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Language parametric module management for IDEs

ABSTRACT
An integrated development environment (IDE) monitors all the changes that a user makes to
source code modules and responds accordingly by flagging errors, by reparsing, by rechecking,
or by recompiling modules and by adjusting visualizations or other information derived from a
module. A module manager is the central component of the IDE that is responsible for this
behavior. Although the overall functionality of a module manager in a given IDE is fixed, its
actual behavior strongly depends on the programming languages it has to support. What is a
module? How do modules depend on each other? What is the effect of a change to a module?
We propose a concise design for a language parametric module manager: a module manager
that is parameterized with the module behavior of a specific language. We describe the design
of our module manager and discuss some of its properties. We also report on the application of
the module manager in the construction of IDEs for the specification language ASF+SDF as
well as for Java. Our overall goal is the rapid development (generation) of IDEs for
programming languages and domain specific languages. The module manager presented here
represents a next step in the creation of such generic language workbenches.

1998 ACM Computing Classification System: D.1.6;D.2.6;F.4.1
Keywords and Phrases: module management;IDE;language parametric;modal logic





Language Parametric Module Management for
IDEs
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Abstract

An integrated development environment (IDE) monitors all the changes that a user makes
to source code modules and responds accordingly by flagging errors, by reparsing, by
rechecking, or by recompiling modules and by adjusting visualizations or other informa-
tion derived from a module. Amodule manageris the central component of the IDE that
is responsible for this behavior. Although the overall functionality of a module manager in
a given IDE is fixed, its actual behavior strongly depends on the programming languages
it has to support. What is a module? How do modules depend on each other? What is the
effect of a change to a module?

We propose a concise design for a language parametric modulemanager: a module
manager that is parameterized with the module behavior of a specific language. We describe
the design of our module manager and discuss some of its properties. We also report on
the application of the module manager in the construction ofIDEs for the specification
language ASF+SDF as well as for Java.

Our overall goal is the rapid development (generation) of IDEs for programming lan-
guages and domain specific languages. The module manager presented here represents a
next step in the creation of such generic language workbenches.

1 Introduction

The long term goal of our research is generation of Integrated Development Envi-
ronments (IDEs) for programming languages and domain specific languages. This
is a classical topic, with a traditional focus on the generation of syntactic and se-
mantic analysis tools [10, 15]. In this paper we instead focus on generating the
interactivebehavior of IDEs.

1 Email: P.Klint@cwi.nl
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1.1 Motivation

IDEs increase productivity of programmers by providing them with an efficient
input interface and rapid feedback. For many software projects the availability
of a good IDE is one of the decisive factors in programming language selection.
With language design and domain specific languages (DSLs) back on the (research)
agenda [5], and knowing that tool support for DSLs is one of the limiting factors for
their application [14], the key question is: “What is the quickest way to constructa
full-fledged IDE for any kind of language?”

IDEs are complex systems. Apart from editing, building, linking and debug-
ging programs they offer syntax highlighting, auto-completion, formatting, outlin-
ing, spell checking, indexing, refactoring, context-sensitive help, advanced static
analysis, call graphs, version control, round-trip engineering, and much more. Pro-
gramming languages have become more complex and software products are getting
bigger and bigger. Many products actually use multiple programming and domain
specific languages. This all adds up to the complexity of IDEsand building them
requires major investments as exemplified by the effort in constructing Eclipse [6],
and its various instantiations for Java, C, Cobol, and otherlanguages.

The subject of this paper is a central part of each IDE that we call the “module
manager”. The module manager coordinates all actions within the IDE and all
interaction with the programmer. It does this by respondingto the changes that
the programmer makes to the source code of a project, and by triggeringactions
accordingly. The module manager does not implement the actual interaction with
the user, nor does it implement any specific action, but it does coordinate these
actions. The main data model behind such coordination is thecollection of source
code modules of a software project and their interdependencies. A well-designed
module manager is central to each IDE and reduces the coupling between other
components. It leads to a plug-in architecture in which IDE components can be
added independently.

