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Abstract
Various programming languages allow the construction of structure-
shy programs. Such programs are defined generically for many
different datatypes and only specify specific behavior for a few rel-
evant subtypes. Typical examples are XML query languages that
allow selection of subdocuments without exhaustively specifying
intermediate element tags. Other examples are languages and li-
braries for polytypic or strategic functional programming and for
adaptive object-oriented programming.

In this paper, we present an algebraic approach to transforma-
tion of declarative structure-shy programs, in particular for strate-
gic functions and XML queries. We formulate a rich set of alge-
braic laws, not just for transformation of structure-shy programs,
but also for their conversion into structure-sensitive programs and
vice versa. We show how subsets of these laws can be used to con-
struct effective rewrite systems for specialization, generalization,
and optimization of structure-shy programs. We present a type-
safe encoding of these rewrite systems in Haskell which itself uses
strategic functional programming techniques.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3 [Logics and
Meanings of Programs]: Semantics of Programming Languages

General Terms Languages, Performance, Theory

Keywords Algebraic program transformation, Strategic func-
tional programming, XML query languages, Point-free program
calculation, Type specialization, Type generalization

1. Introduction
Structure-shy programming techniques have been introduced for
dealing with highly structured data such as terms, semi-structured
documents, and object graphs in a largely generic manner. A
structure-shy program specifies type-specific behaviour for a se-
lected set of data constructors only. For the remaining structure,
generic behaviour is provided. Prominent flavours of structure-shy
programming are adaptive programming [20], strategic program-
ming [24, 17, 18, 26], polytypic or type-indexed programming, and
several XML programming languages and APIs [29].

Structure-shy programming offers various clear benefits [15,
27]. A structure-shy program can be significantly more concise,

focusing on the essence of the algorithm rather than oozing with
boilerplate code. This reduces development time and improves
understandability. Also, structure-shy programs are only loosely
bound to the data structures on which they operate. As a result,
they do not necessarily need adaptation when those data structures
evolve, and they may be reusable for different data structures.

The flip side of these benefits is that structure-shy programs
have potentially worse space and time behaviour than equivalent
structure-sensitive programs. A source of performance loss, gener-
ally by a factor linear in the input size, are dynamic checks em-
ployed in the execution of structure-shy programs to determine at
each data node whether to apply specific or generic behaviour. An-
other source of inefficiency is that algorithmic optimizations, such
as cutting off traversal into certain substructures, cannot be ex-
pressed without to some extent sacrificing structure-shyness and
its benefits. In fact, manual optimization of structure-shy programs
typically involves such sacrifice.

For adaptive programming and polytypic programming, sub-
stantial effort has been invested in the development of optimizing
compilers. Compilation schemes for Generic Haskell and Generic
Clean specialize and optimize polytypic input programs for specific
types [28, 1, 2]. Adaptive programs are compiled to plain object-
oriented programs with optimized navigation behaviour [19].

In this paper, we present an approach to transformation of
structure-shy programs that encompasses typed strategic program-
ming and XML programming. Our approach builds on the pio-
neering work of Backus [3] and the ensuing tradition of algebraic
transformation of point-free functional programs [9, 6]. Algebraic
program transformation laws can be formulated for structure-shy
strategic programs and XML processors, just as they have been
formulated for structure-sensitive point-free functional programs.
Further laws can be formulated that mediate between structure-
shy and structure sensitive programs by type-specialization and
generalization. Such laws can be leveraged, not only for optimiza-
tion of structure-shy programs, but also conversely for increasing a
program’s degree of structure-shyness, which may have its use in
program understanding, refactoring, or re-engineering.

We show that the various algebraic laws involving structure-shy
programs can be harnessed in type-safe, type-directed rewriting
systems. We employ the functional language Haskell, extended
with generalized algebraic datatypes, to implement such systems.

In Section 2, we briefly motivate our work with some basic
examples. In Section 3, we recapitulate algebraic laws for structure-
sensitive point-free functional programs, and we complement them
with laws for structure-shy programs and for mediation between
structure-sensitive and structure-shy programs. In Section 4, we
explain the encoding in Haskell of rewrite systems that harness
the algebraic laws. In Section 5, we discuss various application
scenarios of our rewrite systems. Section 6 discusses related work,
and Section 7 concludes.
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Figure 1. A movie database schema, inspired by IMDb (http:
//www.imdb.com/).

The following syntax describes essential parts of XPath:

location := ’/’ ? (step (’/’ step)∗)
step := axis ’::’ test pred ∗
axis := ’child’ | ’descendant’ | ’self’ |

’descendant-or-self’

test := name | ’*’ | ’text()’ | ’node()’
pred := ’[’ expr ’]’

name := any document tag

The full syntax is available in the XPath language reference [29].
Abbreviated syntax is available and heavily used where for instance
// expands to /descendant-or-self::node()/ and an element
name without preceding axis modifier expands to /child::name .

Figure 2. Summary of XPath.

2. Motivating examples
Structure-shy programming allows concise formulation of queries
and transformations on rich data formats. Consider as an example
the XML schema shown in Figure 1 for documents that hold infor-
mation about movies. Let’s consider some queries and transforma-
tions for this schema of varying degrees of structure-shyness.

Retrieve all movie directors from a document In the XPath query
language, this query can be formulated as follows:

//movie/director

In particular, this query asks to retrieve director elements that are
direct children of a movie element, where the movie element can
appear at any depth in the document structure. See Figure 2 for
a summary of XPath constructs. The query is structure-shy in the
sense that it does not explicitly specify the structural elements that
occur between the document root and the movie element.

The structure-shyness of the query is desirable from the per-
spective of understandability, maintainability, and conciseness. But
the execution time of the query may suffer from its structure-
shyness, since it will look for movie elements throughout the doc-
ument. Using knowledge of the schema, we would like to apply
optimizing transformations to the query to obtain:

imdb/movie/director

This query would not need to traverse into any children of the imdb
element except those that are movie elements.

