1.6%
TAXI IN Numeric The time duration elapsed between wheels-on and gate arrival at the

destination airport
1.6%

SCHEDULED ARRIVAL Numeric Planned arrival time 0%
ARRIVAL TIME Numeric WHEELS ON+TAXI IN 1.5%
ARRIVAL DELAY Numeric ARRIVAL TIME-SCHEDULED ARRIVAL 1.8%
DIVERTED Numeric Aircraft landed on airport that out of schedule 0%
CANCELLED Numeric Flight Cancelled (1 = cancelled) 0%
CANCELLATION REASON Nominal Reason for Cancellation of flight: A - Airline/Carrier; B - Weather; C -

National Air System; D - Security
98.4%

AIR SYSTEM DELAY Numeric Delay caused by air system 81.7%
SECURITY DELAY Numeric Delay caused by security 81.7%
AIRLINE DELAY Numeric Delay caused by the airline 81.7%
LATE AIRCRAFT DELAY Numeric Delay caused by aircraft 81.7%
WEATHER DELAY Numeric Delay caused by weather 81.7%

Table 5.1: Flights Delay Dataset: Attributes Description
and airport names. Additionally, Flights table was joined with the Airline table as well to get the

names and location of airports instead of just codes.

The ARRIVAL DELAY and DEPARTURE DELAY columns have negative values which show early

departure and arrival time. However, for analysis any values that are less than zero are considered as no

delay. Secondly, DEPARTURE DELAY is a very important column of the flight delay dataset, View-360

uses it as a dimension attribute. However, the automatic binning of View-360 consider equal width

bins only. For adding more depth to the analysis, a new categorical calculated attribute is added for the

departure delay values with unequal size fixed bins. Particularly, if the departure delay is less than 5

minutes then the flight is considered on time. If the departure delay is between 5 to 45 minutes, it is

consider as a small delay and all delays more than 45 minutes are considered as large delays. This

attribute is named as DEPARTURE DELAY C.

Attributes Distribution

As a pre-processing step, the frequency distributions of various attributes are plotted, as shown

in Figure 5.2. Firstly, these frequency distributions show that the categories in attribute AIRLINE,

MONTH, DAY OF WEEK, DEPARTURE DELAY are reasonably represented. Secondly, as the aggregate

views recommended by View-360 are based on distance between probability distributions of target

view and comparison view, sometimes for explanation of the insight in recommended visualization, it

5.4. BUSINESS DOMAIN 101

Attribute Name Number of Unique Values
YEAR 1

MONTH 12
DAY 31

DAY OF WEEK 7
AIRLINE 14

ORIGIN AIRPORT 628
DESTINATION AIRPORT 629

DIVERTED 2
CANCELLED 2

CANCELLATION REASON 5

Table 5.2: Flights Delay Dataset: Nominal attributes

(a) Airline (b) Month (c) Day of Week

(d) Departure Delay (e) Cancelled (f) Cancellation Reason

Figure 5.2: Flight Delays Dataset: Attributes Distribution
is helpful to look at the frequency distribution of the attributes involved in the visualization.

Moreover, Figure 5.2e and 5.2f show that very few flights are canceled and out of those most

cancellations are due to reason ‘B’ which corresponds to weather related issues. Therefore, canceled

flights are not analyzed in the View-360 and the focus of analysis is on the delayed flights.

5.4.3 Experiments Settings

As mentioned, in Section 5.3, in View-360, overlapping sets of attributes can be specified as input

parameters. Accordingly, the dimensions, measures and aggregate functions in View-360 are set as

follows:

• Ac: MONTH, DAY OF WEEK, AIRLINE, DESTINATION AIRPORT, ORIGIN AIRPORT,

DEPARTURE DELAY C

• Ac: AIR TIME, DISTANCE, ARRIVAL DELAY, DEPARTURE DELAY

• F: Count, Mean, Sum

102 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.3: Flight Delays Dataset: Hawaiian Airline (V1)
• M: AIR TIME, DISTANCE, ARRIVAL DELAY, DEPARTURE DELAY

• Pn: AIR TIME, DISTANCE, ARRIVAL DELAY, DEPARTURE DELAY, SCHEDULED DEPARTURE

• Pc: MONTH, DAY OF WEEK, AIRLINE, DESTINATION AIRPORT,

ORIGIN AIRPORT, DEPARTURE DELAY C

• k: 50

The input query Q is set to null, which means consider all possible refinements on attributes of

set Pn and Pc. This scenario is particularly useful when the analyst has no preferred data to start

the exploration process. Moreover, in the absence of input query, the similarity objective of the

multi-objective function in QuRVe becomes irrelevant. Therefore, αS = 0 and αD = 1.

5.4.4 Summary of Results

View-360 employs QuRVe scheme to generate the set Q, of all of the refined queries using the

attributes specified by Pn and Pc. Then all aggregate views for each Q j ∈Q are generated and their

deviation-based utility is computed. Furthermore, for the numerical attributes of set A, MuVE scheme

is employed by View-360 that perform automatic binning and generate all binned views. As mentioned

in Section 5.3, View-360 displays the top-k views and then provides the option of diversifying or

unifying the views. Particularly, for unifying the results it combines the views with respect to refined

queries and/or dimensions of the view and then display the combinations. For this analysis the top-k

views are combined by their underlying refined queries.

Analysis 1: Hawaiian Airline

This analysis is based on a refined query Q j which appeared in 7 of the top-10 views recommended by

View-360. The refined query selects the subset of data for HA=Hawaiian Airline i.e.,

Q j: SELECT * FROM Flight-delays WHERE Airline==’HA’

5.4. BUSINESS DOMAIN 103

(a) Hawaiian Airline (b) All Airlines

Figure 5.4: Departure delay vs. Distance

Figures 5.3, 5.5, and 5.7 show three interesting views out of those seven views. As mentioned

earlier that View-360 employ QuRVe scheme to automatically refine the queries and MuVE scheme for

automatically binning the numerical dimensions. Hence, through QuRVe the above mentioned refine

query is discovered and through binning the best binning options that expose insights are discovered.

For all views shown in Figures 5.3, 5.5, and- 5.7, the target view is on the subset of data that represents

flights from Hawaiian airline only, while the comparison view is on the data of all airlines.

In Figure 5.3 on the x-axis the numerical dimension DEPARTURE DELAY is shown. As it is a

numerical dimesion attribute, therefore, it is automatically binned by MuVE. The view shown in

Figure 5.3 is binned into two equal width bins. In particular, the first bin is between -84.07-953

minutes and second bin is between 954-1988 minutes. On the y-axis Figure 5.3 shows the probability

distribution of MEAN of the DISTANCE covered by flights for comparison and target views. The

comparison view in Figure 5.3 shows that the flights having departure delay more than 953 minutes

have 60% mean distance as compared to their counter part which have 40% mean distance. However,

the target view in Figure 5.3 shows that the flights that have a departure delay less than 953 minutes

have less than 20% of mean distance covered,while the flights that have departure delay greater than

953 minutes have more than 80% of mean distance. This implies that generally heavy departure delay

can be experienced for log distance flights in case of Hawaiian Airline. To investigate this further,

View-360’s further exploration feature is used, and scatter plot of DEPARTURE DELAY vs. DISTANCE for

Hawaiian Airline and for all airlines is generated as shown in Figure 5.4a and Figure 5.4b respectively.

Figure 5.4 shows that Hawaiian airline has number of flights that have maximum distance and departure

delay more than 953 minutes while for all other airlines there are not many flight in that area of scatter

plot. This confirms our insight that the long distance flights from Hawaiian airline have high chances

of experiencing long departure delay. Furthermore, it is expected that when the flights are delayed

at departures, the same amount of delay will be recorded at the arrival. Figure 5.5 shows another

recommended view by View-360, which has the same underlying refined query as the last one.

Specifically, the view shown in Figure 5.5 has the categorical departure delay attribute i.e., DEPARTURE

DELAY C as dimension attribute on the x-axis. Recall for this attribute if the departure delay is less

than 5 minutes then the flight is considered on time. If the departure delay is between 5 to 45 minutes,

104 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.5: Flight Delays Dataset: Hawaiian Airline (V2)

Figure 5.6: Flights Distribution
we consider it small delay and all delays more than 45 minutes are considered as large delays, these

categories are mentioned in the previous section. On the y-axis the Figure 5.5 shows probability

distribution of SUM of ARRIVAL DELAY. The comparison view shows the probability distribution of the

sum of arrival delay for all airlines corresponding to each departure delay category. The probability

distribution of comparison view shows that as the departure delay increases, the sum of arrival delay

also increases. However, in Figure 5.5, the target view for flights corresponding to HA=Hawaiian

Airlines shows a different trend. For Hawaiian Airline the probability distribution of the sum of the

arrival delay is almost the same for all categories of the departure delay.