The mother of all module managers is the toolmake[8] that uses the module
dependency graph to initiate build actions on source code modules in a batch-like
fashion. Ant [17] is a modern and more sophisticated version of make. The func-
tionality of a module manager for an IDE is, however, much more complex. It has
to react to many external triggers, is not restricted to purebuild actions, and has
to initiate many different actions as well. Examples are parsing, checking or com-
piling of modules, and adjusting visualizations or other information derived from
modules such as context-sensitive help and error lists. Themodule manager is a
fully interactive scheduler. It knows about language semantics in terms of mod-
ularity and packaging, and it knows about the capabilities of the IDE in terms of
input and output to the user-interface. The main goal of the module manager is
to provide fast and adequate feedback to the programmer on any modification she
makes to any module’s source code.



1.2 A Language Parametric Module Manager

The basic functionality of a module manager is to provide access to the modular
structure of the source code of a software project. Thismodular structureis differ-
ent for each language. Apart from their pure syntactic appearance, the meaning of
modules and module dependencies differs per language. For instance, the include
mechanism of the C preprocessor does not coincide with a C namespace; files are
simply concatenated one after the other. The Java import mechanism, however,
does coincide with the namespace of a compilation unit; a class can be made in-
visible outside the compilation unit it is defined in. Another example: Java has
wildcards in import statements, a feature that is not present in C. Themodule se-
manticsof a language is an important aspect of its syntax and semantics that is
essential from the viewpoint of IDE construction. Large applications may even
contain circular module dependencies: consider the processing of a text document
containing an embedded spreadsheet that in its turn contains a text document, the
syntax definition of a language in which statements can contain expressions but
expressions may contain statements as well, or various design patterns that result
in circular module dependencies.

Our goal is to develop a module manager that supports rapid prototyping of
IDEs for any (domain specific) language and satisfies the following requirements:

R1 (Language parametric) It should be parameterized with the “module seman-
tics” of a language. Circular module dependencies should beallowed.

R2 (Schedule actions/rapid feedback) It should schedule actions, optimizing the
schedule for rapid feedback to the programmer.

R3 (Open) It should be open and be able to share a (partial) view of the modular
structure of a project with other parts of the IDE.

R4 (Scalable): It should scale to large applications.

1.3 Contributions and Road Map

This paper contributes the following ideas:

• The use ofattributed module dependency graphsas a practical and efficient ve-
hicle for implementing a language parametric module manager;

• The use ofa simple modal logicas a way to parameterize a module manager with
language specific module semantics;

• An efficient algorithm for implementing this logic on top of an attributed module
dependency graph.

In Section2 we define the functionality of a module manager and its underlying
data model. Section3 gives an overview of the architecture of our implementation
of such a module manager. In Section4 we highlight the efficient implementation
of the modal logic. Section5 describes the case studies in which we applied our
module manager to construct various IDEs. Section6 summarizes our conclusions.



2 Attributed module dependency graphs

We will now present all notions that play a role in our approach: the basic repre-
sentation (Section2.1), the mapping of languages concepts (Section2.2), module
attributes (Section2.3), name spaces (Section2.4), events (Section2.5), module
predicates (Section2.6), and the API of the module manager (Section2.7). In
Section3 we will descibe module predicates in more detail.

2.1 Basic representation

Directed graphs are an obvious representation for programming language modules
and their interdependencies. We identify the nodes of a graph with the modules of
a program, and the edges of the graph with the dependencies between the modules
of a program. Each node has a unique name and a collection of attributes. Each
attribute has a unique name within the scope of the node, and an arbitrary value.
Dependencies are anonymous but they do have attributes thatallow the distinction
between different types of dependencies.

We call the modules that depend on moduleM the parents ofM and we call the
modules that moduleM depends on the children ofM . Graphs can contain cycles
and we can therefore represent cyclic dependencies.