On the other hand, knowledge of the schema could be used to
increase the structure-shyness of the query, transforming it into:

//director

On documents conforming to the given schema, this query of in-
creased structure-shyness would produce the same result as the
original. But if during the course of application evolution the
schema would be changed such that directors no longer (only)
appear as direct children of movies, then the original query would
need to be adapted while the new query could remain untouched.

Strategic programming was first supported in non-typed setting
in the Stratego language [24]. A strongly-typed combinator suite
was introduced as a Haskell library by the Strafunski system [17,
18]. This suite was generalized into the so-called ‘scrap-your-
boilerplate’ approach to generic functional programming [14]. We
focus on a limited set of combinators that convey the essence
of strategic programming [16]. Combinators for type-preserving
generic functions (transformations):

nop :: T -- identity
(.) :: T→ T→ T -- sequence
mapT :: T→ T -- map over children
mkTA :: (A→ A)→ T -- creation
apTA :: T→ (A→ A) -- application

For readability we put single-letter type constants in sans serif font.
Combinators for type-unifying generic functions (queries):

∅ :: Q R -- empty result
(∪) :: Q R → Q R → Q R -- union of results
mapQ :: Q R → Q R -- fold over children
mkQA :: (A→ R)→ Q R -- creation
apQA :: Q R → (A→ R) -- application

The result type R is assumed to be a monoid, with a zero element
and associative plus operator. Typical derived combinators:

everywhere :: T→ T
everywhere f = f . mapT (everywhere f )
everything :: Q R → Q R
everything f = f ∪mapQ (everything f )

See the running text for examples of usage.

Figure 3. Strategic functional programming.

Truncate reviews to 100 characters Using strategic functional
programming, this transformation can be expressed as follows:

everywhere (mkTReview take100 )
where take100 (Review r) = Review (take 100 r)

The everywhere combinator applies its generic argument function
in topdown fashion to every node in a term. The mkTA combinator
applies its type-specific argument function to a given node if it is
of type A, otherwise it returns the node untouched. A summary of
strategic functional programming is provided in Figure 3.

This structure-shy transformation suffers from performance
problems just like the structure-shy XPath query above. It traverses
into parts of the document where no Review occurs, and it per-
forms dynamic type tests, even though the data schema provides
static information about where these tests succeed.

For optimization, we would like to transform the strategic trans-
formation into one that does not employ strategic combinators:

imdb (map (movie id id id (map take100 ) id)) id

Here we employ congruence functions such as:
imdb f g (Imdb m a) = Imdb (f m) (g a)

The elimination of strategic functions in favour of ordinary func-
tions enables subsequent optimizations by a regular compiler. As
illustrated in Figure 4, performance gains can be quite substantial.

On the other hand, the introduction of strategic combinators into
programs that do not employ them would allow us to synthesise
structure-shy from structure-sensitive programs. Code that has been
developed before the advent of strategic programming, or that has
been conceived for particular data structures could be made more
concise, understandable, and reusable.

In Section 5, we revisit these examples and discuss further ones.
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We have measured space and time consumption for the following
strategic functions:

trunc = everywhere (mkTReview take100 )
count = everything (mkQReview size)

take100 (Review r) = Review (take 100 r)
size (Review r) = length r

These structure-shy functions can be transformed to the following
structure-sensitive functions:

trunc′ = imdb (map (movie id id id (map take100 ) id)) id
count ′ = sum ◦map (sum ◦map size ◦ reviews) ◦movies

Here we employ congruence and selector functions such as:

imdb f g (Imdb m a) = Imdb (f m) (g a)
movies (Imdb m a) = m

For a fair comparison, we have not used a type-class based
implementation of strategic combinators [14], but our own, GADT-
based implementation. For this specific example, the GADT
version was roughly 14 times faster, and consumed 13 times less
space. The following charts show the time and space behaviour
of the strategic and type-specific programs mapped against the
size of the movie database – generated in memory with equal
numbers of movies and actors. We analyze three program combi-
nations: count ◦ trunc, count ◦ trunc′, and count ′ ◦ trunc′. We
compiled each program using GHC 6.4.1 with optimization flag O1.
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Thus, in this case, type-specialization implies an improvement
in space and time by factors of 2.6 and 4.8. Optimization of
the transformation alone implies an improvement by a factor of
roughly 1.3 in both space and time. Additional type-specialization
of the query accounts for the remaining factors of 2.0 and 3.7.

Figure 4. Performance comparison for strategic functions and
their type-specializations.

3. Algebraic laws of structure-shy programs
In his 1977 Turing Award lecture, Backus advocated a variable-free
style of functional programming, on the basis of the ease of formu-
lating and reasoning with algebraic laws over such programs [3].
After Backus, others have adopted, complemented, and extended
his work; an overview of this so-called point-free style of program-
ming is found in [9, 6]. The function combinators and associated
laws that are used in this paper are shown in Figure 5 and Figure 6.

The applicability of point-free program transformation has been
enlarged to point-wise functional programs by defining a system-
atic way of turning functions with variables and pattern matching
into equivalent point-free forms [7]. This pointwise-pointfree trans-
form has been likened to Laplace or Fourier transforms, where one
transforms a problem from one mathematical space into another,
solves the problem in that space, and transforms the solution back
to the original space. In the second space, the solution can be found
with a straightforward algorithm, while the original space resists
such mechanized reasoning. Likewise, point-free programs can be
used as the solution space for pointwise programs. Note, however,
that point-free and pointwise are extremities on a continuum rather

Point-free programs are constructed using a standard set of primi-
tive functions and function combinators. The most fundamental are
the identity function and the combinator for composing functions.

id :: A→A
(◦) :: (B→C )→ (A→B)→ (A→C )

For products we have projections and the split combinator that
combines results of two functions in a pair. The function product
combinator maps a pair using different functions for each element.

fst :: A×B → A snd :: A×B → B
(4) :: (A→ B)→ (A→C )→ (A→ B×C )
(×) :: (A→B)→ (C→D)→ (A×C → B×D)

For manipulating lists we use the map combinator that applies a
given function to all elements of a list, the wrap function that builds
singleton lists, and filter that filters list elements with a predicate.

map :: (A→B)→ ([A]→[B ])
wrap :: A→[A]
filter :: (A→Bool)→ ([A]→[A])

In this paper we also use some overloaded functions for processing
monoid types: zero returns the zero element of monoid A given
any value, plus sums two elements, and fold sums all elements in
a list. For example, if the monoid is a list, zero returns the empty
list, plus concatenates two lists, and fold flattens a list of lists.

zero :: B→A plus :: A×A→ A fold :: [A]→A

We also use point-free versions of if-then-else and constant true .

cond :: (A→Bool)→ (A→B)→ (A→B)→ (A→B)
true :: A→Bool

Notice that false is captured by zero of the boolean monoid (where
plus stands for disjunction). Combinators for further types such as
sums or finite maps can also be defined, but are not used here.