For instance, in the aggregate view of Figure 5.5, the probability distribution in the target view,

either imply that Hawaiian airline has a different number of flights for departure delay categories

compared to the comparison view, or Hawaiian Airline has the shown trend due to the sum of the

arrival delay. In other words, Hawaiian airline incur arrival delays irrespective of how much departure

delay was experience by the flight. If the former was true then a view with COUNT aggregate function

should also have come up in the top-k, but that is not the case. However, using View-360 further

exploration is performed and the view with COUNT as the aggregate function in Figure 5.6 is examined.

The views confirms our analysis that the Hawaiian airline has similar pattern as for all other airlines

5.4. BUSINESS DOMAIN 105

Figure 5.7: Flight Delays Dataset: Hawaiian Airline (V3)

Figure 5.8: Departure Delay vs. Arrival Delay for Hawaiian Airline

for the number of flights. Therefore, we believe that Hawaiian airline has a pattern of unusual arrival

delay.

Figure 5.7 shows the probability distribution of SUM of DEPARTURE DELAY attribute on the y-axis.

Figure 5.7 also reassures the insight of the Figure 5.5 for Hawaiian airline. Specifically, it can be

clearly seen that in the target view the percentage of sum departure delay of flights that were on time

is less than 10%, while in target view of Figure 5.5 the sum of arrival delay percentage for on time

category it is almost 30%. This can be further explained from Figure 5.8, where the departure delay

and arrival delay for Hawaiian airline is plotted by View-360 as a scatter plot,which shows Hawaiian

airline incur arrival delay even for on time and small departure delay flights. Moreover, it can also be

seen that the sum of arrival delay for comparison view in Figure 5.5 is comparatively less than the sum

of departure delay in Figure 5.7 for flights that experienced high departure delays. This indicates that

sometimes airlines adjusted their flight in order to reduce the delays at arrival.

106 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

(a) (b)

(c)

(d)

Figure 5.9: Scheduled Departure Time vs. Departure Delay

Analysis 2: Scheduled Departure Time vs. Departure Delay

This particular analysis is related to the refined query generated by QuRVe, which selects the flights

that have departure delay more than 45 minutes i.e.,

SELECT * FROM Flight-delays WHERE Departure Delay C==’3 Large Delay’

The dimension that stands out in the recommended of View-360, particular to this refined query

is the SCHEDULED DEPARTURE, which is the time for which the flight was scheduled to depart. The

views in Figure 5.9 are 3 of the top-k views corresponding to above mentioned refined query and

has scheduled time of flights on the x-axis. All of these views are binned views and are discovered

by View-360 by employing MuVE. Particularly, Figure 5.9a shows a view in which the scheduled

departure time is binned into 2 equi-width bins, i.e., 12 hours in each bin, while the y-axis has the

5.4. BUSINESS DOMAIN 107

probability distribution of COUNT. The comparison view in the Figure 5.9a shows around 40% of the

flights are scheduled for first half of the day while around 60% are scheduled for the second half of

the day. However, in target view which corresponds to flights with departure delay greater than 45

minutes, it clearly shows that almost 3
4th of the flights are delayed in the second half of the day.

Figure 5.9c shows a deeper insight into the same situation. Here the number of bins are 4, which

means the day is divided into intervals of 6 hours i.e., 360 minutes. The comparison view in Figure 5.9c

shows that for the first bin i.e., 12:00 am-6:00 am onlt 5% of the flights are scheduled. Then for the

middle two intervals i.e., 6:00 am-6:00 pm almost equal number of flights are scheduled and this is

the loaded time of the day having 70% of all flights. For the last interval i.e., 6:00 pm-12:00am the

number of flights decreases and comes down to 25%. The target view in the Figure 5.9c shows that the

highest number of flights that experienced large delayed is between 12:00 pm- 6:00 pm.

Figure 5.9b reveals another aspect of the scenario under discussion. On the x-axis the SCHEDULED

DEPARTURE time is binned into 3 equi-width bins and on the y-axis the probability distribution of the

MEAN of DEPARTURE DELAY is shown. The comparison view in the figure shows that mean departure

delay of all the flights is highest for the later part of the day. However, the target view shows that for

the flights experienced large delays, almost the 40% of the mean departure delay is between 12:00 am

8:am. We already know during this time slot very few flights are scheduled, however, the view suggests

that the flights that get delayed in this slot experience big departure delays. To confirm this insight,

View-360’s further exploration feature is used and the scatter plot between SCHEDULED DEPARTURE

time and DEPARTURE DELAY is generated, as shown in Figure 5.9d. It can be clearly seen in the plot

that between 0-4800 i.e., 12:00 am - 8:00 am the departure delay is highest as compared to any other

time of the day.

Analysis3: Busy Airports

There are 322 unique airport codes in the dataset, it is not feasible to plot all the unique values on

the x-axis for views. Secondly, as it is a categorical attribute therefore automatic binning can not be

performed. The airports can be grouped together in a hierarchy, for instance by city or state. However,

this separate set of analysis is performed by selecting a subset of data of highly loaded airports (i.e.

the top-15 airports only).

Figure 5.10a shows one of the top-k view recommended by View-360 by employing QuRVe

which automatically refined the input query. The Figure 5.10a has codes of the 15 selected ORIGIN

AIRPORTS on the x-axis and the probability distribution of COUNT on the y-axis. The comparison view

shows probability distribution of flights from all airlines corresponding to each of the busy airports. It

can be clearly seen that ATL=Atlantic City International Airport and ORD=Chicago O’Hare

International Airport are the busiest airports, together they have 30% of the flights of 15 airports.

The Target view shows that the Airline DL=Delta Airlines have almost 50% of their flights from

ATL airport. Additionally, from our pre-processing and attribute analysis we already know that DL is

actually the second largest airline as shown in Figure 5.2a. Hence, it is learnt that majority of DL flights

are from ATL, this is evidence to the fact the DL has it’s headquarters in ATL.

108 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

(a) (b)

(c)

Figure 5.10: Flight Delays Dataset: Busy Airports

Next, View-30 is configured to include the refinement of the reference dataset as well to recom-

mend top-k views. Figure 5.10b shows probability distribution of SUM of DEPARTURE DELAY for EWR=

Newark Liberty International Airport, NJ and SFO=San Francisco International Airport

vs. the SCHEDULED DEPARTURE time. This particular view is generated by MuVE through which the

scheduled departure time is binned into 3 bins i.e., each bin consists of around 8 hours slot of the day

for instance first bin corresponds to 12:00 am-8:00 am or in terms of minutes it is 0-480 minutes. The

comparison view is for SFO airport, which shows the probability of the sum of departure delay for

this airport is minimum for the first slot of the day and it is highest for second bin i.e., 8:00 am - 4:00

pm. However, the target view for the Airport EWR shows that the probability of the sum of departure

delay for this airport is maximum for the last slot of the day. To investigate further, Figure 5.10c

shows scatter plot of scheduled departure time and departure delay for these two airports generated by

View-360. It can be clearly seen that for SFO flights scheduled between 480-960 minutes, there are

many flights with high delays, which explains the comparison view of the Figure 5.10b.

5.5 Health Domain

Healthcare, like many service industries across the globe, is now grappling with how to use the

enormous amount of digital data being generated to inform clinical decision in an efficient way [100].

The use of data visualizations is deemed essential to generate useful insights that clinicians and

5.5. HEALTH DOMAIN 109

healthcare sector can trust and action in a timely manner . A recent review by Galetsi and Katsaliaki

around state of data analytic in healthcare emphasizes the role improvements in real-time data science

including visualization techniques have to play in the research of the most severe diseases that humanity

faces nowadays such as, cancer, Alzheimer, diabetes, etc., [101].

For diseases like diabetes with high global occurrence, it has been highlighted that there will not be

enough family care doctors to meet future needs [102]. Any allied healthcare professionals or carers as

physician assistants or family members, will likely take that role, but they will need easy-to-understand

visual information tools that give them quick yet accurate insights [24]. Therefore taking a case

of using a diabetes dataset, the proposed techniques in this research demonstrate how user-centred

visualizations simplify the interpretation process by presenting insights.

Diabetes Mellitus is a disease marked by high levels of sugar in the blood. WHO foresees that

diabetes will be the 7th leading cause of death in 2030. In the recent years, the interest in reducing

hospital re-admissions has increased due to its potential to reduce healthcare costs and improve care.

Particularly, the interest in reducing diabetes hospital re-admissions has increased because of the

growth of the burden of diabetes. In order to reduce diabetes re-admissions with interventions, risk

factors of re-admissions should be better understood. Owing to the fact that it would be very costly to

apply intervention measures to all diabetic patients, studies usually focus on high-risk patients. There

are currently several risk factors which predispose to diabetes such as genetics, race, physiological

measures and habits [4]. Hence, for health domain we choose to analyze diabetes patients data using

our techniques.