Let’s consider two examples. In Java, modules could beclasses, packagesand
compilation units. Classes and packages are identified by their qualified name (i.e.,
including package prefix) and compilation units are identified by filename. Java has
dependencies of typecontainment, import, andinheritance. Classes are contained
in compilation units or other classes, compilation units are contained in packages,
and packages are contained in other packages. Classes import other classes, and
inherit from other classes.

In C, modules could becompilation unitsandheader files, both are identified
by filename. For dependency types C hasincludesanduses external declaration.
Compilation units and header files can include each other, and they can declare
dependencies on anonymous compilation units via external declarations.

2.2 Mapping Language Concepts to the Graph Model

The mapping of programming language concepts to our graph model is rather ar-
bitrary and depends on the granularity of interaction required by the IDE. For ex-
ample,functionsin C could be considered to bemodulesthat depend on each other
via acalls dependency. The only reason for labeling a programming language ar-
tifact as a module should be that the IDE needs the knowledge about dependencies
between these modules to trigger certain actions.

2.3 Attributes

Modules and dependencies may have arbitrary attributes. For a specific program-
ming language, there are specific attributes that will be used by the IDE to im-



plement language specific behavior. Module attributes willbe used to visualize a
module’s identity to the programmer. For example, in a Java IDE a class module
will have a class name attribute and a package name attribute. Other attributes may
contain aggregated information, such as whether a module contains a syntax error,
or how many lines of code it spans.

2.4 Namespaces

One of the complexities of today’s IDEs is that they have to deal with several pro-
gramming languages and domain specific languages that are either operating next
to each other or are embedded in each other. To be able to support several concepts
of module semantics at the same time, we introducenamespacesfor all identifiers
in our graph based model. So, module identifiers, dependencies, module attributes,
and dependency attributes all have a namespace. For brevity, we will assume from
now on that a valid namespace is part of each module or attribute identifier.

2.5 Events

So far, we have only introduced a generic data structure for storing and retrieving
transient information about modules. In order to schedule actions we need rules to
select actions for execution. Examples of actions arecompilinga compilation unit,
or extractingan outline of a Java class,alerting the programmer about a certain
error, ordecoratinga package view with versioning pictograms. The rules of the
module manager should trigger these actions at the appropriate times.

The listeneror observer design pattern[9] is a simple method for decoupling
coordination from computation. A computation, or action, registers itself as a lis-
tener, and the coordinator triggers the action at certain moments. The module man-
ager allows registration of listeners toattribute change events, module existence
eventsanddependency existence eventssuch that an action may be triggered on
any change in the data model. Note that actions may influence the state of the mod-
ule manager, triggering new actions. Since we do not assume anything about the
actions, there can be no a priori guarantee that such a process would terminate, not
deadlock, or even be deterministic.

2.6 Module Predicates

As we have seen earlier in Section1.1, makeandant trigger build actions using
the dependency relationship between modules. For example,the module graph
contains the basic information for recompiling parts of a Java program without
rebuilding the rest of it. In an IDE there are much more actions to be triggered
under different kinds of conditions. For example, if a method is removed from a
Java class, outlines need to be recomputed for all classes that inherit from it. Or, if
a C include statement is moved in a file, at least all code between the old location
and the new location needs to be rechecked for static correctness. Or, if a Java



compilation unit ismodified(in terms of the version management system), then all
packages it is contained in are alsomodified.

The information that needs to be propagated through a moduledependency
graph is language specific, even IDE specific. So, the module manager must pro-
vide some way of making information propagation programmable. For this we
introducemodule predicates. These are inspired by attribute grammar systems [16]
and modal logic [2]. Both formalisms provide a programmable way of distributing
information over the elements of a complex data structure. An example of a module
predicate for a C IDE islinkable. A C compilation unit is linkable when it contains
a main function and all of its dependencies have compiled correctly.

We will get back to the details later in Section4. For now, the key idea is that the
truth values of module predicates are determined automatically by inspecting and
aggregating the values of the attributes of a module and possibly other modules.
The way this inspection and aggregation is done is determined by module predi-
cate definitions, which the module manager receives at configuration time. When
the value of such a predicate is changed as a result of the changed value of an at-
tribute, apredicate changed eventtriggers the appropriate actions via listeners. The
definitions are expressed using a simple logic, which allowsthe module manager
to statically check for consistency of the set of definitions.