Figure 5. Combinators for point-free programming.

than disjoint spaces. We will show that point-free program trans-
formation may similarly be used as the solution space for transfor-
mation of structure-shy programs.

3.1 Strategic programming laws
Algebraic program transformation laws can be formulated for
structure-shy strategic programs and XML processors, just as they
have been formulated for structure-sensitive point-free functional
programs. Figure 7 provides an overview of laws that govern the
strategic programming combinators. For example, the .-ID laws
state that the generic identity function is a left and right zero for
generic sequential composition. The mapT -FUSION law states that
generic maps distribute over generic sequential composition.

Note that the reasoning power of these strategic programming
laws is rather limited, precisely because they do not take type
information into account. For example, there are no counterparts
of the×-CANCEL rules, which enable the elimination of redundant
computations.

Further laws can be formulated that mediate between structure-
shy and structure sensitive programs by type-specialization and
generalization. Figure 8 provides an overview of laws that mediate
between strategic and point-free combinators. For instance, the ◦-
PULLT law states that sequential composition can be pulled up
through mkT to obtain generic sequential composition. The first
equation of the mapT -APPLY law states that application of a
generic map to a product can be specialized to a product-map. Note
especially the mkT -APPLY law that shows how apT and mkT can
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f ◦ id = f ◦-IDR
id ◦ f = f ◦-IDL

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-ASSOC
f×g = (f ◦ fst)4(g ◦ snd) ×-DEF

fst ◦ (f4g) = f ×-CANCELL
snd ◦ (f4g) = g ×-CANCELR

(f4g) ◦ h = (f ◦ h)4(g ◦ h) ×-FUSION
fst4snd = id ×-REFLEX
map id = id map-ID

map f ◦ zero = zero map-ZERO
map f ◦map g = map (f ◦ g) map-FUSION

map f ◦ wrap = wrap ◦ f map-WRAP
filter true = id filter -TRUE

filter zero = zero filter -FALSE
filter f ◦ zero = zero filter -ZERO

filter f ◦ plus = plus ◦ (filter f×filter f ) filter -PLUS
filter f ◦map g = map g ◦ filter (f ◦ g) filter -MAP
filter f ◦ fold = fold ◦map (filter f ) filter -FOLD
filter f ◦ wrap = cond f wrap zero filter -WRAP

true ◦ f = true true-FUSION
cond true f g = f cond -TRUE
cond zero f g = g cond -FALSE

(cond f l r) ◦ g = cond (f ◦ g) (l ◦ g) (r ◦ g) cond -FUSION
plus ◦ (zero4f ) = f plus-ZEROL
plus ◦ (f4zero) = f plus-ZEROR

zero ◦ f = zero zero-FUSION
fold ◦ (map zero) = zero fold -MAPZERO

fold ◦ wrap = id fold -WRAP
fold ◦map wrap = id fold -MAPWRAP

fold ◦ plus = plus ◦ (fold×fold) fold -PLUS
map f ◦ plus = plus ◦ (map f×map f ) map-PLUS

map f ◦ zero = zero map-ZERO
fold ◦ zero = zero fold -ZERO

map f ◦ fold = fold ◦map (map f ) map-FOLD
fold ◦ fold ◦map f = fold ◦map (fold ◦ f ) fold -FOLDMAP

Figure 6. Some laws for point-free program calculation. The last
set is only valid for a list monoid.

f . nop = f .-IDR
nop . f = f .-IDL

f . (g . h) = (f . g) . h .-ASSOC
mapT nop = nop mapT -NOP

mapT f . mapT g = mapT (f . g) mapT -FUSION
f ∪ ∅ = f ∪-EMPTYR
∅ ∪ f = f ∪-EMPTYL

f ∪ (g ∪ h) = (f ∪ g) ∪ h ∪-ASSOC
mapQ ∅ = ∅ mapQ-EMPTY

mapQ f ∪mapQ g = mapQ (f ∪ g) mapQ-FUSION
everywhere f = f . mapT (everywhere f ) everyw -DEF
everything f = f ∪mapQ (everything f ) everyt-DEF

Figure 7. Laws for strategic program combinators. The mapQ-
FUSION law is only valid for commutative monoids.

be cancelled against each other. Such cancellation may result in the
elimination of unreachable nested functions.

Such mediation laws can be leveraged for specialization of
structure-shy programs to structure-sensitive ones. To, conversely,
increase a program’s degree of structure-shyness, some additional
heuristic laws are needed, which will be presented in Section 4.4.

apTA nop = id nop-APPLY
apTA (f . g) = apTA f ◦ apTA g .-APPLY
apTA (mkTA f ) = f
apTA (mkTB f ) = id , if A 6≡ B

ff
mkT -APPLY

apT (A×B) (mapT f ) = apTA f×apTB f
apT [A ] (mapT f ) = map (apTA f )
apTA (mapT f ) = id , if A simple type

9=; mapT -APPLY

mkTA id = nop id -PULLT
mkTA (f ◦ g) = mkTA g . mkTA f ◦-PULLT

apQA ∅ = zero ∅-APPLY
apQA (f ∪ g) = plus ◦ (apQA f4apQA g) ∪-APPLY

apQA (mkQA f ) = f
apQA (mkQB f ) = zero, if A 6≡ B

ff
mkQ-APPLY

apQ(A×B) (mapQ f )
= plus ◦ ((apQA f )×(apQB f ))

apQ [A ] (mapQ f ) = fold ◦map (apQA f )
apQA (mapQ f ) = zero, if A simple type

9>=>; mapQ-APPLY

mkQA zero = ∅ ∅-PULLQ
mkQA (plus ◦ (f4g)) = mkQA f ∪mkQA g plus-PULLQ

Figure 8. Laws for mediating between strategic and point-free
programs.