5.5.1 Diabetes Patients Dataset

The dataset [103] represents 10 years (1999-2008) of clinical care at 130 US hospitals and integrated

delivery networks. It includes over 50 features representing patient and hospital outcomes. Information

was extracted from the database for encounters that satisfied the following criteria.

1. It is an inpatient encounter (a hospital admission).

2. It is a diabetic encounter, that is, one during which any kind of diabetes was entered to the

system as a diagnosis.

3. The length of stay was at least 1 day and at most 14 days.

4. Laboratory tests were performed during the encounter.

5. Medications were administered during the encounter.

The attributes of the dataset are described in Table 5.3.

5.5.2 Data Pre-processing

The original dataset contains 1,01,766 records. However there is incomplete information as expected in

any real-world data. There were several attributes that could not be used in analysis directly since they

110 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Feature name Type Description and values % missing
Encounter ID Numeric Unique identifier of an encounter 0%
Patient number Numeric Unique identifier of a patient 0%
Race Nominal Values: Caucasian, Asian, African American, Hispanic, and other 2%
Gender Nominal Values: male, female, and unknown/invalid 0%
Age Nominal Grouped in 10-year intervals: [0, 10), [10, 20), . . ., [90, 100) 0%
Weight Numeric Weight in pounds 97%
Admission type Nominal Integer identifier corresponding to 9 distinct values 0%
Discharge disposition Nominal Integer identifier corresponding to 29 distinct values, for example, dis-

charged to home, expired, and not available
0%

Admission source Nominal Integer identifier corresponding to 21 distinct values, for example,
physician referral, emergency room, and transfer from a hospital

0%

Time in hospital Numeric Integer number of days between admission and discharge 0%
Payer code Nominal Integer identifier corresponding to 23 distinct values 52%
Medical specialty Nominal Integer identifier of a specialty of the admitting physician, correspond-

ing to 84 distinct values
53%

Number of labnprocedures Numeric Number of lab tests performed during the encounter 0%
Number of procedures Numeric Number of procedures (other than lab tests) performed during the en-

counter
0%

Number of medications Numeric Number of distinct generic names administered during the encounter 0%
Number of outpatient visits Numeric Number of outpatient visits of the patient in the year preceding the en-

counter
0%

Number of emergency visits Numeric Number of emergency visits of the patient in the year preceding the
encounter

0%

Number of inpatient visits Numeric Number of inpatient visits of the patient in the year preceding the en-
counter

0%

Diagnosis 1 Nominal The primary diagnosis (coded as first three digits of ICD9); 848 distinct
values

0%

Diagnosis 2 Nominal Secondary diagnosis (coded as first three digits of ICD9); 923 distinct
values

0%

Diagnosis 3 Nominal Additional secondary diagnosis (coded as first three digits of ICD9);
954 distinct values

1%

Number of diagnoses Numeric Number of diagnoses entered to the system 0%
Glucose serum test result Nominal Indicates the range of the result or if the test was not taken. Values:

> 200,> 300, “normal,” and “none” if not measured
0%

A1c test result Nominal Indicates the range of the result or if the test was not taken. Values: > 8
if the result was greater than 8%, > 7 if the result was greater than 7%
but less than 8%, “normal” if the result was less than 7%, and “none” if
not measured

0%

Change of medications Nominal Indicates if there was a change in diabetic medications (either dosage or
generic name). Values: “change” and “no change”

0%

Diabetes medications Nominal Indicates if there was any diabetic medication prescribed. Values: “yes”
and “no”

0%

24 features for medications Nominal such as insulin,glyburide-metformin, etc., the feature indicates whether
the drug was prescribed or there was a change in the dosage. Values:
“up” if the dosage was increased during the encounter, “down” if the
dosage was decreased, “steady” if the dosage did not change, and “no”
if the drug was not prescribed

0%

Readmitted Nominal Days to inpatient readmission. Values: < 30 if the patient was readmit-
ted in less than 30 days, > 30 if the patient was readmitted in more than
30 days, and “No” for no record of readmission

0%

Table 5.3: Diabetes Dataset: Attributes Description [4]
had a high percentage of missing values. These attributes were Weight (97% values missing), Payer

code (40%), and Medical specialty (47%). Weight attribute was considered to be too sparse and

it was not included in further analysis. Payer code was also removed since it had a high percentage

of missing values and it was not considered relevant to our study.

The attribute Diagnosis 1 is the primary diagnosis for each encounter and it is coded as first

three digits of ICD9. According to ICD9 codes, we have divided the primary diagnosis into five major

categories i.e., Respiratory, Circulatory, Injury, Diabetes, Digestive and others. For our first analysis

we used the complete dataset. However, as most of the recorded attributes are relevant to the diabetes

disease such as the attributes, Diabetes medicine, HbA1c Test results, therefore for later analysis,

we consider the patients with diabetes as primary diagnosis. Only the code 250.xx corresponds to

Diabetes mellitus. Therefore, we consider the subset of the dataset which corresponds to the primary

5.5. HEALTH DOMAIN 111

Description ICD-9-CM code
Diabetes mellitus without mention of complications 250.0x
Diabetes with ketoacidosis 250.1x
Diabetes with hyperosmolarity 250.2x
Diabetes with other coma 250.3x
Diabetes with renal manifestations 250.4x
Diabetes with ophthalmic manifestations 250.5x
Diabetes with neurological manifestation 250.6x
Diabetes with peripheral circulatory disorders 250.7x
Diabetes with other specified manifestations 250.8x
Diabetes with unspecified complications 250.9x
Diabetes – not stated as uncontrolled 250.x0 or 250.x1
Diabetes – uncontrolled 250.x2 or 250.x3

Table 5.4: Diabetes Dataset: ICD-9-CM Diagnosis Codes [5]
diagnosis as Diabetes mellitus. This results in 8,757 records.

Attributes Distribution

As a pre-processing step, the frequency distribution of various attributes are shown in Figure 5.11 to

identify the skewed attributes. These distributions are also readily available in View-360 in further

exploration feature of the recommended views. Figure 5.11c shows that the Race attribute has extreme

representation of two categories while the other categories are in very low representation. However, as

it is an important attribute and may show some interesting insights therefore, the Race attribute is kept

in the analysis and the significance testing takes care of the low representation categories. Figure 5.11f

shows that the attribute Admission ID has 11 unique categories but only 2 has reasonable representa-

tion. This attribute is excluded from analysis due to not enough representation of all categories. The at-

tributes available to control for patient demographic and illness severity were Gender, Age, Admission

source, Discharge disposition, Primary diagnosis, and Time in hospital. Additionally,

the attributes Re-admissions, HbA1c test result, Insuline, and Diabetes medicine are also

included in the analysis.

Primary diagnosis used ICD-9 diagnosis codes, Table 5.4 shows the details of the codes.

5.5.3 Experiment Settings

We set our dimensions, measures and aggregate functions as follows:

• Ac: Age, Race, Gender, Admission Source, Re-admitted,

HbA1C test result, Insulin, Diabetes Medicine, Change in Medicine,

Discharge Disposition

• F: Count, Mean, Sum

• M: Number of lab procedures, Number of procedures,

Number of medications, Number of outpatient, Number of emergency,

Number of inpatient, Days in Hospital

• Pn: Days in Hospital, Number of emergency

112 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

(a) Gender (b) Age (c) Race

(d) Re-Admitted (e) HbA1C Test Result (f) Admission ID

(g) Insulin (h) diag 1:Primary Diagnosis (i) Diabetes Medicine

(j) Change in Medicine

Figure 5.11: Diabetes Dataset: Attributes Distribution
• Pc: Age, Race, Gender, Admission Source,

Discharge Disposition, HbA1C test result, Insulin, Diabetes Medicine,

Change in Medicine, Re-admitted

• k: 100

5.5. HEALTH DOMAIN 113

Figure 5.12: Diabetes Dataset: Age Group [10-20) V1

5.5.4 Summary of Results

As mentioned in previous section, View-360 employs QuRVe scheme to generate the set Q, of all of the

refined queries using the attributes specified by Pn and Pc. Then all aggregate views for each Q j ∈Q
are generated and their deviation-based utility is computed. Furthermore, for the numerical attributes

of set A, MuVE scheme is employed by View-360 that perform automatic binning and generate all

binned views. Moreover, for this analysis, View-360 is configured to combine and display the top-k

views by their underlying refined queries.

Analysis 1: All Diseases

After unification the top-1 query recommended by View-360 by employing QuRVe scheme to generate

the refined queries, selects the patients in age group ‘[10-20)’.

