Centrum voor Wiskunde en Informatica

View metadata, citation and similar|papers at core.ac.uk brought to you b t CORE

provided by CWI's Institution

REPORTRAPPORT

SEN

Software Engineering

f Software ENgineering

EN Language parametric module management for IDEs

P. Klint, A.T. Kooiker, J.J. Vinju

ReporT SEN-RO701 FeBruarY 2007

https://core.ac.uk/display/301639614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)

Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 2007, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

Language parametric module management for IDEs

ABSTRACT

An integrated development environment (IDE) monitors all the changes that a user makes to
source code modules and responds accordingly by flagging errors, by reparsing, by rechecking,
or by recompiling modules and by adjusting visualizations or other information derived from a
module. A module manager is the central component of the IDE that is responsible for this
behavior. Although the overall functionality of a module manager in a given IDE is fixed, its
actual behavior strongly depends on the programming languages it has to support. What is a
module? How do modules depend on each other? What is the effect of a change to a module?
We propose a concise design for a language parametric module manager: a module manager
that is parameterized with the module behavior of a specific language. We describe the design
of our module manager and discuss some of its properties. We also report on the application of
the module manager in the construction of IDEs for the specification language ASF+SDF as
well as for Java. Our overall goal is the rapid development (generation) of IDEs for
programming languages and domain specific languages. The module manager presented here
represents a next step in the creation of such generic language workbenches.

1998 ACM Computing Classification System: D.1.6;D.2.6;F.4.1
Keywords and Phrases: module management;IDE;language parametric;modal logic

Language Parametric Module Management for
IDEs

P. Klint! A.T. Kooiker? J.J. Vinju?

Centrum voor Wiskunde en Informatica
P.O. Box 94079, NL-1090 GB
Amsterdam, The Netherlands

Abstract

An integrated development environment (IDE) monitorskadlthanges that a user makes
to source code modules and responds accordingly by flaggiogse by reparsing, by
rechecking, or by recompiling modules and by adjusting aligations or other informa-
tion derived from a module. Aodule manageis the central component of the IDE that
is responsible for this behavior. Although the overall flioicality of a module manager in
a given IDE is fixed, its actual behavior strongly dependstengrogramming languages
it has to support. What is a module? How do modules depend@naher? What is the
effect of a change to a module?

We propose a concise design for a language parametric modateger: a module
manager that is parameterized with the module behavior péeific language. We describe
the design of our module manager and discuss some of its fpiegeWe also report on
the application of the module manager in the constructiohDd&s for the specification
language AF+SDF as well as for Java.

Our overall goal is the rapid development (generation) dE$Cior programming lan-
guages and domain specific languages. The module manageni@é here represents a
next step in the creation of such generic language worklench

1 Introduction

The long term goal of our research is generation of Integr&tevelopment Envi-
ronments (IDEs) for programming languages and domain 8pémnguages. This

is a classical topic, with a traditional focus on the generabf syntactic and se-
mantic analysis tools1, 15]. In this paper we instead focus on generating the
interactivebehavior of IDEs.

L Email: P. Kl i nt @wi . nl
2 Email: A. T. Kooi ker @wi . nl
3 Email:J. J. Vi nju@wi . nl

1.1 Motivation

IDEs increase productivity of programmers by providingrthevith an efficient
input interface and rapid feedback. For many software ptej¢éhe availability
of a good IDE is one of the decisive factors in programmingylaage selection.
With language design and domain specific languages (DSkg)drathe (research)
agenda%], and knowing that tool support for DSLs is one of the limgfifactors for
their application 14], the key question is: “What is the quickest way to consteuct
full-fledged IDE for any kind of language?”

IDEs are complex systems. Apart from editing, buildingkiimg and debug-
ging programs they offer syntax highlighting, auto-contiple, formatting, outlin-
ing, spell checking, indexing, refactoring, context-seves help, advanced static
analysis, call graphs, version control, round-trip engimgg, and much more. Pro-
gramming languages have become more complex and softwadagis are getting
bigger and bigger. Many products actually use multiple progming and domain
specific languages. This all adds up to the complexity of IB&g building them
requires major investments as exemplified by the effort mstaucting Eclipsef],
and its various instantiations for Java, C, Cobol, and ddreguages.

The subject of this paper is a central part of each IDE thatalleglre “module
manager’. The module manager coordinates all actions nvitheé IDE and all
interaction with the programmer. It does this by respondmghe changes that
the programmer makes to the source code of a project, anddgetingactions
accordingly. The module manager does not implement thebictteraction with
the user, nor does it implement any specific action, but itsdomrdinate these
actions. The main data model behind such coordination isahlection of source
code modules of a software project and their interdeperiden@ well-designed
module manager is central to each IDE and reduces the cgupétween other
components. It leads to a plug-in architecture in which IREhponents can be
added independently.