2.7 API of the Module Manager

The basic operations that the module manager offers are adding and removing of
modules and dependencies, setting attribute values, registration of event listeners
and registration of module predicates.

The module manager may also contain any kind of generic graphmanipulation
algorithms for the benefit of IDE actions. Operations like transitive closures of
dependencies, reachability analysis, inversion, clustering, coloring and exports to
graph visualizations are obvious candidates for inclusionin the module manager.
Keeping the processing of these data as well as the data themselves as close as
possible to the module manager will increase efficiency.

3 Module Predicates

When the user makes a change to a module, the module manager uses the depen-
dencies between modules to trigger actions in response to that change. How can
this be done in a language parametric way?

3.1 Domain analysis

Analysis of existing IDEs reveals that actions on modules are triggered either di-
rectly or indirectly. Direct actions are consequences of the actions of the program-
mer that are directly related to a specific module. A module isedited for example;
in response to this change the system decides to invalidate the previous compila-
tion and to trigger a new compile action. We call this directly influenced module the



P ::= N : C (predicate definition)

N ::= < Predicate Name > (name of a predicate)

A ::= < Attribute Name > (name of an attribute)

V ::= < Attribute Value > (value of an attribute)

C ::= true | false (Boolean constants)

| A = V (attribute value equality)

| ¬C | C ∧ C | C ∨C | C → C (not, and, or, implies)

| 3C (in some childC holds)

| 2C (in all childrenC holds)

| (C) (parentheses for grouping)

Figure 1. The syntax of module predicates.

pivot. Every sequence of automatically triggered actions in an IDE always starts at
a certain pivot.

Indirect actions are also consequences of the actions of theprogrammer, but
the affected modules can be far away from the pivot. Only actions on the pivot or
on modules thatdepend onthe pivot can be triggered. However, these actions are
triggeredconditionallysince actions for a certain module are not always triggered
even if an (indirect) dependency changed. For example, a C program should be
relinked ifoneof its dependencies changed, but only if it contains a main function,
and only ifall of its dependencies have compiled correctly. We conclude that:

• The triggering of actions is governed by the module dependency graph;
• The triggering of actions occurs under certain conditions;
• Conditions refer to properties (attributes) of modules;
• Conditions refer to the properties of children of modules.

We will use a simple language for expressing the conditions for triggering
events. This language needs at least the Boolean operators,some operators for
inspecting the attributes of modules, and some operators torefer to the children of
modules. The idea is to evaluate these conditionsin every module, and send an
event to the IDE when the value of a condition changes. We willlabel each condi-
tion with a name in order to be able to identify it, and call it amodule predicate.

The effect is that actions will be triggered automatically,in a cascading effect
that starts at the pivotal change in the module dependency graph, and ends when all
module predicates have been re-evaluated. Note how this method of automatically
triggering actions is a generalization of build tools like “make”. Those tools trigger
build actions (mainly) on a set of fixed (built-in) conditions, e.g., a file being out-
of-date. In our system, the conditions are programmable. Furthermore, in make-
like tools dependencies and actions are tightly coupled, since every dependency
rule may have a list of actions. In our system, the way dependencies are used is
programmable, because a module predicate may refer to the attributes of children
of modules in several ways.



3.2 Syntax and semantics of module predicates

The syntax of module predicates is defined in Figure1. A predicate declaration
consists of a predicate nameN followed by a conditionC. We assume that disjoint
sets of predicate and attribute names are used and that predicate names are only
used once. A condition may consist oftrue andfalse, tests for the value of attributes
(A = V ), the Boolean operators (∨,∧,¬, →), and operators to express conditions
on the children of a module that have to hold in some child (3) or in all children
(2).