SELECT * FROM Diabetes WHERE Age==’[10-20)’

The top-3 views of this query are also ranked in overall top-10 views recommended by View-360,

which are shown in Figure 5.12, 5.13, and 5.15. As mentioned in Section 5.5.2, the dataset consists

of patients that have different primary diagnosis. For simplification the primary diagnosis diag 1

attribute has been divided into five broad categories, which is shown on the x-axis as the dimension

attribute in Figure 5.12, 5.13, and 5.15.

Particularly, in Figure 5.12 the comparison view shows the probability distribution of COUNT of all

patients for defined categories of primary diagnosis attribute (diag 1). Figure shows that 30% of the

patients have circulatory diseases as primary diagnosis. While less than 10% have diabetes and another

10% have injury related primary diagnosis. The target view in Figure 5.12 shows the probability

distribution of COUNT of all patients in age group ‘[10,20)’ for categories of primary diagnosis

dimension. The distribution shows that 70% of this age group patients have primary diagnosis of

diabetes. As mentioned before this dataset is based on the patients for whom any kind of diabetes was

entered to the system as a diagnosis. However, the primary diagnosis is the main disease for which

the patients are treated. This is a unique insight that patients of age group ‘[10-20)’ are primarily

diagnosed with diabetes. Despite of the fact that this view is recommended by View-360 after it passed

114 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.13: Diabetes Dataset: Age Group [10-20) V2

the statistical significance and power test, View-360 provides the option to explore the frequency

distribution of a particular attribute. The frequency distribution is shown in Figure 5.11h that this age

group has a reasonable size to have an effect.

Figure 5.13 shows the probability distribution of the SUM of Number of emergency visits in the

year preceding the encounter on the y-axis and primary diagnosis diag 1 on the x-axis. The trend

shown in the target view is the same as Figure 5.12 i.e., the 70% of the SUM of Number of emergency

visits in the year preceding the encounter were from the patients diagnosed with diabetes as primary

diagnosis. To make sure that normalization has not introduced any bias, the further analysis feature

of View-360 is used and the bar-charts of the attribute diag 1 are viewed. In Figure 5.14 bar charts

corresponding to comparison and target views of V1, V2, and V3 are shown. Particularly, Figure 5.14d

& 5.14e show the target views of Figure 5.12 and Figure 5.13 respectively without normalization

and it confirms the same trend. The comparison view in Figure 5.13 shows that the SUM of Number

(a) (b) (c)

(d) (e) (f)

Figure 5.14: Diabetes Dataset: Primary Diagnosis Details

5.5. HEALTH DOMAIN 115

Figure 5.15: Diabetes Dataset: Age Group [10-20) V3

of emergency visits in the year preceding the encounter for patients with circulatory disease is 20%

and patients with diabetes is 18%. However, from Figure 5.12, we know that the COUNT of these

patients was 30% and 8% respectively. This can imply firstly, that we have around 10% patience with

circulatory diagnosis having no previous emergency visits. Secondly, there are around 8% patients

with diabetes as primary diagnosis but they have 18% of the sum of emergency visits in preceding

year. Figure 5.14a & 5.14b also confirm these insights.

Figure 5.15 shows the probability distribution of the SUM of Time in hospital (in terms of

number of days between admission and discharge) on the y-axis and primary diagnosis diag 1 on the

x-axis. For comparison view it shows exactly same pattern as Figure 5.12, which means generally no

unique observation can be made about the days spend in the hospital. However, for the target view i.e.,

patients of age group ‘[10-20)’, there are some key observations. Firstly, the sum of the time spent

in hospital for patients with diabetes as primary diagnosis is around 50% while from Figure 5.12, we

know that these patients are around 70% in number. This implies diabetic patients are admitted for less

amount of time in hospital as compared to patients diagnosed with other diseases for this age group.

Secondly, patients with respiratory disease as primary diagnosis has around 20% of the sum of time in

hospital, while these patients are around 5% in number as can be seen in Figure 5.12. This implies this

age group patients with respiratory disease as primary diagnosis are admitted in the hospital for longer

period of time. This can be seen from Figure 5.14d & 5.14f as well.

Analysis 2: Diabetes Types

For this analysis, View-360 is set to consider the diabetes patients data only. The top visualization

recommended by View-360, offered insights into the type of diabetes diagnosis and its relation with

emergency visits recorded in the preceding year. The type of diabetes is encoded in the attribute

diag 1 (primary diagnosis), Table 5.4 shows the details of the codes.

1. First insight shown in Figure 5.16, is about those diagnosed with diabetes type 250.0x (i.e.,

diag 1==’2500’). Figure 5.16 shows the A1C results (i.e., Hemoglobin A1c abbreviated as

HbA1c blood test result) on the x-axis and the probability distribution of the MEAN of Number

116 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.16: Diabetes Type 250.0x vs. HbA1CResult

Figure 5.17: Diabetes Type 250.0x vs. HbA1CResult
of emergency visits in the preceding year of encounter on the y-axis. The comparison view

is for all diabetic patients and it shows in the figure that the highest percentage of the MEAN of

Number of emergency visits in preceding year is for those patients who were not tested for

HbA1c and the lowest is for those patients who have their test value > 7. This implies that the

patient having any type of diabetes and are not tested for HbA1c test have been admitted more

often in emergency in previous year. The Target view shows the probability distribution of the

patients who have been diagnosed with diabetes type 250.0x. Among these patients around 55%

of the mean of emergency visits is for those who have Hb1Ac test result > 7. This means if

a patient is diagnosed with 250.0x diabetes and HbA1C test result is > 7 then there are more

chances of coming to emergency again. To confirm this insight, further analysis is performed

in View-360 by exploring the the corresponding aggregate view with COUNT as an aggregate

function, as shown in Figure 5.17. Note that this view has a lower rank that is why it did not

come in the top-k automatically. This views shows that for target view the percentage of patients

with test value > 7 is less than 5%, but in Figure 5.16 their percentage is highest, that means

they are admitted in emergency number of times in the preceding year.

5.5. HEALTH DOMAIN 117

Figure 5.18: Diabetes Types and Age group 70-80

Figure 5.19: Diabetes Types and Age group 70-80
2. The view shown in Figure 5.18 is related to diabetes types and age group 70-80. In the figure the

target view is from refined query WHERE Age==’[70-80)’ which is generated by employing

QuRVe in View-360. The Figure shows primary diagnosis attribute diag 1 on the x-axis and the

SUM of Number of emergency visits in preceding year on the y-axis. The comparison view on

all the patients shows that 35% the sum of emergency visits is for the diabetes type 250.1x. This

means either there are comparatively more number of patients diagnosed with 250.1x diabetes

type or the patients who have been diagnosed with this type tend to have more emergency visits.

The target view shows that more than 50% of the sum of emergency visits for patients within the

age group 70-80 is for diabetes type 250.8x. As the aggregate function here is SUM therefore,

further investigation is required. In Figure 5.19, the view with same dimension, measure and

predicates but MEAN as aggregate function is shown, which is generated by the further exploration

feature of View-360. It can be clearly seen that the distribution of target and comparison views

are quite similar, that mean the Figure 5.18 is not a true insight.

118 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.20: Diabetes Dataset: Age Group [0-10) V1

Analysis 3: Age group ‘[0-10)’ years

This analysis is based on one of the highly rated refined query by View-360. Specifically, it is

related to those diagnosed with diabetes and are placed in age group 0 to 10 years, which means it is

corresponding to the following refined query.

SELECT * FROM Diabetes-Subset WHERE Age==’[0-10)’

First refer back to Figure 5.11b, where it can be seen that this age group is the second smallest age

group present in the dataset. Therefore, this need to be kept in mind that the effect of the views related

to this group is small due to small sample size.

The Figure 5.20 shows the attribute DiabetesMed (indicating if there was any diabetes medicine

prescribed) on the x-axis and the probability distribution of the MEAN of Number of emergency visits

in preceding year on the y-axis. The comparison views shows that for all patients the MEAN of Number

of emergency visits is equally distributed between patients who are on medicine and patients who

are not on diabetes medicine. However, in the target view, which is corresponding to patients of age

group ‘[0-10)’, it shows that almost all of emergency visits in preceding year are from patients which

are on diabetes medicine. The target view triggered further analysis to understand the details of this

insights.

(a) (b)

Figure 5.21: Diabetes Dataset: Age Group [0-10) Bar Charts

5.5. HEALTH DOMAIN 119

Figure 5.22: Diabetes Dataset: Age Group [0-10) V2

Figure 5.23: Diabetes Dataset: Age Group [0-10) V3

Therefore, the further exploration feature of View-360 is used and bar charts shown Figure 5.21

are generated. Figure 5.21a shows the number of patients of age group ‘[0-10)’ in each category

of diabetesMed. It can be clearly seen that there exists tuples in both categories. Then View-360

further shows another bar chart as shown in the Figure 5.21b. In Figure 5.21b, the SUM of Number of

emergency visit attribute revealed that among all the patients of this age group only one emergency

visit was recorded in the preceding year. This resulted in the extreme view of the Figure 5.20.