The mother of all module managers is the towke[8] that uses the module
dependency graph to initiate build actions on source codaufes in a batch-like
fashion. Ant [L7] is a modern and more sophisticated version of make. The func
tionality of a module manager for an IDE is, however, much enmymplex. It has
to react to many external triggers, is not restricted to pguriéd actions, and has
to initiate many different actions as well. Examples aresjpay, checking or com-
piling of modules, and adjusting visualizations or othdormation derived from
modules such as context-sensitive help and error lists. mbaule manager is a
fully interactive scheduler. It knows about language semarnn terms of mod-
ularity and packaging, and it knows about the capabilitiethe IDE in terms of
input and output to the user-interface. The main goal of tleluke manager is
to provide fast and adequate feedback to the programmerymadification she
makes to any module’s source code.

1.2 A Language Parametric Module Manager

The basic functionality of a module manager is to provideeasdo the modular
structure of the source code of a software project. Tindslular structures differ-
ent for each language. Apart from their pure syntactic afgeze, the meaning of
modules and module dependencies differs per languagen&anice, the include
mechanism of the C preprocessor does not coincide with a @saace; files are
simply concatenated one after the other. The Java imporhaméem, however,
does coincide with the namespace of a compilation unit; ssotan be made in-
visible outside the compilation unit it is defined in. Anotlexample: Java has
wildcards in import statements, a feature that is not prese@. Themodule se-
manticsof a language is an important aspect of its syntax and seosatttat is
essential from the viewpoint of IDE construction. Large laggiions may even
contain circular module dependencies: consider the psitg®f a text document
containing an embedded spreadsheet that in its turn cendatiext document, the
syntax definition of a language in which statements can comgpressions but
expressions may contain statements as well, or variougm@sitterns that result
in circular module dependencies.

Our goal is to develop a module manager that supports ragitbfyping of
IDEs for any (domain specific) language and satisfies thevatig requirements:

R1 (Language parametrjclt should be parameterized with the “module seman-
tics” of a language. Circular module dependencies shoukillbeed.

R2 (Schedule actions/rapid feedbadk should schedule actions, optimizing the
schedule for rapid feedback to the programmer.

R3 (Open It should be open and be able to share a (partial) view of thdutar
structure of a project with other parts of the IDE.

R4 (Scalablg: It should scale to large applications.

1.3 Contributions and Road Map

This paper contributes the following ideas:

» The use ofttributed module dependency grapssa practical and efficient ve-
hicle for implementing a language parametric module manage

e The use ok simple modal logias a way to parameterize a module manager with
language specific module semantics;

 An efficient algorithm for implementing this logic on top af attributed module
dependency graph.

In Section2 we define the functionality of a module manager and its uydegl
data model. Sectio® gives an overview of the architecture of our implementation
of such a module manager. In Sectibmwe highlight the efficient implementation
of the modal logic. Sectiob describes the case studies in which we applied our
module manager to construct various IDEs. Sedisoammarizes our conclusions.

2 Attributed module dependency graphs

We will now present all notions that play a role in our appituathe basic repre-
sentation (Sectio.1), the mapping of languages concepts (Sec8df), module
attributes (Sectior2.3), name spaces (Secti@¥), events (Sectioz.5), module
predicates (Sectio.6), and the API of the module manager (Sect). In
Section3 we will descibe module predicates in more detail.

2.1 Basic representation

Directed graphs are an obvious representation for progragfanguage modules
and their interdependencies. We identify the nodes of algwath the modules of
a program, and the edges of the graph with the dependendi@sdrethe modules
of a program. Each node has a unique name and a collectionribugts. Each
attribute has a unique name within the scope of the node, aradthatrary value.
Dependencies are anonymous but they do have attributeslibatthe distinction
between different types of dependencies.

We call the modules that depend on modulehe parents ofi/ and we call the
modules that modulé/ depends on the children @ff. Graphs can contain cycles
and we can therefore represent cyclic dependencies.

Let’s consider two examples. In Java, modules couldlassespackagesand
compilation units Classes and packages are identified by their qualified niagne (
including package prefix) and compilation units are idesditby filename. Java has
dependencies of typsontainmentimport, andinheritance Classes are contained
in compilation units or other classes, compilation units @ontained in packages,
and packages are contained in other packages. Classed intiper classes, and
inherit from other classes.

In C, modules could beompilation unitsandheader filesboth are identified
by filename. For dependency types C hadudesanduses external declaration
Compilation units and header files can include each othef,tlhey can declare
dependencies on anonymous compilation units via exteew@hations.

2.2 Mapping Language Concepts to the Graph Model

The mapping of programming language concepts to our grapdems rather ar-
bitrary and depends on the granularity of interaction rezpiby the IDE. For ex-
ample,functionsin C could be considered to Imoduleghat depend on each other
via acalls dependency. The only reason for labeling a programminguagg ar-
tifact as a module should be that the IDE needs the knowlellgeat @ependencies
between these modules to trigger certain actions.