3.2 XML programming laws
Many XPath constructs can be expressed directly as strategic com-
binators of type Q [?], where ? represents a universal node type. A
summary of such an encoding is shown in Figure 9. As expressed
by the ? result type, the XPath combinators enjoy a very relaxed
typing. The list of results returned by a query can contain nodes of
any number of different types. As we will explain below, this poses
additional challenges for transformation of XPath queries. The fol-
lowing function is used to inject any type A into the universal type.

mkAny :: A→ ?

This function is idempotent, i.e. mkAny (x :: ?) = x . Likewise,
the behaviour of combinators like mapQ , mkQ , and apQ on ? is
defined by their behaviour on the injected type.

Some algebraic laws for XPath combinators are presented in
Figure 10. For instance, the ∪-DIST and /-ASSOC combinators
state distributivity and associativity properties of XPath combina-
tors. Figure 11 presents laws for conversion and type-specialization
of XPath expression. The child , desc, and descself combinators
are convertible to strategic combinators, as stated by various DEF
laws, after which the previously presented specialization laws of
strategic queries can take effect. The remaining combinators can
be converted directly to point-free expressions, using APPLY rules.
The ? laws allows elimination of the mkAny function. Below we
will demonstrate how these rules together mediate between XPath
and point-free expressions.

4. Encoding in Haskell
The various algebraic laws presented above can be harnessed into
type-safe, type-directed rewriting systems for generalization, spe-
cialization, and optimization of structure-shy programs. In this sec-
tion, we explain how the functional language Haskell can be used
for this purpose.

4.1 Type-safe representation of types
Some of our algebraic laws, especially those of Figures 8 and 11,
make explicit reference to types. Some expose the structure of types
(e.g. ×-APPLY). Others include type equality tests (e.g. mkT -
APPLY). To encode these laws, we will need type-representations
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Assuming a universal node type ?, we can encode XPath combina-
tors as strategic program combinators (see also Figure 2):

self :: Q [?] -- self::node()
child :: Q [?] -- child::node()
desc :: Q [?] -- descendant::node()
descself :: Q [?] -- descendant-or-self::node()
name :: String → Q [?] -- self::name
(/) :: Q [?]→ Q R → Q R -- /
(?) :: Q [?]→ Q Bool → Q [?] -- q[p]
nonempty :: Q Bool

The first four combinators model steps with various axes, each
with test node(). The combinator name "foo" corresponds to the
XPath step self::foo. When presenting queries we will just write
〈foo〉, which should not be confused with the XPath abbreviated
syntax for child::foo. For example, the abbreviated XPath query
//movie[//review], which expands to:

descendant-or-self::node()/child::movie[
descendant-or-self::node()/child::review ]

is encoded as:

descself / child / name "movie" ?
descself / child / name "review" / nonempty

This in turn, we write shorter as descself / child / 〈movie〉 ?
descself / child / 〈review〉 / nonempty .

Figure 9. Expression of XPath constructs using strategic program
combinators. For a similar encoding, see [13].

(f ∪ g) / h = (f / h) ∪ (g / h) ∪-DIST
∅ / f = ∅ /-EMPTY

self / f = f /-SELFL
f / self = f /-SELFR

name n / name n = name n /-NAME
(f / g) / h = f / (g / h) /-ASSOC

∅ ? p = ∅ ?-EMPTY
f ? nonempty = f ?-NONEMPTY

(f ? p) ? q = (f ? q) ? p ?-COMUT
f ? (name n / nonempty) = f / name n ?-NAME

Figure 10. Laws for XPath combinators.

child = mapQ self child -DEF
desc = everything child desc-DEF
descself = self ∪ desc descself -DEF
mapQ f = child / f mapQ-DEF

apQA (f / g) =
fold ◦map (apQ? g) ◦ apQA f

/-APPLY

apQA (f ? p) = filter (apQ? p) ◦ apQA f ?-APPLY
apQA nonempty = true nempt-APPLY

apQA self = wrap ◦mkAny A self -APPLY

apQA (name n) = apQA self ,
if A has name n

apQA (name n) = zero, otherwise

9=; name-APPLY

apQ? f ◦mkAny A = apQA f ?-APPLY

mkQA (wrap ◦mkAny A) = name n ,
if A has name n

mkQA (wrap ◦mkAny A) = self , otherwise

9=; ?-PULLQ

Figure 11. Laws for mediating between XPath combinators and
strategic and point-free combinators. The axis definitions in term
of strategic combinators can be found in [13]. A type A has name
n if it is a datatype that encodes XML elements named n.

at the value level, which can be provided with the following gener-
alized algebraic datatype (GADT) adapted from [10]:

data Type a where
Int :: Type Int
Bool :: Type Bool
String :: Type String
Any :: Type ?
List :: Type a → Type [a ]
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)
Func :: Type a → Type b → Type (a → b)
...

Note that the type a that parameterizes the type-representation
Type a is instantiated differently in each constructor. This is pre-
cisely the difference between a GADT and a common parameter-
ized datatype, where the parameters in the result type are unre-
stricted in all constructors. In the definition of Type a , the param-
eter a of each constructor is restricted exactly to the type that the
constructor represents, which makes our type representation type-
safe. For example, the constructor Int represents the type Int , and
List (Prod Int Bool) represents the type [(Int ,Bool)]. It is pos-
sible to define a class with all representable types.

class Typeable a where typeof :: Type a

Most instances of this class are trivial to define. For example, for
integers and functions we have

instance Typeable Int where typeof = Int
instance (Typeable a,Typeable b)⇒ Typeable (a → b)

where typeof = Func typeof typeof

Type allows the representation of some basic types, products,
sums, functions, and lists. To represent user-defined datatypes, we
extend it as follows (cf [30]):

data Type a where
...
Data :: String → EP a b → Type b → Type a

data EP a b = EP{to :: a → b, from :: b → a }
Here, EP is an embedding-projection pair that converts values of
a user-defined type into values of an isomorphic type. The type b
is expected to be the sum-of-products representation of the user-
defined type a . The first parameter stores the name of the datatype.