Figure 5.22 shows a view V2 with the attribute Change in medicine on the x-axis and the probability

distribution of the SUM of the Time in hospital on the y-axis. In the comparison view of the figure

it can be seen that almost 60% of SUM of Time in hospital is for patients who had their medicine

changed while rest had no change in medicine. For the target view corresponding to the patients of

age group ‘[0-10)’ years, 80% of the SUM of Time in hospital is for patients who had no change in

medicine. The next view shown in the Figure 5.23 is exactly the same view with one difference that

the aggregate function is COUNT. Therefore, it means that the view with SUM only recommended by

View-360 in top-k due to having the distribution of data of comparison and target view as shown by

COUNT in Figure 5.23 and not due to a different trend in the hospital stay.

120 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

Figure 5.24: Diabetes Dataset: Re-admissions for Different Age Groups V1

Figure 5.25: Diabetes Dataset: Re-admissions for Different Age Groups V2

Analysis 4: Re-admissions

As mentioned in Section 5.5 that in the recent years, the interest in reducing diabetes hospital re-

admissions has increased due to its potential to reduce healthcare costs and improve care because

of the growth of the burden of diabetes. Therefore, to study the factors related to re-admissions, in

View-360 the top-k views are combined with respect to the dimesion attributes and then the views

related to Readmitted dimension are analyzed.

The views identified some unique insights related to readmission trend of specific groups of

patients. This particular analysis is based on views that are generated after refinement on in put query

and reference dataset refinement. For the views shown in this analysis attribute Readmitted is the

dimension attribute which is shown on the x-axis. As mentioned in Table 5.3, the attribute Readmitted

has three categories; 1) “< 30”: if the patient was readmitted in less than 30 days, 2) “> 30”: if the

patient was readmitted in more than 30 days, and 3) “No”: if there is no record of readmission.

In the aggregate views shown in Figure 5.24 & 5.25 , the target views are from refined query WHERE

Age==’[80-90)’, while the comparison views are from refined query WHERE Age==’[30-40)’. The

age groups ‘[30-40)’ and ‘[80-90)’ are the 5th and 6th largest groups in the population of 10

5.5. HEALTH DOMAIN 121

(a) (b) (c)

(d) (e) (f)

Figure 5.26: Diabetes Dataset: Re-admissions for Different Age Groups Bar Charts

groups as can be seen in Figure 5.11b. This means the insights drawn from these subsets of data have

big effect in terms of statistical significance.

The view in Figure 5.24 shows the probability distribution of the SUM of Number of emergency

visits in preceding year on the y-axis. The comparison view (corresponding to age group ‘[30-40)’)

shows that the 55% of the SUM of Number of emergency visits in preceding year are for patients

that are readmitted after more than 30 days, while 35% are for patients who are readmitted in less

than 30 days. The target view shows that for patients of age group Age==’[80-90)’, around 50%

of the SUM of Number of emergency visits in preceding year are for patients who have no record of

readmission. This implies that in this age group the patience who had the highest sum of emergency

visits in preceding year were not readmitted in this year. However, the views with aggregate function

SUM are non conclusive as the values can be due to number of factors such as, the distribution of count

of the categories, some outliers values in the measure attribute. Therefore, using View-360’s further

exploration feature, other views for same target and comparison subsets, same dimension and measure

attribute, but different aggregate function are considered. Figure 5.25 shows a view with i.e. MEAN

as aggregate function and ranked close to the view of Figure 5.24. This mean the pattern shown in

Figure 5.24 is semantically significant. The Figure 5.25 shows a completely different pattern than

Figure 5.24, therefore further exloration is triggred through View-360. The individual bar charts with

COUNT, SUM, MEAN aggregate functions are generated, Number of emergency visits as measure,

for target and comparison views as shown in Figure 5.26a- 5.26f.

Figure 5.26a and Figure 5.26d shows similar distribution of target and comparison age groups of

patients for all categories of readmitted, that is why the aggregate view with COUNT was ranked low

in the list of top-k. However following key observation can be made from the other views.

1. In Figure 5.26b, the comparison view (corresponding to age group ‘[30-40)’) shows that

122 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

the highest SUM of Number of emergency visits in preceding year are for patients that are

readmitted after more than 30 days. This is probably because these patients are higher in number

as shown in Figure 5.26a and not because these patients were getting sick again and again in the

preceding year.

2. In Figure 5.26b, the lowest SUM of Number of emergency visits in preceding year are for

patients that have no recorded readmission, however, these patients are highest in number as

shown in Figure 5.26a. This means this is the healthiest category of patients, who had non-

existent emergency encounters in preceding year and in this encounter they did not need a

readmission. Figure 5.26c confirms this insight as these patients have the smallest MEAN of

Number of emergency visits.

3. In Figure 5.26b, around 40% of the SUM of Number of emergency visits in preceding year

is for patients that are readmitted in less than 30 days, although these patients are smallest in

number as shown in Figure 5.26a. This implies the patients who are readmitted in less than 30

days, had higher number of emergency visits in the previous year as well. Figure 5.26c shows

that these patients have the highest MEAN of Number of emergency visits. In short the patients

of age group ‘[30-40)’, having high number of emergency visits in preceding year, have high

probability of readmission in less than 30 days.

4. In Figure 5.26e, the target view (corresponding to age group ‘[80-90)’) shows that the highest

SUM of Number of emergency visits in preceding year are for patients that are not readmitted.

This is contrary to expected pattern, which is if the patients had more emergency visits in last

year, they are expected to have readmission, as was shown in the comparison view analysis.

5.6 Discussion

The detailed analysis of two datasets in the previous sections highlight the effectiveness of proposed

techniques for view recommendation. Particularly, we show that the interestingness of the recom-

mended views improve in terms of deviation by automatically generating best binning on numerical

attributes by employing MuVE, automatically finding subsets of data by employing QuRVe which

automatically refines input query and finally automatically findings two interesting subsets of data by

refining reference dataset. The View-360 seamlessly performs all of these tasks and facilitate the user

in the exploration process. However, by no means we claim that we have fixed all open issues in this

problem domain. Rather, we believe that the View-360 is just an initial step towards having a holistic

system that effectively recommends interesting views for data exploration. In this section we discuss

the lessons learnt from View-360 and some of the open questions related to it.

Attribute Sets: One of the key factors on which interestingness of a view depends is the attributes

used for measure, dimension and predicate. Although, View-360 searches for interesting views from

all combinations of A,M, and P, however, the user provides us with the sets A,M and P as input.

Identifying meaning and relative importance of attributes is a non-trivial task and depends completely

5.6. DISCUSSION 123

Figure 5.27: Top-k List with Target View Refinement

Figure 5.28: Top-k List with Comparison View Refinement
on the semantics of the data. This is an open question that how to decide which attribute is relevant to

which set. One straight forward strategy is that all dependent and numeric attributes can be assigned to

set of measures (M), while All independent and categorical attributes can be assigned as dimensions

(A). However, some attributes are suitable for both predicates and dimensions. In View-360 the choice

is left for the user and if the user defines overlapping sets of A and P, View-360 assigns the overlapping

attributes one role at a time, i.e., if the attribute is used as a dimensions it is removed from predicates

and vice versa.

Aggregate Functions: View-360 supports COUNT, SUM, AVG as aggregate functions in our analysis.

When the list of top-k aggregate views is generated each view is ranked as an individual, however, in

the analysis, it was noticed that just one particular view with a particular aggregate function fails to tell

a complete story about the data. For instance, in Figure 5.16, just one view was not enough to tell the

whole picture, views with other aggregate functions were displayed in View-360’s further exploration

feature, as shown in Figure 5.17, to complete the picture. In short, to understand the insight, all the

views with all aggregate functions are considered, therefore, it might be a good idea to group together

the views with the same predicates, dimensions and measures but different aggregate functions and

then rank the groups to get the insights.

Quality of Views: When View-360 was configured to refine the reference dataset, a big boost in

the deviation of the recommended views was observed, but it compromised semantic quality of the

recommended views. Simply searching for two subsets that are completely different from each other

on some combination of A,M and F can be extremely noisy and misleading. Automatic refinement

results in very restrictive queries that represent a small subset of data, the power analysis of View-360

124 CHAPTER 5. VIEW-360: A PROTOTYPE SYSTEM FOR VIEW RECOMMENDATION

checks that the subset passes the minimum criteria, however it appears that this is not enough to make

sure interesting insight. The smallest subset that passes the power test comes out in top-k with every

other subset. For instance, Section 5.5.1 after automatic refinement the smallest subset comes out to be

patients with age group ‘[0-10)’ and the top-2 views belong to that subset as shown in Figure 5.27.