2.3 Attributes

Modules and dependencies may have arbitrary attributeisa Epecific program-
ming language, there are specific attributes that will bedusethe IDE to im-

plement language specific behavior. Module attributes lvallused to visualize a
module’s identity to the programmer. For example, in a J®&& & class module
will have a class nhame attribute and a package name attribtiber attributes may
contain aggregated information, such as whether a modul&ics a syntax error,
or how many lines of code it spans.

2.4 Namespaces

One of the complexities of today’s IDEs is that they have tal dath several pro-
gramming languages and domain specific languages thatthex eperating next
to each other or are embedded in each other. To be able torsgeperal concepts
of module semantics at the same time, we introcuem@espacefor all identifiers
in our graph based model. So, module identifiers, dependgntiodule attributes,
and dependency attributes all have a namespace. For hrgeityill assume from
now on that a valid namespace is part of each module or atridentifier.

2.5 Events

So far, we have only introduced a generic data structuretéoimg and retrieving
transient information about modules. In order to schedat®mas we need rules to
select actions for execution. Examples of actionscarapilinga compilation unit,
or extractingan outline of a Java clasalerting the programmer about a certain
error, ordecoratinga package view with versioning pictograms. The rules of the
module manager should trigger these actions at the apptegimes.
Thelisteneror observer design patterj®] is a simple method for decoupling
coordination from computation. A computation, or actioggisters itself as a lis-
tener, and the coordinator triggers the action at certaimerds. The module man-
ager allows registration of listeners #dtribute change eventsnodule existence
eventsand dependency existence evesigh that an action may be triggered on
any change in the data model. Note that actions may influémcstate of the mod-
ule manager, triggering new actions. Since we do not assunyidiag about the
actions, there can be no a priori guarantee that such a meaasdd terminate, not
deadlock, or even be deterministic.

2.6 Module Predicates

As we have seen earlier in Sectidrl, makeandant trigger build actions using
the dependency relationship between modules. For exarnimemodule graph
contains the basic information for recompiling parts of &Jarogram without
rebuilding the rest of it. In an IDE there are much more aditm be triggered
under different kinds of conditions. For example, if a meth® removed from a
Java class, outlines need to be recomputed for all clasaemtierit from it. Or, if

a C include statement is moved in a file, at least all code iviee old location
and the new location needs to be rechecked for static cogsst Or, if a Java

compilation unit ismodified(in terms of the version management system), then all
packages it is contained in are alsodified

The information that needs to be propagated through a matkpendency
graph is language specific, even IDE specific. So, the modaleager must pro-
vide some way of making information propagation programimal~or this we
introducemodule predicatesThese are inspired by attribute grammar systetgk [
and modal logic2]. Both formalisms provide a programmable way of distribgti
information over the elements of a complex data structureeXample of a module
predicate for a C IDE ifinkable. A C compilation unit is linkable when it contains
a main function and all of its dependencies have compileckcty.

We will get back to the details later in SectidnFor now, the key idea is that the
truth values of module predicates are determined autoaibtiby inspecting and
aggregating the values of the attributes of a module andildgssther modules.
The way this inspection and aggregation is done is detewhiyanodule predi-
cate definitionswhich the module manager receives at configuration timeeWh
the value of such a predicate is changed as a result of thegetaralue of an at-
tribute, apredicate changed evetriggers the appropriate actions via listeners. The
definitions are expressed using a simple logic, which allbvesmodule manager
to statically check for consistency of the set of definitions

2.7 API of the Module Manager

The basic operations that the module manager offers aregaalid removing of
modules and dependencies, setting attribute values tra&gs of event listeners
and registration of module predicates.

The module manager may also contain any kind of generic gragotipulation
algorithms for the benefit of IDE actions. Operations likenitive closures of
dependencies, reachability analysis, inversion, cluggercoloring and exports to
graph visualizations are obvious candidates for inclugmotine module manager.
Keeping the processing of these data as well as the data ¢herasas close as
possible to the module manager will increase efficiency.

3 Module Predicates

When the user makes a change to a module, the module managahesdepen-
dencies between modules to trigger actions in responseatactiange. How can
this be done in a language parametric way?

3.1 Domain analysis

Analysis of existing IDEs reveals that actions on modulestaggered either di-
rectly or indirectly. Direct actions are consequences efabtions of the program-
mer that are directly related to a specific module. A modukgised for example;
in response to this change the system decides to invalidatprevious compila-
tion and to trigger a new compile action. We call this dirgatfluenced module the

N: C

::= < Predicate Name >

predicate definitiop
name of a predicaje
= < Attribute Name > name of an attribute

= < Attribute Value > value of an attributp

Q < = =2 %9
Z‘:

true | false Boolean constanjs

o~ o~~~ o~~~ o~~~

| A=V attribute value equality

| -¢c | CcAC | CvC | C—C (not,and,or, implies

| oC in some childC' holds)

| OC in all childrenC' holds)

| (O) parentheses for grouping

Figure 1. The syntax of module predicates.

pivot Every sequence of automatically triggered actions in da #ivays starts at
a certain pivot.