Our movie database schema of Figure 1 can be represented in
Haskell by the user-defined datatypes shown in Figure 12. Repre-
sentations of these datatypes are constructed with Data . For exam-
ple, the Imdb datatype is represented as follows:

instance Typeable Imdb where
typeof = Data "Imdb" (EP to from) rep

where rep = Prod (List typeof ) (List typeof )
to (Imdb ms as) = (ms, as)
from (ms, as) = Imdb ms as

Here, Typeable instances are assumed for Movie and Actor .
Type equality tests are performed by induction on type repre-

sentations (cf [21]):
teq :: Type a → Type b → Maybe (Equal a b)
teq Int Int = Just Eq
teq (List a) (List b) =

case teq a b of Just Eq → Just Eq ; → Nothing
...
teq = Nothing

data Equal a b where Eq :: Equal a a

The constructor Eq of the Equal GADT can be seen as a proof
token of the equality of types a and b.
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data Imdb = Imdb [Movie ] [Actor ]
data Movie = Movie Year Title Director

[Review ] [BoxOffice ]
data BoxOffice = BoxOffice Country Value
data Actor = Actor Name [Played ]
data Played = Played Year Title Role [Award ]
data Director = Director String
data Year = Year Int data Review = Review String
data Title = Title String data Country = Country String
data Value = Value Int data Name = Name String
data Role = Role String data Award = Award String

Figure 12. Haskell datatypes for the schema of Figure 1.

4.2 Type-safe representation of functions
Apart from types, we need to represent functions in a type-safe
manner. For this purpose we define a GADT with a constructor for
each point-free program combinator:

data F f where
Id :: F (a→a)
Comp :: Type b → F (b→c)→ F (a→b)→ F (a→c)
Fst :: F ((a, b)→a)
Snd :: F ((a, b)→b)
(4) :: F (a→b)→ F (a→c)→ F (a→(b, c))
Plus :: Monoid a → F ((a, a)→a)
Datamap :: Type b → F (b→b)→ F (a→a)
unData :: F (a→b)
MkAny :: F (a→?)
Fun :: String → (a→b)→ F (a→b)
...

Here we have elided many similar constructors. An inhabitant of
type F (a → b) is a representation of a function of type a → b.
Constructors with an (implicitly) existentially quantified variable,
such as Comp and Datamap, take a corresponding type repre-
sentation as additional argument. This allows one to reconstruct
the type of the argument functions from the result function. Some
functions, such as Plus , take as argument an explicit dictionary that
provides the semantics of the respective monoid operations:

data Monoid r = Monoid{zero :: r , plus :: r → r → r }
This argument guarantees that Plus can only be used for types that
are monoids. The Datamap and unData constructors represent
congruence and destructor functions for user-defined datatypes.
The Fun constructor allows us to include (point-wise) functions in
point-free expressions without converting them to point-free shape;
it can be used for functions over which no reasoning is performed.

To represent strategic functions, we must first define their types:
type T = ∀a . Type a → a → a
type Q r = ∀a . Type a → a → r

Then we can add further constructors to F f to represent them:
data F f where

...
Nop :: F T
Seq :: F T→ F T→ F T
ApT :: Type a → F T→ F (a→a)
MkT :: Type a → F (a→a)→ F T
MkQ :: Monoid r → Type a → F (a→r)→ F (Q r)
Empty :: Monoid r → F (Q r)
...

Similar constructors have again been elided. These constructors
represent the combinators of Figure 3. Note that the query com-

binators take an additional argument Monoid r because the result
type is required to be a monoid.

Finally, the XPath combinators of Figure 9 are represented by
constructors such as the following:

data F f where
...
Self :: F (Q [?])
Name :: String → F (Q [?])
(:/:) :: F (Q [?])→ F (Q r)→ F (Q r)
(:?:) :: F (Q [?])→ F (Q Bool)→ F (Q [?])
Nonempty :: F (Q Bool)

data ? where Any :: Type a → a → ?

Lists are monoids, hence there is no need for Monoid arguments.

4.3 Rewrite rules
Now that type and function representations are in place, we proceed
to the encoding of rewrite rules and systems. Individual rewrite
rules as well as the rewrite systems composed from them, are
represented by monadic Haskell functions of the following type:

type Rule = ∀f . Type f → F f → RewriteM (F f )

Thus, a rule takes a function of type f into a new function of the
same type. The type-representation passed as first argument allows
rules to make type-based rewriting decisions; the importance of this
will become clear below. The monad RewriteM models partiality
of rewrite rules, being an instance of the MonadPlus class:

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Furthermore, our RewriteM monad offers the capability of gener-
ating rewrite traces, of which we will see an example below.

Here is an encoding of the ◦-ID laws, applied left to right:
comp id :: Rule
comp id (Comp Id f ) = return f
comp id (Comp f Id) = return f
comp id = mzero -- catch all

This simple rule does not involve type information, so the first ar-
gument is ignored (indicated by ). Pattern matching is performed
on a function representation and, on successful match, a resulting
function representation is returned. Otherwise failure of the rule is
indicated by mzero. We omit this catch-all case in the rules below.

An example of a law that involves type information is ×-DEF:
prod def :: Rule
prod def (Func (Prod a b) ) (f × g)

= return ((Comp a f Fst)4(Comp b g Snd))

Pattern matching on the type representation is performed to deter-
mine the intermediate types of compositions in the returned func-
tion. Of course, laws can be applied in the right-to-left direction
as well. For example, the inverse of the prod def rule introduces
rather than eliminates product maps:

prod def inv :: Rule
prod def inv ((Comp f Fst)4(Comp g Snd))

= return (f × g)
prod def inv ((Comp f Fst)4Snd) = return (f × Id)
prod def inv (Fst4(Comp g Snd)) = return (Id × g)

The extra two equations take care of cases where the inverse of
comp id would first need to be applied to trigger the first equation.

