37 research outputs found

    Canonical Abstract Syntax Trees

    Get PDF
    This paper presents Gom, a language for describing abstract syntax trees and generating a Java implementation for those trees. Gom includes features allowing the user to specify and modify the interface of the data structure. These features provide in particular the capability to maintain the internal representation of data in canonical form with respect to a rewrite system. This explicitly guarantees that the client program only manipulates normal forms for this rewrite system, a feature which is only implicitly used in many implementations

    Strategic term rewriting and its application to a VDM-SL to SQL conversion

    Get PDF
    We constructed a tool, called VooDooM, which converts datatypes in Vdm-sl into Sql relational data models. The conversion involves transformation of algebraic types to maps and products, and pointer introduction. The conversion is specified as a theory of refinement by calculation. The implementation technology is strategic term rewriting in Haskell, as supported by the Strafunski bundle. Due to these choices of theory and technology, the road from theory to practise is straightforward.Fundação para a Ciência e a Tecnologia (FCT) - POSI/ICHS/44304/2002Agência de Inovação (ADI) - ∑!223

    Matching objects without language extension

    Get PDF
    Pattern matching is a powerful programming concept which has proven its merits in declarative programming. The absence of pattern-matching in object-oriented programming languages is felt especially when tackling source code processing problems. But existing proposals for pattern matching in such languages rely on language extension, which makes their adoption overly intrusive. We propose an approach to support pattern matching in mainstream object-oriented languages without language extension. In this approach, a pattern is a first-class entity, which can be created, be passed as argument, and receive method invocations, just like any other object. We demonstrate how our approach can be used in conjunction with existing parser generators to perform pattern matching on various kinds of abstract syntax representation. We elaborate our approach to include concrete syntax patterns, and mixing of patterns and visitors for the construction of sophisticated syntax tree traversals.Thanks to Rob van der Leek of the Software Improvement Group for valuable feedback regarding this paper and the MatchO library. The author is recipient of a research grant from the Fundacao para a Ciencia e a Tecnologia, under grant number SFRH/BPD/11609/2002

    Language Parametric Module Management for IDEs

    Get PDF
    An integrated development environment (IDE) monitors all the changes that a user makes to source code modules and responds accordingly by flagging errors, by reparsing, by rechecking, or by recompiling modules and by adjusting visualizations or other information derived from a module. A module manager is the central component of the IDE that is responsible for this behavior. Although the overall functionality of a module manager in a given IDE is fixed, its actual behavior strongly depends on the programming languages it has to support. What is a module? How do modules depend on each other? What is the effect of a change to a module? We propose a concise design for a language parametric module manager: a module manager that is parameterized with the module behavior of a specific language. We describe the design of our module manager and discuss some of its properties. We also report on the application of the module manager in the construction of IDEs for the specification language ASF+SDF as well as for Java. Our overall goal is the rapid development (generation) of IDEs for programming languages and domain specific languages. The module manager presented here represents a next step in the creation of such generic language workbenches

    Gauging the Quality of Examples for Teaching Design Patterns

    Get PDF
    What constitutes a good example in the context of teaching design patterns? How can instructors judge whether one example is better than another one for teaching a design pattern to students? How might an example be presented to best connect with students, equipping them with the necessary know-how? In this paper, I address these questions by offering a means to judge the quality of examples for teaching design patterns: a list of desirable characteristics. The proposed list can be used to gauge the quality of examples and/or it can be used to guide the development of examples

    Mapping and Visiting in Functional and Object-Oriented Programming.

    Full text link

    Building program understanding tools using visitor combinators

    Get PDF
    Program understanding tools manipulate program representations, such as abstract syntax trees, control-flow graphs, or data-flow graphs. This paper deals with the use of visitor combinators to conduct such manipulations. Visitor combinators are an extension of the well-known visitor design pattern. They are small, reusable classes that carry out specific visiting steps. They can be composed in different constellations to build more complex visitors. We evaluate the expressiveness, reusability, ease of development, and applicability of visitor combinators to the construction of program understanding tools. To that end, we conduct a case study in the use of visitor combinators for control-flow analysis and visualization as used in a commercial Cobol program understanding tool

    Transformation of structure-shy programs : applied to XPath queries and strategic functions

    Get PDF
    Various programming languages allow the construction of structure-shy programs. Such programs are defined generically for many different datatypes and only specify specific behavior for a few relevant subtypes. Typical examples are XML query languages that allow selection of subdocuments without exhaustively specifying intermediate element tags. Other examples are languages and libraries for polytypic or strategic functional programming and for adaptive object-oriented programming. In this paper, we present an algebraic approach to transformation of declarative structure-shy programs, in particular for strategic functions and XML queries. We formulate a rich set of algebraic laws, not just for transformation of structure-shy programs, but also for their conversion into structure-sensitive programs and vice versa. We show how subsets of these laws can be used to construct effective rewrite systems for specialization, generalization, and optimization of structure-shy programs. We present a type-safe encoding of these rewrite systems in Haskell which itself uses strategic functional programming techniques.(undefined

    Declarative visitors to ease fine-grained source code mining with full history on billions of AST nodes

    Get PDF
    Software repositories contain a vast wealth of information about software development. Mining these repositories has proven useful for detecting patterns in software development, testing hypotheses for new software engineering approaches, etc. Specifically, mining source code has yielded significant insights into software development artifacts and processes. Unfortunately, mining source code at a large-scale remains a difficult task. Previous approaches had to either limit the scope of the projects studied, limit the scope of the mining task to be more coarse-grained, or sacrifice studying the history of the code due to both human and computational scalability issues. In this paper we address the substantial challenges of mining source code: a) at a very large scale; b) at a fine-grained level of detail; and c) with full history information. To address these challenges, we present domain-specific language features for source code mining. Our language features are inspired by object-oriented visitors and provide a default depth-first traversal strategy along with two expressions for defining custom traversals. We provide an implementation of these features in the Boa infrastructure for software repository mining and describe a code generation strategy into Java code. To show the usability of our domain-specific language features, we reproduced over 40 source code mining tasks from two large-scale previous studies in just 2 person-weeks. The resulting code for these tasks show between 2.0x--4.8x reduction in code size. Finally we perform a small controlled experiment to gain insights into how easily mining tasks written using our language features can be understood, with no prior training. We show a substantial number of tasks (77%) were understood by study participants, in about 3 minutes per task
    corecore