The operational semantics of the conditions is defined as follows. Each condi-
tion is evaluated for every moduleM . Every module has an attribute environment
E that maps attribute names to attribute values, and a set of children K. The nota-
tion we use isME

K . An evaluation functioneval reduces a condition to eithertrue
or false. It defines an operational semantics for the standard Boolean conditions
(which we leave out for brevity), and an operational semantics for the conditions
A = V , 2C and3C:

eval(ME
K , A = V ) = true iff equals(lookup(A, E), V )

eval(ME
K , 2C) = true iff ∀k ∈ K eval(k, C ∧ 2C)

eval(ME
K , 3C) = true iff ∃k ∈ K : eval(k, C ∨ 3C)

Evaluating an attribute value equality amounts to a lookup of the attribute’s
value in the module’s environment and comparing it with the given valueV .

Evaluating a condition containing the2 or 3 operator leads to the recursive
application of the given conditionC to the children of the current module, but
evaluation differs in the way the result is aggregated. For2, the condition must
hold in all children. For3, the condition must hold in at least one of the children.
Note that evaluating2 and3 implies computing the transitive closure of the child
relation among modules and that this definition ofeval does not terminate on cyclic
dependency graphs. A terminating definition ofeval can be obtained easily by
remembering the result of an earlier visit. Otherwise this definition terminates
because it is a recursion over a finite expression tree, and noupdates are done
in the module environments whileeval is computed. We will present a terminating
(incremental) evaluation algorithm in Section4.

The functioneval is a rephrasing of the definition of the satisfaction relation
of a K4 modal logic[2] with attribute equalities as propositions. There are several
satisfiability checkers for this logic available [13,7].

The definition of the operators2 and3 resembles tree traversal mechanisms,
such as found in ELAN [3], ASF+SDF [4], Stratego [18], JJTraveler [19] and Stra-
funski [12]. However, since we are in the domain of modal logic and not inthe do-
main of either functional programming or term rewriting, the resemblance is rather
coincidental. The main difference between modal logic and tree traversals is that
in modal logic the other operators of the language do not perform arbitrary compu-



tation but compute truth values using Boolean operators, which is at a higher level
of abstraction. Another difference is that these logic operators operate on (possibly
circular) graphs instead of trees.

3.3 Examples

The following examples illustrate how certain properties of modules can be de-
scribed by a combination of attributes and predicates. In these examples we use
attribute namesS for modulestateandT for moduletype. They serve to show the
flexibility of these rules since many different kinds of action triggering policies can
be expressed using this simple formalism.

erroneous: 3(S= parse-error)

linkable : S= compiled∧ main= yes∧ 2(S= compiled)

not-exec: S= error ∨ 3(S= error)

package-modified: T = package∧ 3(T = program∧ S= modified)

Predicateerroneousflags a module as erroneous when one of its children has
a parse error. An action that could be triggered when the value of this predicate
changes is a user-interface action that disables certain menu options such as, for
instance, executing the module. Predicatelinkable computes whether a certain
module may be linked to a runnable program. If it is a compiledmain module
and all of its children are compiled, then an action may be triggered to link the
program. Predicatenot-execperforms a similar computation: the corresponding
module is not executable when the module itself or some of itschildren are in an
error state. Finally, predicatepackage-modifiedcomputes that a package can be
marked as modified if there is one program in its dependenciesthat is modified.
Such a change of value of this predicate could trigger a decoration in a package
explorer view that is part of the IDE.

To show how the evaluation of module predicates uses dependency relations
we take, for example, the predicatelinkableand show the update process in a few
steps. We have a cyclic dependency graph as shown in Figure2(a). The initial
state is consistent; moduleE hasS = error, so there is no module for which all
dependencies haveS= compiled. After a manual update in moduleE, its value for
Schanges tocompiled, see Figure2(b). This triggers an update of all predicates in
all modules. Figure2(c) shows that in three modules the value oflinkablechanges
from false to true. In this example, the module manager will trigger actions right
after the initial manual update, and then also for each separate change in valuation
of a predicate in a specific module. A linker action could listen to these events and
start the linking process for all three main modules.