Type-equality tests play a role in rules such as mkT -APPLY:
mkT apply :: Rule
mkT apply (ApT a (MkT b f ))

= case teq a b of Just Eq → return f
Nothing → return Id
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Thus, if the type of the ApT and the type of the MkT are equal,
the function f is returned. Otherwise the identity function Id is
returned. The law mapT -APPLY is encoded as follows:

mapT apply :: Rule
mapT apply (ApT t (MapT f )) = return (aux t)

where aux :: Type a → F (a → a)
aux (Prod a b) = (ApT a f )× (ApT b f )
aux (List a) = Listmap (ApT a f )
aux Int = Id
...

Note that the auxiliary function performs pattern matching on the
type of ApT to dispatch to the appropriate equation.

4.4 Combining rules into transformation systems
Rewrite rules are possibly partial, type-preserving transformations
on function representations. Thus, to combine rewrite rules into
rewrite systems, we define a suite of strategic function combinators,
similar to those in Figure 3:

nop :: Rule -- identity rule
(=) :: Rule→Rule→Rule -- sequential composition
(�) :: Rule→Rule→Rule -- choice
all :: Rule → Rule -- map on all children
one :: Rule → Rule -- map on one child
rewrite :: Rule → F f → F f -- top-level application
many r = (r = (many r))� nop
once r = r � one (once r)
innermost r

= all (innermost r) = ((r = innermost r)� nop)

The choice combinator � attempts to apply its first rule argument,
and, if it fails, resorts to the second rule argument. The top-level
application function rewrite takes the result of rewriting out of the
RewriteM monad; in case of failure it returns the original func-
tion representation. The derived combinator innermost performs
exhaustive rewrite rule application.

Optimization of point-free programs Using these strategic rewrite
rule combinators, we can compose our one-step rewrite rules into
complete transformation strategies. For example:

optimize pf = innermost opt = innermost inv
where opt = comp id � prod def � prod cancel � ...

inv = prod dev inv � prod fusion inv � ...

The optimize pf strategy first performs optimization of point-free
functions by exhaustive application of the laws in Figure 6, oriented
as rewrite rules from left to right. After that, some inverse rules are
applied to make the resulting function more concise.

Specialization of structure-shy programs The specialization of
type-preserving strategic programs into point-free form is achieved
by systematic application of the APPLY rules of Figure 8, followed
by the point-free optimization strategy:

optimize t = t2pf = optimize pf
t2pf = innermost (mapT apply �mkT apply � ...)

For generic queries we have similar optimization strategies.

Increasing structure-shyness To increase structure-shyness, we
complement the laws presented in Section 3 with additional rules
that are not valid in general, but are rather heuristic. Figure 13 pro-
vides a list. To prevent application of these heuristic laws when they
are not valid, they must be guarded. For type-preserving functions,
this can be done with:

guardT :: Rule → Rule
guardT r t f = do

g ← r t f ; f ′ ← optimize t t f ; g ′ ← optimize t t g
if (f ′ ≡ g ′) then return g else mzero

mapT (everywhere f )
?
= everywhere f mapT -ELIM

mkTA f
?
= everywhere (mkTA f ) everyw -INTRO

mkT [A ] (map f )
?
= mapT (mkTA f ) map-PULLT

mkT (A×A) (f×f )
?
= mapT (mkTA f )

mkT (A×B) (f×g)
?
= mapT (mkTA f . mkTB g), if A 6≡ B

9>=>; ×-PULLT

mapQ (everything f )
?
= everything f mapQ-ELIM

mkQA f
?
= everything (mkQA f ) everyw -INTRO

mkQ [A ] (fold ◦map f )
?
= mapQ (mkQA f )

mkQ [A ] (map f )
?
= mapQ (mkQA (wrap ◦ f ))

)
map-PULLQ

mkQ(A×B) (f ◦ fst)
?
= mapQ (mkQA f ), if A 6≡ B

mkQ(A×B) (f ◦ snd)
?
= mapQ (mkQB f ), if A 6≡ B

9>>>=>>>; ×-PULLQ

self
?
= descself self -ELIM

child / descself
?
= descself child -ELIM

Figure 13. Heuristic laws for strategic and XPath combinators.
These laws are not valid in general; they must be used in a guarded
fashion.

Thus, the application of a heuristic rule r is considered successful
only if its argument and result can be rewritten to the same opti-
mized point-free expression (using optimize t). For queries, we
have a similar function guardQ .

We have devised strategies for increasing the structure-shyness
of structure-shy transformations that work in three phases. First,
we specialize the program to an optimized point-free form, using
the strategies presented above. The resulting program will not con-
tain redundant transformations or redundant queries. Secondly, we
exhaustively apply PULL laws of Figures 8, 11, and 13, which re-
sult in a program where as many point-free combinators as possible
have been replaced by structure-shy counterparts. In the last phase,
we further increase the structure-shyness by application of rules for
structure-shy combinators only, presented in Figures 7, 10 and 11,
combined with the ELIM and INTRO laws of Figure 13. Thus:

generalize t =
optimize t = mkT apply inv =
many (once (id pullT � comp pullT � ...)

� guardT (once (map pullT � ...))) =
many (once (seq id �mapT fusion � ...)� ...)

The mkT apply inv rule inserts apTA ◦ mkTA to seed the pull
process of the second phase. The strategies for strategic and XPath
queries are similar.

5. Application scenarios
Now that we have encoded several rewrite systems for structure-shy
program transformation, we return to our examples of Section 2.
We demonstrate several scenarios, such as generalization, special-
ization, and optimization of transformations and queries.