Indirect actions are also consequences of the actions gbritgrammer, but
the affected modules can be far away from the pivot. Onlyoastion the pivot or
on modules thatlepend orthe pivot can be triggered. However, these actions are
triggeredconditionallysince actions for a certain module are not always triggered
even if an (indirect) dependency changed. For example, aoGram should be
relinked if oneof its dependencies changed, but only if it contains a maictfan,
and only ifall of its dependencies have compiled correctly. We conclude th

« The triggering of actions is governed by the module depecyglgraph;
« The triggering of actions occurs under certain conditions;

« Conditions refer to properties (attributes) of modules;

» Conditions refer to the properties of children of modules.

We will use a simple language for expressing the conditiamrstriggering
events. This language needs at least the Boolean operatorg operators for
inspecting the attributes of modules, and some operataeféoto the children of
modules. The idea is to evaluate these conditionsvery moduleand send an
event to the IDE when the value of a condition changes. Welabkl each condi-
tion with a name in order to be able to identify it, and call madule predicate

The effect is that actions will be triggered automaticaltya cascading effect
that starts at the pivotal change in the module dependemaphgand ends when all
module predicates have been re-evaluated. Note how thisomhef automatically
triggering actions is a generalization of build tools likeédke”. Those tools trigger
build actions (mainly) on a set of fixed (built-in) conditmre.g., a file being out-
of-date. In our system, the conditions are programmablethEtmore, in make-
like tools dependencies and actions are tightly couplet;esevery dependency
rule may have a list of actions. In our system, the way depecide are used is
programmable, because a module predicate may refer tottiteuges of children
of modules in several ways.

3.2 Syntax and semantics of module predicates

The syntax of module predicates is defined in FiglreA predicate declaration
consists of a predicate naméfollowed by a conditiorC'. We assume that disjoint
sets of predicate and attribute names are used and thatatediames are only
used once. A condition may consisttofie andfalse, tests for the value of attributes
(A = V), the Boolean operators/(A, =, —), and operators to express conditions
on the children of a module that have to hold in some chitl @r in all children
(©).

The operational semantics of the conditions is defined &»#sl Each condi-
tion is evaluated for every module/. Every module has an attribute environment
E that maps attribute names to attribute values, and a seildfem K. The nota-
tion we use isM£. An evaluation functiorval reduces a condition to eitherue
or false. It defines an operational semantics for the standard Boateaditions
(which we leave out for brevity), and an operational sentanfior the conditions
A=V,0C andoC:

eval(ME, A =V) = true iff equals(lookup(A, E),V)
eval(ME, 0C) = true iff Vk € K eval(k, C A OC)
eval(ME, ©C) = true iff 3k € K : eval(k, C v ©C)

Evaluating an attribute value equality amounts to a lookfithe attribute’s
value in the module’s environment and comparing it with thveig valuel/.

Evaluating a condition containing the or < operator leads to the recursive
application of the given conditiod’ to the children of the current module, but
evaluation differs in the way the result is aggregated. Epthe condition must
hold in all children. For>, the condition must hold in at least one of the children.
Note that evaluating and<> implies computing the transitive closure of the child
relation among modules and that this definitiorafl does not terminate on cyclic
dependency graphs. A terminating definitionesfil can be obtained easily by
remembering the result of an earlier visit. Otherwise thedirdtion terminates
because it is a recursion over a finite expression tree, andpdates are done
in the module environments whiteral is computed. We will present a terminating
(incremental) evaluation algorithm in Sectidn

The functioneval is a rephrasing of the definition of the satisfaction relatio
of a K4 modal logic[2] with attribute equalities as propositions. There are save
satisfiability checkers for this logic availabl&3, 7].

The definition of the operatorfs and< resembles tree traversal mechanisms,
such as found in ELAN3J], AsFSDF [4], Stratego 18], JJTraveler19] and Stra-
funski [12]. However, since we are in the domain of modal logic and nohédo-
main of either functional programming or term rewritingetresemblance is rather
coincidental. The main difference between modal logic aed traversals is that
in modal logic the other operators of the language do nopperarbitrary compu-

tation but compute truth values using Boolean operatorg;iwis at a higher level
of abstraction. Another difference is that these logic afmns operate on (possibly
circular) graphs instead of trees.