(a) Initial state (b) Manual update (c) Predicate updates

Figure 2. Automatically updating module predicates after amanual attribute update.

4 Implementation

In the previous sections we have presented a high-level design of a language para-
metric module manager, including a data structure and syntax and semantics for
module predicates. This section details some of the engineering trade-offs that are
necessary to obtain an open (R3) and scalable (R4) implementation of this design.

4.1 Openness via language independent middleware

A language parametric module manager should easily allow any kind and amount
of IDE extensions (R3). This means that many different kinds of components
should be able to react to module events. This enables rapid prototyping and evo-
lution of IDEs by reusing third-party components, by incrementally adding new
components, and by gradually replacing prototype components.

Third-party components can be written inanyprogramming language, but there
is even a case for developing heterogenous components in-house: prototypes are
usually more easily implemented in scripting languages, while the eventual product
may be developed in a compiled language.

We use the TOOLBUS component coordination architectureto support this [1].
In a TOOLBUS-based design allcomputationis done in tools that connect via IP
sockets to a software bus and allcoordinationis done via a script that describes the
behaviour of this bus. As such, the tools can be written in anylanguage and can be
connected to the bus being totally oblivious from each other’s existence. TOOLBUS

coordination scripts can express all kinds of collaboration protocols between tools
on a high level of abstraction. For example, it is easy to express synchronous and
asynchronous communication, broadcasts, and locking. We use these features to



construct a generic communication protocol between the module manager and an
arbitrary number of tools:

• Attribute/predicate change events are broadcasted asynchronously to listeners;
• Reads and updates of the attributed module dependency graphare done syn-

chronously;
• Reads and updates are guarded by a lock mechanism to rule out race conditions.

Tools may anonymously register as listeners. This partially implements re-
quirementR3 on openness. Openness can be improved further by allowing the
module manager to anonymously register an arbitrary amountof module predi-
cates at initialization time. After initialization, the module manager may present
the predicates to a K4 modal logic solver in order to compute non-satisfiability and
tautology. This is necessary only during development of an IDE (debugging mode).
When the IDE is finished and released the set of module predicates will not change
anymore.

4.2 Scalability by incremental module predicate evaluation

Our implementation should scale tolarge projects(R4). Large projects have large
module dependency graphs that frequently contain cyclic dependencies. A straight-
forward implementation of the semantics of module predicates that was presented
in Section3 would visit all nodes several times, after every single update of an at-
tribute. A small experiment showed immediately that the performance would be too
low. In this section we therefore present an incremental algorithm for the efficient
evaluation of module predicates.

In Section3 we have explained that when the truth value of a module predi-
cate changes, an event must trigger all registered listeners. The truth value may
change due to a change in attribute values of a pivot module, or due to a change
in the configuration of the module dependency graph. A singlechange in the pivot
module may have as effect that many module predicates changevalue, triggering
many actions. An efficient implementation of a module predicate evaluator should
at least recalculate the truth values of all predicates thatindeed have changed (i.e.,
the implementation should becorrect), while it should avoid waisting time on cal-
culating module predicates that will certainly not change (i.e., the implementation
should beincremental).

Algorithm1shows an incremental predicate evaluation algorithm in pseudocode.
The evaluation is started by the procedure UPDATEATTRIBUTE that initiates the
value change of an attribute in the pivot module. The recursive procedure EVAL -
UATEPREDICATES recalculates the values of all predicates that are directlyor in-
directly dependent on the value of the changed attribute. Note that the previous
value of each module predicatepred is maintained in the module environment as
pred.name thus enabling the detection of value changes with respect to the current
value ofpred.condition. The function EVALUATE CONDITION computes the value
of a given condition by recurring over its structure. The algorithm starts at the



Algorithm 1 Incremental evaluation of predicates
1: procedure UPDATEATTRIBUTE(module, attr, value)
2: global visited← ∅

3: value’ ← module(attr)
4: if value 6= value’ then
5: module(attr)← value
6: NOTIFYL ISTENERS(module, attr, value, value’)
7: EVALUATE PREDICATES(module, attr)