While Figure 5.28 shows list of top-k views, when the refinement is applied to reference dataset as

well, it can be clearly seen that age group ‘[0-10)’ is compared with every other age group that exist in

data. These views have high deviation but not really interesting semantically. Moreover, such views

provide little information gain and are less interesting for the user. However, how to detect these views

and prune them is challenging and is an interesting direction for the future work.

Ranking Criteria: View-360 ranks the views based on the deviation between target and comparison

views, however, the interestingness can be explored by incorporating other criterion. For instance,

in Figure 5.26b, the comparison view in itself was showing a unique pattern when compared with

the comparison view of Figure 5.26a instead of the target view. This mean in one aggregate view if

the corresponding target and comparison view are based on different aggregate function instead of

different predicates it can bring out something new and interesting. Moreover, the conversion of results

into probability distribution is useful generally, however, in some cases it leads to misleading results

and investigating without normalization gives better insights into data. On similar lines other ranking

criterion and possibilities need to be explored.

User Feedback: View-360 gives weight to the user’s preferences by allowing the user to specify

number of input parameters and then making the recommendations based on automatic exploration.

View-360 provides maximum coverage by exploring all possible subsets of data and making all

possible comparisons. However, exploration is an iterative process, it is impossible to guarantee

that the recommended views satisfy user’s expectations. In most cases, the user do explore in

iterations by changing input parameters. Despite of all the automation, user still is the key to effective

recommendation of views. Therefore, it is worth investigating how to improve quality of recommended

view according to feedback from the user. Additionally, history of exploration from same user or other

users on same dataset can also be used as an input to the recommendation process.

Chapter 6

Conclusions and Future Work

The goal of this thesis was the design, implementation and evaluation of view recommendation schemes

for visual data exploration. Next, in Section 6.1, we summarize our contributions towards that goal

and in Section 6.2, we describe directions for future work.

6.1 Summary of Contributions

We have addressed the challenging problem of efficiently and effectively recommending views from

complex datasets for visual data exploration. While the recommended views provides the user with

effortless insights into data, quantification of relevance for view recommendation is a non-trivial task

and, additionally, the recommendation process is tremendously computationally expensive. Hence, in

order to address these challenges we proposed various schemes in this thesis as summarized below.

In Chapter 3, we proposed a novel utility function and a suite of search schemes for recommending

top-k views in the presence of numerical dimensions. Our utility function recognizes the impact of

numerical dimensions on visualization, which is captured by means of multiple objectives, namely:

deviation, accuracy, and usability. Our proposed search schemes further incorporate that utility function

for the purpose of recommending the top-k aggregate data visualizations. A key goal in the design

of those search schemes is to efficiently prune the prohibitively large search space of possible views.

That goal is reasonably achieved by our first scheme Multi-Objective View Recommendation for Data

Exploration (MuVE), and is further improved by uMuVE, at the expense of a high memory usage.

Accordingly, we presented MuMuVE , which provides a pruning power close to that of uMuVE, while

keeping memory usage within a predefined constraint. Our extensive experimental results show the

significant gains provided by our proposed scheme.

The most expensive operation while computing the utility of the views is the time spent in executing

the query related to the views. To reduce the cost of this particular operation, in Chapter 3.5, we

propose a novel technique, materialized View (mView), which instead of answering each query related

to a view from scratch, reuses results of the already executed queries. This is done by incremental

materialization of a set of views in optimal order and answering the queries from the materialized
125

126 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

views instead of the base table.

Visual data exploration involves several iterations of selecting subset of data by issuing an input

query, and analysis by generating different visualizations. Motivated by the need for finding interesting

views from prudent subsets of data (i.e., input queries), in Chapter 4, we propose efficient schemes

Query Refinement for View Recommendation (QuRVe), that automatically refine input query to search

for subsets of data having interesting views and recommend the top-k views. However, such uncon-

trolled refinement of queries can lead to multiple problems such as loss of user preference and random

discoveries. Therefore, a multi-objective function is proposed to measure relevance, interestingness

and significance of the refined queries and their corresponding views. We have proposed a novel

suit of schemes that efficiently navigate the refined queries search space for recommendation of data

visualizations. The main idea underlying the proposed QuRVe scheme is to incrementally access the

refined queries in order of their similarity with the original query, which allows an early termination of

search and results in pruning of a large number of views. Additionally, uQuRVe scheme reduces the

cost further by tightening the upper bounds on the utility of the views and short circuiting unnecessary

views. In addition, uQuRVe-range scheme is proposed, which makes sure that high utility views are

probed first and as a result higher number of low utility views are pruned. We have also proposed

approximation based schemes that provide order of magnitude reductions in processing costs, while

maintaining utility of recommended views near optimal schemes. Our extensive experimental eval-

uations show the efficiency exhibited by our proposed schemes under various settings, and the the

significant benefit it provides compared to existing methods.

QuRVe focused on finding interesting views from all subsets of data by comparing them with

a user provided reference dataset. However, the search space can be further extended by involving

comparison of all subsets of data with each other to find interesting views. Therefore, to explore this

dimension of the problem, in Chapter 5 we propose to automatically refine query for comparison views

as well. We propose the context of comparison between the target and comparison view queries. We

also outline the design and implementation of a holistic prototype system View-360, which included

all aspects of aggregate view recommendation i.e, recommendation based on categorical and numerical

attributes, and recommendation based on refinement on target and comparison queries. We then

showcase the effectiveness of our proposed schemes by performing detailed analysis on two real

datasets from different domains.

6.2 Future Work

In this section, we propose possible directions for the future work.

Interactivity

In the future, the data-driven approach adopted in this work can be extended to incorporate a user-driven

approach for recommending data visualizations to achieve the right balance between interactivity and

automation. The balance between automation and interactivity is the key for effective analysis, as

6.2. FUTURE WORK 127

we saw in Chapter 5, merely providing the user top-k ranked views falls short in terms of revealing

immediate insights. Therefore, in the future, we propose to provide the user with more sophisticated

interface to investigate the recommended views further, in iterations. Consequently, this task can be

aided with automatic explanations (textual and visual) and history of exploration, to help the user

understand the recommended view.

User Feedback

Although View-360 incorporates user-preference in terms of input parameters. However, in future, we

propose to further investigate different methods for capturing different aspects of the user’s preference

and incorporating it in the recommendation process. For instance, in an interactive approach, the user

can be presented with a small set of sample views and they can be requested to provide relevance

feedback (i.e., if the view is relevant to their analysis task), similar to the approach proposed in [29].

That feedback can then be used to build a predictive model to learn the user’s preference, which can be

integrated with our data-driven model. Moreover, we can leverage user feedback to learn the type of

views that a user finds interesting and use that model to prune uninteresting views. Orthogonally, to

extend our problem for the cases where recommendations can be made based on the availability of a

history of views that the user has found to be interesting in the past, or that have been identified as

interesting by similar users. As future work, we can investigate the integration of collaborative filtering

model with our approach.

Broad Insight Space

We measure interestingness as the distance (deviation) between a target view and a comparison view.

However, in general, one size does not fit all principle applies here. The interestingness can have

different definitions for different users, for instance, it can be a strong manifestation of a distributional

property of the data, such as skewness, strong correlation, tight clustering, or it can be unexpectedness

of a pattern. Therefore, in future, we plan to integrate other measures of interestingness to have more

general audience for View-360.

Secondly, from our extended analysis of datasets in Chapter 5, we have built a case that an insight

can not be just one visualization. It should be a combination of visualizations that tells a story about

the data. It needs more work to analyze how to quantify an insight. Particularly, score visualizations

such that the ones that are related and build a story are grouped together in one insight and that insight

gets scored accordingly.

128 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] H. Ehsan et al. Muve: Efficient multi-objective view recommendation for visual data exploration.

In ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 731–742, 2016.

[2] H. Ehsan et al. Efficient recommendation of aggregate data visualizations. IEEE Trans. Knowl.

Data Eng., 30(2):263–277, 2018.

[3] H. Ehsan and M. A. Sharaf. Materialized view selection for aggregate view recommendation.

In L. Chang, J. Gan, and X. Cao, editors, Databases Theory and Applications, pages 104–118,

Cham, 2019. Springer International Publishing.

[4] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo, S. Ventura, K. J. Cios, and J. N. Clore.

Impact of hba1c measurement on hospital readmission rates: analysis of 70,000 clinical database

patient records. BioMed research international, 2014, 2014.

[5] https://www.ncbi.nlm.nih.gov/books/NBK368403/table/sb203.t5/.

[6] M. Vartak et al. SEEDB: efficient data-driven visualization recommendations to support visual

analytics. PVLDB, 8(13):2182–2193, 2015.

[7] A. Key et al. Vizdeck: self-organizing dashboards for visual analytics. In SIGMOD, pages

681–684, 2012.

[8] S. Kandel et al. Profiler: integrated statistical analysis and visualization for data quality

assessment. In AVI, pages 547–554, 2012.