3.3 Examples

The following examples illustrate how certain propertidsradules can be de-
scribed by a combination of attributes and predicates. ésehexamples we use
attribute names$ for modulestateandT for moduletype They serve to show the
flexibility of these rules since many different kinds of actitriggering policies can

be expressed using this simple formalism.

erroneous <(S= parse-erroy
linkable: S= compiled\ main= yesA O(S= compiled
not-exec S= errorV <&(S= error)
package-modified T = package\ <(T = programA S= modi fied)

Predicateerroneoudflags a module as erroneous when one of its children has
a parse error. An action that could be triggered when theevafuthis predicate
changes is a user-interface action that disables certamuraptions such as, for
instance, executing the module. Predict&able computes whether a certain
module may be linked to a runnable program. If it is a compitegin module
and all of its children are compiled, then an action may bggered to link the
program. Predicateot-execperforms a similar computation: the corresponding
module is not executable when the module itself or some afhiiglren are in an
error state. Finally, predicatgackage-modifiedomputes that a package can be
marked as modified if there is one program in its dependertbasis modified.
Such a change of value of this predicate could trigger a @dicor in a package
explorer view that is part of the IDE.

To show how the evaluation of module predicates uses dependelations
we take, for example, the predicdiekableand show the update process in a few
steps. We have a cyclic dependency graph as shown in FR{a)e The initial
state is consistent; modulg hasS = error, so there is no module for which all
dependencies ha&= compiled After a manual update in modulg, its value for
Schanges t@ompiled see Figur&(b). This triggers an update of all predicates in
all modules. Figur@(c) shows that in three modules the valudinkablechanges
from false to true. In this example, the module manager wilger actions right
after the initial manual update, and then also for each s¢pahange in valuation
of a predicate in a specific module. A linker action coulddisto these events and
start the linking process for all three main modules.

" Madile 2 (" Module A) (" Module A)
Module A Module A Module A

S = compiled S = compiled S = compiled
main = yes main = yes main = yes
linkable: false linkable: false linkable: true
—— —— —

Y
Module B

S = compiled
main = no
_/inkable: false)
Module C
S = compiled
main = yes
\ linkable: true

Module D
S = compiled
main = no
linkable: false

Module E
S = compiled
main = yes
linkable: true

Y
Module B

S = compiled
main = no
_/inkable: false)

Module C
S = compiled
main = yes
linkable: false

Module B

S = compiled
main = no
_/inkable: false)

Module C
S = compiled
main = yes
linkable: false

Module D

S = compiled

main = no
linkable: false

Module E
S = compiled
main = yes
linkable: false

A

Module D
S = compiled
main = no
linkable: false

Module E
S = error
main = yes
linkable: false

(a) Initial state (b) Manual update (c) Predicate updates

Figure 2. Automatically updating module predicates afteramual attribute update.
4 Implementation

In the previous sections we have presented a high-levajdesia language para-
metric module manager, including a data structure and syata semantics for
module predicates. This section details some of the engngetrade-offs that are
necessary to obtain an opdR3) and scalableR4) implementation of this design.

4.1 Openness via language independent middleware

A language parametric module manager should easily allgnkard and amount
of IDE extensions R3). This means that many different kinds of components
should be able to react to module events. This enables rapidtpping and evo-
lution of IDEs by reusing third-party components, by incextally adding new
components, and by gradually replacing prototype compisnen

Third-party components can be writtenagnyprogramming language, but there
is even a case for developing heterogenous componentsusehgrototypes are
usually more easily implemented in scripting languageslethe eventual product
may be developed in a compiled language.

We use the ©oLBus component coordination architecture support this].
In a TooLBus-based design atomputationis done in tools that connect via IP
sockets to a software bus and @ordinationis done via a script that describes the
behaviour of this bus. As such, the tools can be written inlanguage and can be
connected to the bus being totally oblivious from each dlextistence. DoLBuUsS
coordination scripts can express all kinds of collaborapeotocols between tools
on a high level of abstraction. For example, it is easy to espsynchronous and
asynchronous communication, broadcasts, and locking. 8&ehese features to

construct a generic communication protocol between theuteoshanager and an
arbitrary number of tools:

« Attribute/predicate change events are broadcasted asymuisly to listeners;

» Reads and updates of the attributed module dependency graptione syn-
chronously;

» Reads and updates are guarded by a lock mechanism to ruleceutonditions.

Tools may anonymously register as listeners. This payti@tliplements re-
quirementR3 on openness. Openness can be improved further by allowmg th
module manager to anonymously register an arbitrary amotimodule predi-
cates at initialization time. After initialization, the rdole manager may present
the predicates to a K4 modal logic solver in order to compuote satisfiability and
tautology. This is necessary only during development oth (debugging mode).
When the IDE is finished and released the set of module predieéll not change
anymore.

4.2 Scalability by incremental module predicate evaluatio

Our implementation should scale lerge projects(R4). Large projects have large
module dependency graphs that frequently contain cycpeddencies. A straight-
forward implementation of the semantics of module predisdhat was presented
in Section3 would visit all nodes several times, after every single upad an at-
tribute. A small experiment showed immediately that thégrenance would be too
low. In this section we therefore present an incrementaidrithyn for the efficient
evaluation of module predicates.