5.1 Transformations
Recall the example transformation for truncating reviews:

> let trunc = everywhere (mkTReview take100 )

We can apply our optimize t strategy to specialize this structure-
shy transformation to a structure-sensitive one, for a specific type.
Let’s try this first for the type Imdb:
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apTR trunc
= {everywhere apply }
apTR (mkTR tk . mapT trunc)

= {seq apply }
apTR (mkTR tk) ◦ apTR (mapT trunc)

= {mkT apply }
tk ◦ apTR (mapT trunc)

= {gmapT apply }
tk ◦ R (apTS trunc)

= {everywhere apply }
tk ◦ R (apTS (mkTR tk . mapT trunc))

= {seq apply }
tk ◦ R (apTS (mkTR tk) ◦ apTS (mapT trunc))

= {mkT apply }
tk ◦ R (id ◦ apTS (mapT trunc))

= {gmapT apply }
tk ◦ R id

= {datamap id }
tk

Figure 14. Optimization of apTReview trunc. We abbreviate
Review to R, String to S , and take100 to tk .

> rewrite optimize t (apT Imdb trunc)
imdb (map (movie (id×id×id×map take100×id))×id)

Note the use of apT to select the type for which we want to
specialize. So, indeed our strategy is able to perform the type-
specialization that we expected; the difference to the result pre-
sented in Figure 4 is due to the fact that these datatypes are now
internally represented as (nested) products. We get different results
when we perform specialization for different types:

> rewrite optimize t (apTActor trunc)
id
> rewrite optimize t (apTReview trunc)
take100

Thus, when specialized for the type Actor , inside which no re-
views can occur, the transformation reduces to the identity func-
tion. When specialized for the type Review , the transformation re-
duces to the truncation function itself. The rewrite trace of this last
derivation is presented in Figure 14.

Rather than eliminating the structure-shyness of a transforma-
tion by type-specialization, we can attempt to increase structure-
shyness with our generalize t strategy. Consider the following
function that converts to uppercases all the awards of an actor.

> let up = apTActor (everywhere (mkTAward upper))
where upper (Award t) = Award (map toUpper t)

A programmer that is not fully aware of the schema could try to
convert all of the awards in a movie database by applying the up
query restricted to Actor elements.

> let bigawards = everywhere (mkTActor up)

However, generalization of this query for Imdb yields the follow-
ing result:

> rewrite generalize t (apT Imdb bigawards)
apT Imdb (everywhere (mkTAward upper))

In fact, the check for Actor is not needed, because in the Imdb
schema the Award element only occurs under Actor .

5.2 Queries
The following query computes the total length of reviews:

> let count = everything (mkQReview size)

Consider the type-specializations obtained when applied to types
Imdb and Actor :

> rewrite optimize q (apQ Imdb count)
sum ◦map (sum ◦map size ◦ reviews) ◦movies

where movies = fst ◦ unImdb
reviews = fst ◦ snd ◦ snd ◦ snd ◦ unMovie

> rewrite optimize q (apQActor count)
zero

Instead of the overloaded monoid functions we present the specific
ones in order to increase readability. Again we get a similar result
to the one in Figure 4; in this case the difference is that the selection
functions are expressed as compositions of fst and snd due to
internal representation of these datatypes as nested products. As
expected, the application of count to a branch of the schema where
reviews do not occur specializes to the constant zero function,
which always returns 0.

If we apply generalize q to the above result of specializing
count , we obtain the original function count again.

5.3 XPath
Recall the XPath queries presented in Section 2:

imdb/movie/director
//movie/director
//director

They all represent the same query, expressed at increasing levels
of structure-shyness. The specialization of the last query for the
[Imdb ] type produces the following result (we specialize to a list
to allow for XML documents with several top-level elements):

> let directors = descself / child / 〈director〉
> rewrite optimize xp (apQ [Imdb ] directors)

concat ◦map (map (mkAny ◦ director) ◦movies)
where movies = fst ◦ unImdb

director = fst ◦ snd ◦ snd ◦ unMovie

The retrieved director elements are wrapped into the mkAny con-
structor, since the return type of the overal query is still [?]. The
same result is obtained when we specialize the remaining queries.

By application of the generalize xp query, we can maximize
the structure-shyness of our queries, resulting in reconstruction of
the most structure-shy of the tree, i.e. //director.

More challenging is the specialization of queries with predi-
cates, such as retrieving all movies with an actor descendant and
all elements with a director child:

> let movactors = descself / 〈movie〉 ?
descself / 〈actor〉 / nonempty

> rewrite optimize xp (apQ [Imdb ] empty)

nil
> let dirparents = descself ? child / 〈director〉 / nonempty
> rewrite optimize xp (apQ [Imdb ] dirparents)
concat ◦map (map mkDyn ◦ fst ◦ unImdb)

Because movies cannot have actors inside, the first query special-
izes to the constant function nil , which always yields the empty
list. Its generalization, with generalize xp, yields empty . The sec-
ond query specializes to a point-free function that retrieves movies,
as these are the only possible parents of directors. Indeed, general-
ization of this query with generalize xp produces //movie.

6. Related work
PAT-algebra Che et al [4] perform XML query optimization with
a transformation system based on algebraic equivalences of so-
called PAT-algebra expression. PAT-algebra expressions are meant
to represent XPath queries, though they return nodes sets of a sin-
gle static type. Numerous equivalences and corresponding rules are
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presented, among which rules that exploit schema information and
pre-existing indices to obtain expressions with better performance.
The test-bed for performance measurement relies on translation of
PAT-algebra expressions to relational database queries. Optimiza-
tions are mostly acquired by making queries more structure-shy,
and introducing structure-indices to short-cut navigation.

Our model of XPath, using strategy combinators and dynamic
types, is more faithful than PAT-algebra. PAT-algebra, as presented
in [4], does not offer the child, self, or self-or-descendant axes.
Also, only string matching predicates are modeled, while we allow
boolean functions. More importantly, our approach is not limited
to XPath queries. It encompasses both queries and transformations
on any hierarchical data structure, and it facilitates conversion, not
only among structure-shy programs, but also to and via structure-
sensitive programs.

Strategic XPath Lämmel [13] sketches an encoding of XPath-
like combinators using strategic function combinators in the scrap-
your-boilerplate style. This style uses Haskell’s overloading mech-
anism, as provided by type classes. The XPath encoding uses dy-
namic typing with ? for query result types. Not only downward axes
are modeled, but also upward (parent, ancestor), and sideways (sib-
lings). Node selection by name is modeled as selection by type. An
indication is given how type-level programming with type classes
could be used to statically exclude non-optimal queries.