[9] T. Sellam et al. Ziggy: Characterizing query results for data explorers. PVLDB, 9(13):1473–

1476, 2016.

[10] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data visualization. In 34th

IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,

2018, pages 101–112, 2018.

[11] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of data visualizations using sequence

to sequence recurrent neural networks. CoRR, abs/1804.03126, 2018.
129

https://www.ncbi.nlm.nih.gov/books/NBK368403/table/sb203.t5/

130 BIBLIOGRAPHY

[12] K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning

approach to visualization recommendation. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019,

page 128, 2019.

[13] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. G. Parameswaran. Effortless data exploration

with zenvisage: An expressive and interactive visual analytics system. PVLDB, 10(4):457–468,

2016.

[14] T. Sellam et al. Fast, explainable view detection to characterize exploration queries. In SSDBM

2016, Budapest, Hungary, July 18-20, 2016, pages 20:1–20:12, 2016.

[15] C. Wang and K. Chakrabarti. Efficient attribute recommendation with probabilistic guarantee.

In KDD, pages 2387–2396, 2018.

[16] D. Gotz and Z. Wen. Behavior-driven visualization recommendation. In Proceedings of the

14th International Conference on Intelligent User Interfaces, IUI 2009, Sanibel Island, Florida,

USA, February 8-11, 2009, pages 315–324, 2009.

[17] M. Vartak et al. SEEDB: automatically generating query visualizations. PVLDB, 7(13):1581–

1584, 2014.

[18] G. Cormode et al. Synopses for massive data: Samples, histograms, wavelets, sketches.

Foundations and Trends in Databases, 4(1-3):1–294, 2012.

[19] Y. E. Ioannidis. The history of histograms (abridged). In VLDB, 2003.

[20] https://archive.ics.uci.edu/ml/datasets/adult.

[21] S. Idreos et al. Overview of data exploration techniques. In SIGMOD, pages 277–281, 2015.

[22] A. Giuzio, G. Mecca, E. Quintarelli, M. Roveri, D. Santoro, and L. Tanca. INDIANA: an

interactive system for assisting database exploration. Inf. Syst., 83:40–56, 2019.

[23] P. Kubernátová, M. Friedjungová, and M. van Duijn. Constructing a data visualization rec-

ommender system. In International Conference on Data Management Technologies and

Applications, pages 1–25. Springer, 2018.

[24] I. Dankwa-Mullan, M. Rivo, M. Sepulveda, Y. Park, J. Snowdon, and K. Rhee. Transforming

diabetes care through artificial intelligence: The future is here. Population Health Management,

22(3):229–242, 2019. PMID: 30256722.

[25] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M. Hellerstein, and A. Silberschatz. Learning

and verifying quantified boolean queries by example. In Proceedings of the 32nd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY,

USA - June 22 - 27, 2013, pages 49–60, 2013.

https://archive.ics.uci.edu/ml/datasets/adult

BIBLIOGRAPHY 131

[26] Q. T. Tran, C. Chan, and S. Parthasarathy. Query by output. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island,

USA, June 29 - July 2, 2009, pages 535–548, 2009.

[27] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example: an automatic query

steering framework for interactive data exploration. In International Conference on Management

of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 517–528, 2014.

[28] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering queries based on

example tuples. In International Conference on Management of Data, SIGMOD 2014, Snowbird,

UT, USA, June 22-27, 2014, pages 493–504, 2014.

[29] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. AIDE: an active learning-based approach for

interactive data exploration. IEEE Trans. Knowl. Data Eng., 28(11):2842–2856, 2016.

[30] M. Drosou and E. Pitoura. Ymaldb: exploring relational databases via result-driven recommen-

dations. VLDB J., 22(6):849–874, 2013.

[31] E. Liarou and S. Idreos. dbtouch in action database kernels for touch-based data exploration.

In IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,

March 31 - April 4, 2014, pages 1262–1265, 2014.

[32] A. Nandi. Querying without keyboards. In CIDR 2013, Sixth Biennial Conference on Innovative

Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings, 2013.

[33] A. Abouzied, J. M. Hellerstein, and A. Silberschatz. Playful query specification with dataplay.

PVLDB, 5(12):1938–1941, 2012.

[34] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Interactive data exploration using semantic

windows. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,

USA, June 22-27, 2014, pages 505–516, 2014.

[35] L. Jiang and A. Nandi. Snaptoquery: Providing interactive feedback during exploratory query

specification. PVLDB, 8(11):1250–1261, 2015.

[36] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: Context-aware auto-

completion for SQL. PVLDB, 4(1):22–33, 2010.

[37] T. Sellam and M. L. Kersten. Meet charles, big data query advisor. In CIDR, 2013.

[38] P. Neophytou, R. Gheorghiu, R. Hachey, T. Luciani, D. Bao, A. Labrinidis, G. E. Marai, and P. K.

Chrysanthis. Astroshelf: understanding the universe through scalable navigation of a galaxy of

annotations. In Proceedings of the ACM SIGMOD International Conference on Management of

Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 713–716, 2012.

132 BIBLIOGRAPHY

[39] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. G. Parameswaran. Towards visualization

recommendation systems. SIGMOD Record, 45(4):34–39, 2016.

[40] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of data visualizations using sequence

to sequence recurrent neural networks. IEEE computer graphics and applications, 2019.

[41] public.tableau.com.

[42] www.qlik.com.

[43] C. Ahlberg. Spotfire: An information exploration environment. SIGMOD Record, 25(4):25–29,

1996.

[44] Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati. Foresight: Recommending visual

insights. PVLDB, 10(12):1937–1940, 2017.

[45] J. Seo et al. Knowledge discovery in high-dimensional data: Case studies and a user survey for

the rank-by-feature framework. IEEE Trans. Vis. Comput. Graph., 12(3):311–322, 2006.

[46] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for interactive

visualization. In Proceedings of the 2016 International Conference on Management of Data,

SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1363–1375,

2016.

[47] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang. Quickinsights: Quick and automatic discovery

of insights from multi-dimensional data. In Proceedings of the 2019 International Conference

on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -

July 5, 2019., pages 317–332, 2019.

[48] L. D. Stefani, L. F. Spiegelberg, T. Kraska, and E. Upfal. Vizrec: A framework for secure data

exploration via visual representation. CoRR, abs/1811.00602, 2018.

[49] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang. Extracting top-k insights from multi-

dimensional data. In Proceedings of the 2017 ACM International Conference on Management

of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 1509–1524,

2017.

[50] E. Zgraggen, Z. Zhao, R. C. Zeleznik, and T. Kraska. Investigating the effect of the multiple

comparisons problem in visual analysis. In CHI, page 479, 2018.

[51] D. J. L. Lee, H. Dev, H. Hu, H. Elmeleegy, and A. G. Parameswaran. Avoiding drill-down falla-

cies with VisPilot: assisted exploration of data subsets. In Proceedings of the 24th International

Conference on Intelligent User Interfaces, IUI 2019, Marina del Ray, CA, USA, March 17-20,

2019, pages 186–196, 2019.

public.tableau.com
www.qlik.com

BIBLIOGRAPHY 133

[52] Y. Mizuno, Y. Sasaki, and M. Onizuka. Efficient data slice search for exceptional view detection.

In Proceedings of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017),

Venice, Italy, March 21-24, 2017., 2017.

[53] T. Matsumoto, Y. Sasaki, and M. Onizuka. Data slice search for local outlier view detection:

A case study in fashion EC. In Proceedings of the Workshops of the EDBT/ICDT 2019 Joint

Conference, EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019., 2019.

[54] C. Binnig, L. D. Stefani, T. Kraska, E. Upfal, E. Zgraggen, and Z. Zhao. Toward sustainable

insights, or why polygamy is bad for you. In CIDR 2017, 8th Biennial Conference on Innovative

Data Systems Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.

[55] Z. Zhao et al. Controlling false discoveries during interactive data exploration. In SIGMOD,

2017.

[56] Q. Cui et al. Measuring data abstraction quality in multiresolution visualizations. IEEE Trans.

Vis. Comput. Graph., 12(5):709–716, 2006.

[57] E. Bertini. Quality metrics in high-dimensional data visualization: An overview and systemati-

zation. IEEE Trans. Vis. Comput. Graph., 17(12):2203–2212, 2011.

[58] H. V. Jagadish et al. Optimal histograms with quality guarantees. In VLDB, pages 275–286,

1998.

[59] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with

materialized views. In ICDE, pages 190–200, 1995.

[60] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294, 2001.

[61] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering queries with aggregation using

views. In VLDB, pages 318–329, 1996.

[62] H. Gupta and I. S. Mumick. Selection of views to materialize in a data warehouse. IEEE Trans.

Knowl. Data Eng., 17(1):24–43, 2005.