In Section3 we have explained that when the truth value of a module predi-
cate changes, an event must trigger all registered listenEne truth value may
change due to a change in attribute values of a pivot moduldye to a change
in the configuration of the module dependency graph. A siogénge in the pivot
module may have as effect that many module predicates chaalge, triggering
many actions. An efficient implementation of a module pratievaluator should
at least recalculate the truth values of all predicatesititited have changed (i.e.,
the implementation should rrect), while it should avoid waisting time on cal-
culating module predicates that will certainly not chanige. (the implementation
should bencremental.

Algorithm 1 shows an incremental predicate evaluation algorithm ingseode.
The evaluation is started by the procedureD4TEATTRIBUTE that initiates the
value change of an attribute in the pivot module. The revarprocedure FAL -
UATEPREDICATES recalculates the values of all predicates that are dirextin-
directly dependent on the value of the changed attributete Kwat the previous
value of each module predicgpeed is maintained in the module environment as
predname thus enabling the detection of value changes witleot$p the current
value ofpredcondition. The function EALUATE CONDITION computes the value
of a given condition by recurring over its structure. Theaaithm starts at the

Algorithm 1 Incremental evaluation of predicates

1: procedure UPDATEATTRIBUTE(modulgattr, valug
global visited — &
valué «— modulgattr)
if value # valué then

2
3
4
5: modulgattr) « value
6:
-
8
9

NoTIFYLISTENERgMOdule attr, valug valug)
EVALUATE PREDICATESmodule attr)

. procedure EVALUATE PREDICATESmodule attr)
if module¢ visitedthen

10: global visited < visitedU {modulé

11: Predicates— GETDEPENDENTPREDICATESattr)

12: for all pred € Predicatesdo

13: value < EVALUATE CONDITION(module pred condition)
14: value «— modulépred name)

15: if value# value then

16: modulgpred name) « valué

17: NoTIFYLISTENERYmModulepred, valug valu€g)

18: for all parente PARENTS(modulé do

19: EVALUATE PREDICATEYparent attr)

20: function EVALUATE CONDITION(modulgcondition)

21: switch condition

22: case OX:

23: children «— GETTRANSITIVECHILDREN(modulg

24 for all child € childrendo

25: if = EVALUATE CONDITION(child, X) then return false
26: return true

27: case Ox:

28: children < GETTRANSITIVECHILDREN(modulg

29: for all child € childrendo

30: if EVALUATE CONDITION(child, X) then return true
31: return false

32: case attr = value

33: return (moduldattr) equals value)

34 case...:

35: evaluate simple boolean expressions

pivot, evaluates all module predicates, and works its wayhe module depen-
dency graph detecting the other modules that are affected.

We do not show the definitions of EDEPENDENTPREDICATES (gives all
predicates that depend on a certain attributepTIHYLISTENERS (informs the
outside world about value changes of attributes or preé&atnd GTTRANSI-
TIVECHILDREN (yields all direct and indirect children of a module). Foebity,
we only show the recalculation of predicates that is irgiiaby the update of an
attribute value. When the structure of the dependency gsaphanged, a similar
recalculation is done.

EVALUATE PREDICATES terminates because every node is visited only once,
due to the use of a global worklist. VELUATE CONDITION terminates because
conditions are finitely deep, and it does not traverse thewd@pncy graph. Instead
it uses GETTRANSITIVECHILDREN, which uses a precomputed transitive closure
of the dependency graph. Sinceand< are transitively closed (see Secti®)this
is a correct implementation. Note that we found that preaasting and caching
the transitive closure saves time, since attribute updatesmore frequent than
adding and removing dependencies. The gain in efficienaypexpared to a naive

implementation as presented in Sect®is caused by precomputing and caching
the transitive closure of the module dependency graph amydlyating the values
of predicates in dependent modules only.

After this sketch of predicate evaluation, it is useful talarstand the difference
between our predicate evaluation method and conventidtnddide evaluation al-
gorithms as used in attribute grammat$|[Attribute grammar systems take an
attributed abstract syntax tree as point of departure.ibAttes may be inherited
(their value is propagated from root to leaves) or synthessizheir value is propa-
gated from leaves to root). At each node, attribute equatitaiermine the depen-
dencies between attributes. These attribute equations@dependencies between
attributes.

Although attribute grammars can have cyclic attribute deleacies, the graph
that holds the attributes is a tree. Our tool distributeshtattes on any graph, not
just trees, but the computed attributes can not have cyelbeddencies. Further-
more module predicates are limited to the computationalgsoey modal logic
allowing extensive static consistency checking.

5 Casestudies

The module manager as described in the previous sectionseessapplied suc-
cessfully in the construction of IDEs for #%+SDF and Java. In this section we
focus on the use of the module manager in these IDEs.