The most salient difference with the strategic XPath model pre-
sented by us in Figure 9 is the use of type classes, rather than gen-
eralized algebraic datatypes, to enable type-dependent behaviour.
As far as representing and executing queries is concerned, this dif-
ference is fairly insignificant. To enable strategic behaviour, type
constraints (Data a ⇒ ...) are used to pass implicit dictionar-
ies, rather than additional arguments (Type a → ...) to pass type
representations. The type-class based approach is more extensible
than the GADT approach, since new class instances can be added
without modifying the class or existing instances. However, when
it comes to query transformation, the type-class approach seems
less appropriate, since it would require the encoding of our rules as
type-level functions, to be executed statically by the instance reso-
lution mechanism of the type-checker.

Strategic programming laws Some algebraic laws of typed
strategic program combinators have been formulated earlier, such
as the .-ID laws, the type-preserving mapT -NOP law, and several
laws for combinators we have not mentioned [16, 14]. The type-
preserving mapT -FUSION law was stated before [14] and has been
proved by Reig [22]. We are not aware of earlier formulations of the
laws for conversion between strategic and point-free programs, but
they are easily derived from the reduction rules of their operational
semantics provided in several other sources [25, 12, 17, 16]. Such
laws were not used earlier for the construction of transformation
systems for the generalization, specialization, and optimization of
typed strategic programs. The optimizations performed by the com-
piler of the untyped strategic term rewriting language Stratego [24]
are likely to correspond to some of the zero and cancellation laws
we listed, but probably not to the specialization laws.

Polytypic program compilation Polytypic, or type-indexed pro-
gramming is supported by the Generic Haskell and Generic Clean
languages. The standard compilation technique for these languages
inserts conversion functions between user-defined datatypes and
their sum-of-product representations. To optimize the resulting, of-
ten quite inefficient, code, partial evaluation techniques have been
proposed [2]. These techniques do not take into account recent ex-
tensions of these languages that allow encoding of strategic pro-
gram combinators [11].

Adaptive programming Lämmel et al [15] make a general com-
parison between strategic programming, both functional and object-

oriented, and adaptive programming. Adaptive programming is
an extension of object-oriented programming where structure-shy
traversal specifications are used to create a loose coupling between
data and methods [20]. Lieberherr et al [19] have proposed an
approach to compilation of such traversal specifications into plain
object-oriented code. Compilation involves reachability analysis on
the class graph and produces a dynamic roadmap to guide run-time
traversal without redundant navigation.

Our query optimization approach resembles the compilation of
adaptive object graph traversal specification. Both are aimed at
avoiding redundant traversal and at normalization to a structure-
sensitive underlying programming paradigm, i.e. point-free func-
tional programming and object-oriented programming respectively.
The differences between these paradigms (declarative versus im-
perative, value-semantics versus reference semantics, object graphs
versus algebraic datatypes) explain to a large extent the differences
in approach (algebraic laws and compositional term rewriting sys-
tems versus global graph reachability).

Coupled rewriting Previously, we have shown how a strategic
rewrite system for two-level transformations [5], such as data
mappings and format evolution, can be combined with a type-
preserving rewrite system for point-free program transformation,
to support coupled transformation of data formats, instances, and
processors [8]. These point-free program transformations have
been generalized to structure-shy programs by the current paper,
which has the immediate consequence that our approach to cou-
pled transformation now also encompasses migration and mapping
of structure-shy queries.

7. Concluding remarks
7.1 Contributions
We have presented an algebraic approach to transformation of
declarative structure-shy programs. In particular, we have made the
following contributions:

1. We have formulated sets of algebraic equivalences for strategic
programs, of which only some had been formulated earlier, and
for the conversion between strategic and point-free programs.

2. We have modeled the core of the XPath language in terms
of strategic program combinators, augmented with a universal
node type and associated operations. Our model relies on gen-
eralized algebraic datatypes, rather than type classes.

3. We have formulated sets of algebraic equivalences for XPath
queries, and for their conversion into strategic and point-free
programs. These equivalences allow derivation of static types
for dynamically typed queries.

4. We have shown that the algebraic laws can be harnessed in
type-safe strategic rewrite systems, encoded in Haskell, for
specialization, generalization, and optimization.

5. Our approach offers a unified framework for point-free, strate-
gic, and XPath transformations, where structure-sensitive,
point-free programs are used as the solution space for trans-
formation of structure-shy programs.

Though we have only discussed core fragments of strategic pro-
gramming and XPath, we trust the reader is convinced that richer
languages and rules sets can be handled in basically the same way.

7.2 Future work
Various aspects of the ideas presented in this paper deserve further
elaboration.

Proofs We have stated algebraic laws without proof. Though
the validity of many simple laws is immediately evident, proofs
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should be constructed for some more complex laws. Also, the
transformation strategies that we composed from these laws should
be better characterized in terms of the normal forms to which they
lead, and in terms of their complexity and termination behaviour.

Recursion A limitation of our approach is that we do not yet han-
dle (mutually) recursive datatypes and functions. A finite represen-
tation of such recursive types and functions is needed for termi-
nating program transformations. We are currently developing such
representations.

Further combinators and languages We intend to expand our
coverage of the XPath language and strategic programming paradigm
by representing and transforming more of their constructs. We also
intend to address similar query and transformation languages, such
as XQuery, and Stratego, and not so similar ones, such as SQL.
Like XPath, Stratego does not assign static types to its programs.
It may be possible to extend our approach for specializing dynam-
ically typed XPath queries to Stratego. The objective would be not
only to infer static types for Stratego programs but to also exploit
them for optimization. The addition of SQL to the mix would al-
low transformation of structure-shy and dynamically typed queries
into relational database queries, again via intermediate structure-
sensitive, statically typed point-free expressions. Assignment of
strong types to SQL queries [23] could prove instrumental in these
transformations.

Front-ends We are currently developing a front-end that allows
parsing of the XPath surface language into our GADT for type-
safe representation of functions, and pretty-printing them back into
textual form.
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