8: procedure EVALUATE PREDICATES(module, attr)
9: if module/∈ visitedthen

10: global visited← visited∪ {module}
11: Predicates← GETDEPENDENTPREDICATES(attr)
12: for all pred∈ Predicatesdo
13: value← EVALUATE CONDITION(module, pred. condition)
14: value’ ← module(pred.name)
15: if value 6= value’ then
16: module(pred.name)← value’
17: NOTIFYL ISTENERS(module, pred, value, value’)

18: for all parent∈ PARENTS(module) do
19: EVALUATE PREDICATES(parent, attr)

20: function EVALUATE CONDITION(module,condition)
21: switch condition
22: case 2x:
23: children← GETTRANSITIVECHILDREN(module)
24: for all child ∈ childrendo
25: if ¬ EVALUATE CONDITION(child, x) then return false

26: return true
27: case 3x:
28: children← GETTRANSITIVECHILDREN(module)
29: for all child ∈ childrendo
30: if EVALUATE CONDITION(child, x) then return true

31: return false
32: case attr = value:
33: return (module(attr) equals value)

34: case . . . :
35: evaluate simple boolean expressions

pivot, evaluates all module predicates, and works its wayup the module depen-
dency graph detecting the other modules that are affected.

We do not show the definitions of GETDEPENDENTPREDICATES (gives all
predicates that depend on a certain attribute), NOTIFYL ISTENERS (informs the
outside world about value changes of attributes or predicates), and GETTRANSI-
TIVECHILDREN (yields all direct and indirect children of a module). For brevity,
we only show the recalculation of predicates that is initiated by the update of an
attribute value. When the structure of the dependency graphis changed, a similar
recalculation is done.

EVALUATE PREDICATES terminates because every node is visited only once,
due to the use of a global worklist. EVALUATE CONDITION terminates because
conditions are finitely deep, and it does not traverse the dependency graph. Instead
it uses GETTRANSITIVECHILDREN, which uses a precomputed transitive closure
of the dependency graph. Since2 and3 are transitively closed (see Section3) this
is a correct implementation. Note that we found that precomputing and caching
the transitive closure saves time, since attribute updatesare more frequent than
adding and removing dependencies. The gain in efficiency, ascompared to a naı̈ve



implementation as presented in Section3 is caused by precomputing and caching
the transitive closure of the module dependency graph and byevaluating the values
of predicates in dependent modules only.

After this sketch of predicate evaluation, it is useful to understand the difference
between our predicate evaluation method and conventional attribute evaluation al-
gorithms as used in attribute grammars [16]. Attribute grammar systems take an
attributed abstract syntax tree as point of departure. Attributes may be inherited
(their value is propagated from root to leaves) or synthesized (their value is propa-
gated from leaves to root). At each node, attribute equations determine the depen-
dencies between attributes. These attribute equations induce dependencies between
attributes.

Although attribute grammars can have cyclic attribute dependencies, the graph
that holds the attributes is a tree. Our tool distributes attributes on any graph, not
just trees, but the computed attributes can not have cyclic dependencies. Further-
more module predicates are limited to the computational power of modal logic
allowing extensive static consistency checking.

5 Case studies

The module manager as described in the previous sections hasbeen applied suc-
cessfully in the construction of IDEs for ASF+SDF and Java. In this section we
focus on the use of the module manager in these IDEs.

5.1 ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment uses the module manager to keep module states
up to date and to store other information such as graph properties, paths, and mod-
ule names. Since ASF+SDF modules can introduce user-defined syntax it is helpful
to treat the SDF part and the ASF part of a module separately. The remainder of
this section describes the use of the module manager in ASF+SDF focusing on its
use for SDF.