5.1 AsrHSDF Meta-Environment

The AsrSDF Meta-Environment uses the module manager to keep moduéssta
up to date and to store other information such as graph ptiepepaths, and mod-
ule names. Since $&+SDF modules can introduce user-defined syntax it is helpful
to treat the BF part and the AF part of a module separately. The remainder of
this section describes the use of the module managesm 8DF focusing on its
use for $F.

An SDF module can be in one of several states. The state diagrangume3
describes the transitions between these states. Thetioasshemselves are han-
dled by a TooLBuUs script as explained earlier. Once a module’s state becomes
opened it is possible for the module manager to evaluatedbmpleteor child-
error predicates.

complete S= opened\ O(S= opened
child-error: —(S= error) A &(S= error)

The completepredicate is only true when a module and all its children are
opened This indicates that the module has been parsed correctiyttaat all of
its dependencies are free of errors. When a module’s statempletean action is

S = unknown
complete: false
child-error: false

S = unavailable
complete: false
child-error: false

S = available
complete: false
child-error: false

S = error
complete: false
child-error: false

S = parsed
complete: false
child-error: false

A

S = opened
complete: false
child-error: false

S = edited
complete: false
child-error: false

S = opened
complete: false
child-error: true

S = opened
complete: true
child-error: false

Figure 3. State transition diagram for theSpart of an ASF+SDF module

triggered that starts the parsing process of tlse part of the module. Since the
AsF part of a module depends on theSpart, the AsF part can only be parsed

when the BF part iscomplete Thechild-error predicate is only true when one or
more of a module’s dependencies fail to parse correctlys predicate is used as a
state value in the IDE. To avoid a module getting ¢théd-error state when already

having theerror state a self-check on thegror state has been added.

5.2 JavalDE

The Java IDE is a prototype IDE for Java that uses the moduleage to keep
track of the same module states as for th&=ASDF Meta-Environment, but also
propagates errors and warnings through the package steuctu

The import structure of Java files is very similar to the imsgructure of $F
files and therefore the state attribute used in tl8=#SDF Meta-Environment is
reused. This also means that we can reuse some of the pexdiesed in the
ASF+SDF Meta-Environment.

Apart from the import graph the module manager is providetih\ai package
dependency graph. The modules of this graph consist of traesats of the pack-
age name and have Java files as leafs. We introduce the pge=sfiaakage-error
package-warningand package-modifiedo describe the desired behaviour of the
Java IDE:

package-error. (S = error)
package-warning —(<(S= error)) A &(warning= yes
package-modified <(ves= modified

Thepackage-erropredicate is true when one or more of a module’s dependen-
cies have amerror state. Since package segments do not have state it is naheed

ASF+SDF Meta-Environment | Java |DE
Nr. of modules 75 420 (192 are libraries)
Nr. of rules involved| 2 5
Modules evaluated | 69 154
Time 7 msec. 265 msec.
Table 1

Performance statistics

to have a self-check on therror state, which is needed in case of the import de-
pendency graph. Thaass-warningpredicate is only true when one or more of a
module’s children have warnings. Furthermore, it can or@ytioie if none of its
children has therror state. Thgackage-modifielas been added to indicate that
files are modified according to the version control systemis Phedicate is true
when one or more of a module’s children are modified.

Since Java development depends strongly on package seutbe addition
of package predicates is essential for a Java IDE when gdiima source mod-
ules. The module manager made it possible that the packamdency graph
and predicates that propagate through this graph wereyeakied.

5.3 Analysis

Both case studies have been carried out loading a mediwed-agplication in the
IDE. In the ASF+SDF Meta-Environment case we used the sources of the S
normalizer specification consisting of 75 modules. For ¢neadDE case we used
the source code of JSPWiki]], which consists of nearly 38,000 lines of Java
code in 228 source files and 192 libraries. In both IDEs a pivotlule has been
chosen in such a way that as much modules as possible werenodd by its
changes. The profile run is done by editing the pivot modutecausing an error.
This error propagates through the import graph, evaluatiigredicates and finally
evaluatingchild-errorto true for all dependent modules. Only a part of all avagabl
modules will be influenced by the pivot.

Profiling these scenarios indicates that the evaluatioorifgn requires a quar-
ter of a second to compute the effects of a change in a medzed-application.
Tablel shows the results for both case studies. We used a 2.2 GHz @RU @b
of main memory.

6 Conclusions

The module manager in previous versions of the Meta-Enuiemt was imple-
mented entirely in, partly language-specifi@dLBus scripts. The approach de-
scribed in this paper is completely generic, improves ttspoase time for state
changes and reduces the size and complexity of the implexte@mt

The proposed module manager is fully language paramettiabows express-

ing module semantics in a suprisingly concise way. Moduéseljmates can be used
to propagate information through the module dependengytgrahis information
is IDE-specific and can be used to give feedback to the useigget other ac-
tions. After a change in one of the modules due to editing, uteodredicates can
be recomputed very efficiently. Based on this positive eigoee we will further
explore the application of this approach to other languanels|DE-features.