[63] J. D. Mackinlay et al. Show me: Automatic presentation for visual analysis. IEEE Trans. Vis.

Comput. Graph., 13(6):1137–1144, 2007.

[64] C. Stolte et al. Polaris: A system for query, analysis, and visualization of multidimensional

relational databases. IEEE Trans. Vis. Comput. Graph., 8(1):52–65, 2002.

[65] S. Subramaniam et al. Online outlier detection in sensor data using non-parametric models. In

VLDB, pages 187–198, 2006.

[66] Z. Liu et al. imMens: Real-time visual querying of big data. Comput. Graph. Forum, 32(3):421–

430, 2013.

134 BIBLIOGRAPHY

[67] G. Cormode and M. Garofalakis. Histograms and wavelets on probabilistic data. IEEE

Transactions on Knowledge and Data Engineering, 22(8):1142–1157, 2010.

[68] G. Cormode et al. Histograms and wavelets on probabilistic data. IEEE Trans. Knowl. Data

Eng., 22(8):1142–1157, 2010.

[69] N. Bruno et al. Generating queries with cardinality constraints for dbms testing. IEEE Trans.

Knowl. Data Eng., 18(12):1721–1725, 2006.

[70] A. Marian et al. Evaluating top-k queries over web-accessible databases. ACM Trans. Database

Syst., 29(2):319–362, 2004.

[71] R. Fagin et al. Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–

656, 2003.

[72] I. F. Ilyas et al. A survey of top-k query processing techniques in relational database systems.

ACM Comput. Surv., 40(4), 2008.

[73] N. Bruno et al. Evaluating top-k queries over web-accessible databases. In Proceedings of the

18th International Conference on Data Engineering, San Jose, CA, USA, February 26 - March

1, 2002, pages 369–380, 2002.

[74] H. A. Khan, M. A. Sharaf, and A. Albarrak. Divide: efficient diversification for interactive data

exploration. In Conference on Scientific and Statistical Database Management, SSDBM ’14,

Aalborg, Denmark, June 30 - July 02, 2014, pages 15:1–15:12, 2014.

[75] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. BRAID: stream mining through group lag

correlations. In SIGMOD, pages 599–610, 2005.

[76] https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.

[77] www.basketball-reference.com.

[78] https://www.kaggle.com/uciml/adult-census-income.

[79] E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a multidimensional

database. In VLDB, pages 156–165, 1997.

[80] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In

SIGMOD, pages 205–216, 1996.

[81] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Predicting query

execution time: Are optimizer cost models really unusable? In ICDE, pages 1081–1092, 2013.

[82] C. Mishra and N. Koudas. Interactive query refinement. In EDBT, pages 862–873, 2009.

[83] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. PVLDB,

6(8):553–564, 2013.

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
www.basketball-reference.com
https://www.kaggle.com/uciml/adult-census-income

BIBLIOGRAPHY 135

[84] A. Albarrak, M. A. Sharaf, and X. Zhou. Saqr: An efficient scheme for similarity-aware query

refinement. In DASFAA, 2014.

[85] M. Vartak, V. Raghavan, E. A. Rundensteiner, and S. Madden. Refinement driven processing of

aggregation constrained queries. In EDBT, 2016.

[86] G. Liu et al. Towards exploratory hypothesis testing and analysis. In ICDE, 2011.

[87] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire. Data polygamy: The many-many

relationships among urban spatio-temporal data sets. In SIGMOD.

[88] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In SIGMOD Conference, pages

15–26, 2010.

[89] S. D. Bay and M. J. Pazzani. Detecting group differences: Mining contrast sets. Data Min.

Knowl. Discov., 5(3):213–246, 2001.

[90] Y. Chung et al. Towards quantifying uncertainty in data analysis & exploration. IEEE Data

Eng. Bull., 41(3):15–27, 2018.

[91] J. Cohen. Statistical power analysis for the behavioral sciences (revised ed.), 1977.

[92] A. Telang, C. Li, and S. Chakravarthy. One size does not fit all: Toward user- and query-

dependent ranking for web databases. IEEE Trans. Knowl. Data Eng., 24(9):1671–1685,

2012.

[93] A. Kadlag, A. V. Wanjari, J. Freire, and J. R. Haritsa. Supporting exploratory queries in

databases. In DASFAA, pages 594–605, 2004.

[94] https://www.kaggle.com/usdot/flight-delays.

[95] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and

H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and

sub-totals. CoRR, abs/cs/0701155, 2007.

[96] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query recommendations for OLAP discovery-

driven analysis. IJDWM, 7(2):1–25, 2011.

[97] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Smart drill-down: A new data

exploration operator. PVLDB, 8(12):1928–1931, 2015.

[98] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes.

In Advances in Database Technology - EDBT’98, 6th International Conference on Extending

Database Technology, Valencia, Spain, March 23-27, 1998, Proceedings, pages 168–182, 1998.

https://www.kaggle.com/usdot/flight-delays

136 BIBLIOGRAPHY

[99] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-based local

outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management

of Data, May 16-18, 2000, Dallas, Texas, USA., pages 93–104, 2000.

[100] W. Raghupathi and V. Raghupathi. Big data analytics in healthcare: promise and potential.

Health Information Science and Systems, 2(1):3, Feb 2014.

[101] P. Galetsi and K. Katsaliaki. A review of the literature on big data analytics in healthcare.

Journal of the Operational Research Society, pages 1–19, 07 2019.

[102] B. Shneiderman, C. Plaisant, and B. W. Hesse. Improving healthcare with interactive visualiza-

tion. Computer, 46(5):58–66, May 2013.

[103] http://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+

years+1999-2008.

http://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
http://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008

Appendix A

Multivariable Linear Regression

In multi linear regression, we use a regression model with one dependent and two or more independent

variables. In general, the multiple regression equation of Y on X1, X2, . . . , Xk is given by:

y = b0 +b1x1 +b2x2 ++bkxk (A.1)

Let’s assume we have two independent variables x1 and x2. Then select a set of sample observations

from the data. For multivariable regression analysis, first correlations r between all the variables i.e.

r(y,x1), r(x1,x2), and r(y,x2) are computed. Then multiple (combined) correlation R is computed

using following formula:

R =

√
(ry,x1)

2 +(ry,x2)
2− (2ry,x1ry,x2rx1,x2)

1− (rx1,x2)
2 (A.2)

If R=0 that means there is no relationship between variables. If R 1 that implies there is strong

relationship between variables. Then calculate regression coefficients b with following formulas:

b1 =
ry,x1− ry,x2rx1,x2

1− (rx1,x2)
2

SDy

SDx1

(A.3)

b2 =
ry,x2− ry,x1rx1,x2

1− (rx1,x2)
2

SDy

SDx2

(A.4)

Where SD is the standard deviation.

137

	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	Overview
	Thesis Contribution
	Efficient View Recommendation for Numerical Dimensions
	Query Refinement for View Recommendation
	View-360: A Prototype System for View Recommendation

	Thesis Layout

	Related Work
	Data Exploration
	Visual Data Exploration
	Visualization Recommendation
	Data-Driven Recommendation Systems

	Efficient Binned View Recommendation
	Introduction
	Related Work
	Preliminaries
	View Recommendation
	Numerical Dimensions
	Binned Views

	Multi Objective View Recommendation
	Problem Definition
	Search Strategy Overview
	Baseline Schemes
	The MuVE Scheme
	The uMuVE Scheme: Upper Bound Based MuVE
	The MuMuVE Scheme: Memory-aware uMuVE
	Vertical Search Schemes
	Approximate Search Schemes
	Experimental Testbed
	Experimental Evaluation

	Materialized View Selection for Aggregate View Recommendation
	Problem Definition
	mView: Greedy Approach
	Materialized views with MuVE
	Experimental Testbed
	Experimental Evaluation

	Summary

	Input Query Refinement for View Recommendation
	Introduction
	Related Work
	Query Refinement
	Hypothesis Testing

	Preliminaries
	View Recommendation
	Query Refinement
	Hypothesis Testing

	Query Refinement for View Recommendation
	View Recommendation with Query Refinement
	Problem Statement
	Similarity Aware Query Refinement

	Search Schemes
	Linear Scheme
	The QuRVe Scheme
	The uQuRVe Scheme
	The uQuRVe-range Scheme
	The QuRVe-Approximation

	Experimental Testbed
	Experimental Evaluation
	Summary

	View-360: A Prototype System for View Recommendation
	Introduction
	Reference Dataset Refinement
	 View Recommendation with Reference Dataset Refinement

	View-360
	General Settings

	Business Domain
	Flight Delays and Cancellations 2015
	Data Pre-processing
	Experiments Settings
	Summary of Results

	Health Domain
	Diabetes Patients Dataset
	Data Pre-processing
	Experiment Settings
	Summary of Results

	Discussion

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	Bibliography
	Appendix