An SDF module can be in one of several states. The state diagram in Figure3
describes the transitions between these states. The transitions themselves are han-
dled by a TOOLBUS script as explained earlier. Once a module’s state becomes
opened, it is possible for the module manager to evaluate thecompleteor child-
error predicates.

complete: S= opened∧ 2(S= opened)

child-error : ¬(S= error) ∧ 3(S= error)

The completepredicate is only true when a module and all its children are
opened. This indicates that the module has been parsed correctly and that all of
its dependencies are free of errors. When a module’s state iscomplete, an action is



Figure 3. State transition diagram for the SDF part of an ASF+SDF module

triggered that starts the parsing process of the ASF part of the module. Since the
ASF part of a module depends on the SDF part, the ASF part can only be parsed
when the SDF part iscomplete. Thechild-error predicate is only true when one or
more of a module’s dependencies fail to parse correctly. This predicate is used as a
state value in the IDE. To avoid a module getting thechild-error state when already
having theerror state a self-check on theerror state has been added.

5.2 Java IDE

The Java IDE is a prototype IDE for Java that uses the module manager to keep
track of the same module states as for the ASF+SDF Meta-Environment, but also
propagates errors and warnings through the package structure.

The import structure of Java files is very similar to the import structure of SDF

files and therefore the state attribute used in the ASF+SDF Meta-Environment is
reused. This also means that we can reuse some of the predicates used in the
ASF+SDF Meta-Environment.

Apart from the import graph the module manager is provided with a package
dependency graph. The modules of this graph consist of the segments of the pack-
age name and have Java files as leafs. We introduce the predicatespackage-error,
package-warningandpackage-modifiedto describe the desired behaviour of the
Java IDE:

package-error: 3(S= error)

package-warning: ¬(3(S= error)) ∧ 3(warning= yes)

package-modified: 3(vcs= modified)

Thepackage-errorpredicate is true when one or more of a module’s dependen-
cies have anerror state. Since package segments do not have state it is not needed



ASF+SDF Meta-Environment Java IDE

Nr. of modules 75 420 (192 are libraries)

Nr. of rules involved 2 5

Modules evaluated 69 154

Time 7 msec. 265 msec.

Table 1
Performance statistics

to have a self-check on theerror state, which is needed in case of the import de-
pendency graph. Theclass-warningpredicate is only true when one or more of a
module’s children have warnings. Furthermore, it can only be true if none of its
children has theerror state. Thepackage-modifiedhas been added to indicate that
files are modified according to the version control system. This predicate is true
when one or more of a module’s children are modified.

Since Java development depends strongly on package structure, the addition
of package predicates is essential for a Java IDE when editing Java source mod-
ules. The module manager made it possible that the package dependency graph
and predicates that propagate through this graph were easily added.

5.3 Analysis

Both case studies have been carried out loading a medium-sized application in the
IDE. In the ASF+SDF Meta-Environment case we used the sources of the SDF

normalizer specification consisting of 75 modules. For the Java IDE case we used
the source code of JSPWiki [11], which consists of nearly 38,000 lines of Java
code in 228 source files and 192 libraries. In both IDEs a pivotmodule has been
chosen in such a way that as much modules as possible were influenced by its
changes. The profile run is done by editing the pivot module and causing an error.
This error propagates through the import graph, evaluatingall predicates and finally
evaluatingchild-error to true for all dependent modules. Only a part of all available
modules will be influenced by the pivot.

Profiling these scenarios indicates that the evaluation algorithm requires a quar-
ter of a second to compute the effects of a change in a medium-sized application.
Table1 shows the results for both case studies. We used a 2.2 GHz CPU with 1 Gb
of main memory.

6 Conclusions

The module manager in previous versions of the Meta-Environment was imple-
mented entirely in, partly language-specific, TOOLBUS scripts. The approach de-
scribed in this paper is completely generic, improves the response time for state
changes and reduces the size and complexity of the implementation.

The proposed module manager is fully language parametric and allows express-



ing module semantics in a suprisingly concise way. Module predicates can be used
to propagate information through the module dependency graph. This information
is IDE-specific and can be used to give feedback to the user or trigger other ac-
tions. After a change in one of the modules due to editing, module predicates can
be recomputed very efficiently. Based on this positive experience we will further
explore the application of this approach to other languagesand IDE-features.
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