Acknowledgments

Jan van Eijck pointed out the similarity between our attigevaluation mechanism
and K4 modal logic; this enabled the reuse of an existingfalility checker.

References

[1] Bergstra, J. A. and P. KlintThe discrete time ToolBus — a software coordination
architecture Science of Computer Programmifg) (1998), pp. 205-229.

[2] Blackburn, P., M. de Rijke and Y. Venema, “Modal logic,"a@bridge University
Press, New York, NY, USA, 2001.

[3] Borovansky, P., C. Kirchner, H. Kirchner, P.-E. MoreandaM. Vittek, ELAN: A logical
framework based on computational systeinsJ. Meseguer, editoRWLW96, First
International Workshop on Rewriting Logic and its Applicais Electronic Notes in
Theoretical Computer Sciendg1996), pp. 35-50.

[4] van den Brand, M. G. J., A. van Deursen, J. Heering, H. AJdeg, M. de Jonge,
T. Kuipers, P. Klint, P. A. Olivier, J. Scheerder, J. J. Vini Visser and J. Visser,
The ASF+SDF Meta-Environment: a component-based langudgeelopment
environmentin: R. Wilhelm, editor,Compiler Construction (CC '01)Lecture Notes
in Computer Scienc2027 (2001), pp. 365-370.

[5] van Deursen, A., P. Klint and J. Vissdbomain-specific languages: An annotated
bibliography, ACM SIGPLAN Notices35 (2000), pp. 26—36.

[6] Eclipse FoundationThe Eclipse tool platformmSee:ht t p: / / ww. ecl i pse. org
(2004).

[7] Fauthoux, D., Lotrec - a general tableaux theorem prover in Jav&ee:
http://www.irit.fr/Lotrec (1999).

[8] Feldman, S. I.Make - a program for maintaining computer progranfsoftware:
Practice and Experien@(1979), pp. 255-265.

[9] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Desaitems,” Addison-Wesley,
1995.

[10] Hennessy, M., “The Semantics of Programming Languag®s Elementary
Introduction using Strutcural Operational SemanticstinJ@viley & Sons, Inc., 1990.

[11] Jalkanen, JJSPWikj See:ht t p: / / www. j spwi ki . or g (2001).

http://www.eclipse.org
http://www.irit.fr/Lotrec
http://www.jspwiki.org

[12] Lammel, R. and J. VisseA Strafunski application letteiin: V. Dahl and P. Wadler,
editors, Proceedings of Practical Aspects of Declarative ProgramgnjPADL’03)
Lecture Notes in Computer Sciengg62 (2003), pp. 357-375.

[13] Le Berre, D.,A satisfiability library for Java See:htt p://wwv. sat 4j . org
(2004).

[14] Mernik, M., J. Heering and A. M. Sloan&/hen and how to develop domain-specific
languagesACM Computer Survey87 (2005), pp. 316—-344.

[15] Nielson, F., H. R. Nielson and C. Hankin, “PrinciplesRsbgram Analysis,” Springer-
Verlag, 1999.

[16] Paakki, J.Attribute grammar paradigms — a high-level methodologyanguage
implementationACM Computing Survey27 (1995), pp. 196-255.

[17] The Apache Software Foundatiofnt, Seehtt p: // ant . apache. or g (2000).

[18] Visser, E.,Program transformation with Stratego/XT: Rules, strategi®ols, and
systems in StrategoXT-0.@: C. Lengauer et al., editoromain-Specific Program
Generation Lecture Notes in Computer Scien8@16, Springer-Verlag, 2004 pp. 216—
238.

[19] Visser, J.,Visitor combination and traversal controin: OOPSLA '01: Proceedings
of the 16th ACM SIGPLAN conference on Object oriented prognang, systems,
languages, and publication(2001), pp. 270-282.

http://www.sat4j.org
http://ant.apache.org

	Introduction
	Motivation
	A Language Parametric Module Manager
	Contributions and Road Map

	Attributed module dependency graphs
	Basic representation
	Mapping Language Concepts to the Graph Model
	Attributes
	Namespaces
	Events
	Module Predicates
	API of the Module Manager

	Module Predicates
	Domain analysis
	Syntax and semantics of module predicates
	Examples

	Implementation
	Openness via language independent middleware
	Scalability by incremental module predicate evaluation

	Case studies
	Asf+Sdf Meta-Environment
	Java IDE
	Analysis

	Conclusions
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20070221100621
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 None
 Right
 14.1732
 0.0000

 Both
 5
 AllDoc
 23

 CurrentAVDoc

 Uniform
 14.1732
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 17
 16
 17

 1

 HistoryList_V1
 qi2base

